Contents

Preface ... vii

Overview of Performance Manager ... 1-1

About Performance Manager Operations .. 2-1

- Understanding Statistical Storage Ranges .. 2-3
- Parity Group Usage Statistics ... 2-4
- Volume Usage Statistics .. 2-5
- External Volume Group Usage Statistics .. 2-5
- External Volume Usage Statistics .. 2-5
- Channel Processor Usage Statistics .. 2-6
- Disk Processor Usage Statistics ... 2-6
- DRR Processor Usage Statistics ... 2-9
- Write Pending Rate and Cache Memory Usage Statistics 2-9
- Access Path Usage Statistics ... 2-10
- Hard Disk Drive Workload Statistics ... 2-11
- Port Traffic Statistics ... 2-12
- LU Paths Traffic Statistics .. 2-12
- Traffic between HBAs and Storage System Ports 2-13
- Performance of High-Priority Hosts .. 2-13
- Upper-Limit Control .. 2-14
- Performance Monitor .. 2-17
- Server Priority Manager ... 2-18

Preparing for Performance Manager Operations 3-1

- Performance Monitor Limitations ... 3-3
- Export Tool Limitations .. 3-5
Using the Performance Manager GUI ... 4-1

Performance Monitor Window ... 4-2
Performance Management Window, Physical Tab 4-3
LDEV Tab of the Performance Monitor Window ... 4-9
Port-LUN Tab of the Performance Monitor Window 4-15
WWN Tab of the Performance Monitor Window .. 4-21
Monitoring Options Window .. 4-25
Other Windows .. 4-29
Port Tab of the Server Priority Manager Window 4-30
WWN Tab of the Server Priority Manager Window 4-34

Performance Monitor Operations .. 5-1

Start Monitoring .. 5-2
View the Monitoring Results .. 5-4
Starting and Stopping Storage System Monitoring 5-6
Viewing Usage Statistics on Parity Groups .. 5-8
Viewing Usage Statistics on Volumes in Parity Groups 5-10
Viewing Usage Statistics on External Volume Groups 5-14
Viewing Usage Statistics on External Volumes in External Volume Groups ... 5-16
Viewing Usage Statistics on Channel Processors .. 5-18
Viewing Usage Statistics on Disk Processors ... 5-19
Viewing Usage Statistics on Data Recovery and Reconstruction Processors ... 5-21
Viewing Write Pending and Cache Memory Usage Statistics 5-22
Viewing Usage Statistics on Access Paths .. 5-24
Viewing I/O Rates for Disks .. 5-27
Viewing Transfer Rates for Disks .. 5-30
Viewing I/O Rates for Ports ... 5-34
Viewing Transfer Rates for Ports ... 5-37
Viewing Details about the I/O and Transfer Rates 5-40
Viewing LU Paths I/O Rates .. 5-41
Viewing LU Paths Transfer Rates ... 5-43
Monitoring Paths between Host Bus Adapters and Ports 5-45
Viewing I/O Rates between HBAs .. 5-45
Viewing Transfer Rates between HBAs ... 5-48

Server Priority Manager Operation ... 6-1

If One-to-One Connections Link HBAs and Ports 6-3
If Many-to-Many Connections Link HBAs and Ports 6-6
Starting Server Priority Manager ... 6-11
Analyzing Traffic Statistics ... 6-13
Setting Priority for Ports on the Storage System 6-14
Setting Upper-Limit Values to Traffic at Non-prioritized Ports 6-15
Setting a Threshold ... 6-16
Monitoring All Traffic between HBAs and Ports 6-18
Analyzing Traffic Statistics ... 6-21
Setting Priority for Host Bus Adapters 6-22
Setting Upper-Limit Values for Non-Prioritized WWNs 6-24
Setting a Threshold .. 6-25
Changing the SPM Name of a Host Bus Adapter 6-26
Replacing a Host Bus Adapter .. 6-27
Grouping Host Bus Adapters ... 6-28

Using the Export Tool ... 7-1
Requirements for Using the Export Tool 7-16
Installing the Export Tool on a Windows Computer 7-17
Installing the Export Tool on a UNIX Computer 7-18
Preparing a Command File .. 7-19
Preparing a Batch File .. 7-22
Running the Export Tool ... 7-24
Command Syntax .. 7-30
svpip Subcommand ... 7-32
retry Subcommand .. 7-33
login Subcommand .. 7-34
show Subcommand .. 7-35
group Subcommand .. 7-37
short-range Subcommand ... 7-54
long-range Subcommand ... 7-58
outpath Subcommand ... 7-62
option Subcommand .. 7-63
apply Subcommand ... 7-64
set subcommand ... 7-64
help Subcommand .. 7-66
Java Command for Exporting Data In Files 7-66

Troubleshooting ... 8-1

Acronyms and Abbreviations

Index
This document describes and provides instructions for using the following Performance Manager software for performing operations on the Hitachi Universal Storage Platform V and Hitachi Universal Storage Platform VM (USP V/VM) storage systems.

- Performance Monitor
- Server Priority Manager (henceforth, referred to as \textit{SPM})

Please read this document carefully to understand how to use this product, and maintain a copy for reference purposes.

This preface includes the following information:

- Intended Audience
- Product Version
- Document Revision Level
- Source Document(s) for this Revision
- Changes in this Revision
- Document Organization
- Referenced Documents
- Document Conventions
- Convention for Storage Capacity Values
- Getting Help
- Comments

\textbf{Notice:} The use of Performance Manager software and all other Hitachi Data Systems products is governed by the terms of your agreement(s) with Hitachi Data Systems.
Intended Audience

This document is intended for system administrators, Hitachi Data Systems representatives, and Authorized Service Providers who are involved in installing, configuring, and operating the Hitachi Universal Storage Platform V and VM storage systems.

This document assumes the following:

- The user has a background in data processing and understands RAID storage systems and their basic functions.
- The user is familiar with the Universal Storage Platform V and/or VM storage system and has read the Universal Storage Platform V/VM User and Reference Guide.
- The user is familiar with the Storage Navigator software for the Universal Storage Platform V/VM and has read the Storage Navigator User’s Guide.
- The user is familiar with the operating system and Web browser software on the system hosting the Hitachi Universal Storage Platform V/VM Storage Navigator remote console software.

Note: There are different types of users for Hitachi Universal Storage Platform V/VM: storage administrators and storage partition administrators. The functions described in this manual are limited depending on the user type. For details on the limitations, see Storage Partition Administrators Limitations. For details on the user types, see the Storage Navigator User’s Guide.

Product Version

This document revision applies to Universal Storage Platform V/VM microcode 60-03-0x and higher.

Document Revision Level

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK-96RD617-P</td>
<td>February 2007</td>
<td>Preliminary Release</td>
</tr>
<tr>
<td>MK-96RD617-00</td>
<td>April 2007</td>
<td>Initial Release, supersedes and replaces MK-96RD617-P</td>
</tr>
<tr>
<td>MK-96RD617-01</td>
<td>June 2007</td>
<td>Revision 1, supersedes and replaces MK-96RD617-00</td>
</tr>
<tr>
<td>MK-96RD617-02</td>
<td>July 2007</td>
<td>Revision 2, supersedes and replaces MK-96RD617-01</td>
</tr>
<tr>
<td>MK-96RD617-03</td>
<td>September 2007</td>
<td>Revision 3, supersedes and replaces MK-96RD617-02</td>
</tr>
<tr>
<td>MK-96RD617-04</td>
<td>November 2007</td>
<td>Revision 4, supersedes and replaces MK-96RD617-03</td>
</tr>
<tr>
<td>MK-96RD617-05</td>
<td>January 2008</td>
<td>Revision 5, supersedes and replaces MK-96RD617-04</td>
</tr>
<tr>
<td>MK-96RD617-06</td>
<td>March 2008</td>
<td>Revision 6, supersedes and replaces MK-96RD617-05</td>
</tr>
</tbody>
</table>
Source Documents for this Revision

- MK-96RD617-08d-RSD-V03

Changes in This Revision

- Added notes throughout this document to contact Hitachi Data Systems Support Center for Volume Migration support.
- Added notes throughout this document concerning the CU as the monitoring target.
- Added new section Causes of Invalid Monitoring Data.

Document Organization

The following table provides an overview of the contents and organization of this document. Click the chapter title in the left column to go to that chapter. The first page of each chapter provides links to the sections in that chapter.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 - Overview of Performance Manager</td>
<td>Describes the performance management software products that allow you to monitor and tune storage system performance.</td>
</tr>
<tr>
<td>Chapter 2 - About Performance Manager Operations</td>
<td>Provides an overview of Performance Manager operations.</td>
</tr>
<tr>
<td>Chapter 3 - Preparing for Performance Manager Operations</td>
<td>Explains the preparations for Performance Manager operations.</td>
</tr>
<tr>
<td>Chapter 4 - Using the Performance Manager GUI</td>
<td>Explains the use of the Performance Manager windows.</td>
</tr>
<tr>
<td>Chapter 5 - Performance Monitor Operations</td>
<td>Explains Performance Monitor operations.</td>
</tr>
<tr>
<td>Chapter 6 - Server Priority Manager Operation</td>
<td>Explains Server Priority Manager operations.</td>
</tr>
<tr>
<td>Chapter 7 - Using the Export Tool</td>
<td>Explains using the Export Tool.</td>
</tr>
<tr>
<td>Chapter 8 - Troubleshooting</td>
<td>Provides troubleshooting information on Performance Monitor, Server Priority Manager, and Export Tool.</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>Defines the acronyms and abbreviations used in this document.</td>
</tr>
<tr>
<td>Index</td>
<td>Lists the topics in this document in alphabetical order.</td>
</tr>
</tbody>
</table>
Referenced Documents

Hitachi Universal Storage Platform V/VM:
- Hitachi Compatible Mirroring for IBM FlashCopy User’s Guide, MK-96RD614
- Hitachi Copy-on-Write Snapshot User’s Guide, MK-96RD607
- Hitachi LUN Manager User’s Guide, MK-96RD615
- Hitachi Storage Navigator Messages, MK-96RD613
- Hitachi Storage Navigator User’s Guide, MK-96RD621
- Hitachi TrueCopy for IBM z/OS User’s Guide, MK-96RD623
- Hitachi TrueCopy User’s Guide, MK-96RD622
- Hitachi Universal Replicator for IBM z/OS User’s Guide, MK-96RD625
- Hitachi Virtual Partition Manager User’s Guide, MK-96RD629

Document Conventions

The terms “Universal Storage Platform V” and “Universal Storage Platform VM” refer to all models of the Hitachi Universal Storage Platform V and VM storage systems, unless otherwise noted.

This document uses the following typographic conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold</td>
<td>Indicates text on a window, other than the window title, including menus, menu options, buttons, fields, and labels. Example: Click OK.</td>
</tr>
<tr>
<td>Italic</td>
<td>Indicates a variable, which is a placeholder for actual text provided by the user or system. Example: copy source-file target-file</td>
</tr>
<tr>
<td>Note:</td>
<td>Angled brackets (< >) are also used to indicate variables.</td>
</tr>
<tr>
<td>screen/code</td>
<td>Indicates text that is displayed on screen or entered by the user.</td>
</tr>
<tr>
<td>Example:</td>
<td># pairdisplay -g oradb</td>
</tr>
<tr>
<td>< > angled brackets</td>
<td>Indicates a variable, which is a placeholder for actual text provided by the user or system. Example: # pairdisplay -g <group></td>
</tr>
<tr>
<td>Note:</td>
<td>Italic font is also used to indicate variables.</td>
</tr>
<tr>
<td>[] square brackets</td>
<td>Indicates optional values. Example: [a</td>
</tr>
<tr>
<td>{ } braces</td>
<td>Indicates required or expected values. Example: { a</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| vertical bar | Indicates that you have a choice between two or more options or arguments. Examples:
| | [a | b] indicates that you can choose a, b, or nothing.
| | { a | b } indicates that you must choose either a or b. |
| underline | Indicates the default value. Example: [a | b] |

This document uses the following icons to draw attention to information:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Note</td>
<td>Calls attention to important and/or additional information.</td>
</tr>
<tr>
<td></td>
<td>Tip</td>
<td>Provides helpful information, guidelines, or suggestions for performing tasks more effectively.</td>
</tr>
<tr>
<td>!</td>
<td>Caution</td>
<td>Warns the user of adverse conditions and/or consequences (e.g., disruptive operations).</td>
</tr>
<tr>
<td>!</td>
<td>WARNING</td>
<td>Warns the user of severe conditions and/or consequences (e.g., destructive operations).</td>
</tr>
</tbody>
</table>

Convention for Storage Capacity Values

Physical storage capacity values (e.g., disk drive capacity) are calculated based on the following values:

1 KB = 1,000 bytes
1 MB = 1,000^2 bytes
1 GB = 1,000^3 bytes
1 TB = 1,000^4 bytes
1 PB = 1,000^5 bytes

Logical storage capacity values (e.g., logical device capacity) are calculated based on the following values:

1 KB = 1,024 bytes
1 MB = 1,024^2 bytes
1 GB = 1,024^3 bytes
1 TB = 1,024^4 bytes
1 PB = 1,024^5 bytes
1 block = 512 bytes
Getting Help

If you need to call the Hitachi Data Systems Support Center, please provide as much information about the problem as possible, including:

- The circumstances surrounding the error or failure.
- The content of any error message(s) displayed on the host system(s).
- The content of any error message(s) displayed on Storage Navigator.
- The USP V/VM Storage Navigator configuration information saved on diskette using the FD Dump Tool (see the Storage Navigator User’s Guide).
- The service information messages (SIMs), including reference codes and severity levels, displayed by Storage Navigator.

The Hitachi Data Systems customer support staff is available 24 hours/day, seven days a week. If you need technical support, please call:

- United States: (800) 446-0744
- Outside the United States: (858) 547-4526

Comments

Please send us your comments on this document. Make sure to include the document title, number, and revision. Please refer to specific section(s) and paragraph(s) whenever possible.

- **E-mail:** doc.comments@hds.com
- **Fax:** 858-695-1186
- **Mail:**
 Technical Writing, M/S 35-10
 Hitachi Data Systems
 10277 Scripps Ranch Blvd.
 San Diego, CA 92131

Thank you! (All comments become the property of Hitachi Data Systems Corporation.)
Overview of Performance Manager

The Hitachi Universal Storage Platform V and Hitachi Universal Storage Platform VM (herein after referred to as USP V/VM) includes a suite of performance management software products that allow you to monitor and tune storage system performance.

The Performance Manager suite includes the following:

- Performance Monitor
- Server Priority Manager

Restrictions: The Auto Migration function is not supported in this version.
Performance Monitor

Performance Monitor lets you obtain usage statistics about physical hard disk drives, volumes, processors or other resources in your storage system. Performance Monitor also lets you obtain statistics about workloads on disk drives and traffic between hosts and the storage system. The **Performance Management** window displays a line graph that indicates changes in the usage rates, workloads, or traffic. You can view information in the window and analyze trends in disk I/Os and detect peak I/O time. If system performance is poor, you can use information in the window to detect bottlenecks in the system.

When using Performance Monitor, you must specify the volumes to be monitored in (control units). Therefore, depending on your disk subsystem configuration, the list may display performance statistics for some volumes and not display performance statistics for other volumes. This can occur, if the range of used CUs does not match the range of CUs monitored by Performance Monitor.

To correctly display performance statistics of a parity group and a LUSE volume, you must specify as follows:

- Specify all volumes belonging to the parity group as the monitoring targets.
- Specify all volumes making up the LUSE volume as the monitoring targets.
Server Priority Manager

Server Priority Manager lets you tune the system to provide high-priority hosts with relatively higher throughput. Server Priority Manager can prevent production servers from suffering lowered performance. For details, see Overview of Server Priority Manager.

Figure 1-1 illustrates the performance management solution from Hitachi Data Systems.

Performance Monitoring
- Base component of performance management
- Total performance monitoring

![Performance Monitor]

Performance Monitor
Analysis of performance bottleneck

Volume Migration
Effective use of HDD resource

Server Priority Mgr
Host I/O controlling to specific port

Load-Balanced HDD Arrangement
Data migration tuning to maximize subsystem backend performance

Prioritized Host I/O Controlling
Process scheduling to prioritized host I/O.

Figure 1-1 Performance Management Solution

Figure 1-2 illustrates and simplifies the performance management process.

For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).
Analyze data for low performance, conduct trend analysis, etc.

Use Performance Monitor to gather system usage statistics.

Is workload balancing required?

Turn Monitoring Options (Long Range or Short Range) off

Set and Start Monitoring Options

Analyze data for low performance, conduct trend analysis, etc.

Use Volume Migration

Is additional monitoring required?

YES

Use Server Priority Manager

Is additional monitoring required?

YES

EXIT Performance Monitor

EXIT Storage Navigator

YES

Is system tuning required to prioritized hosts?

EXIT Performance Monitor

EXIT Storage Navigator

NO

NO

NO

Figure 1-2 Performance Management Process Flow Diagram
This chapter gives an overview of performance manager operations.

- Components
- Overview of Performance Monitor
- Overview of Server Priority Manager
- Overview of Export Tool
- Interoperability with Other Products
Components

To be able to use Performance Manager, you need:

- The USP V/VM storage system.
- The Performance Manager program products (At minimum, Performance Monitor is required. Server Priority Manager is optional).
- A WWW client computer connected to the USP V/VM storage system via LAN.

To use Performance Manager, you must use the WWW client computer to log on to the SVP. When you are logged on, the Storage Navigator program, which is a Java™ applet, automatically downloads to the WWW client computer. You can perform Performance Manager operations in the Storage Navigator window.

For details about requirements for WWW client computers, see the Storage Navigator User’s Guide.

Cautions:

If Performance Monitor is not enabled, you cannot use Server Priority Manager.

Performance management operations (Performance Monitor and Server Priority Manager) involve the collection of large amounts of monitoring data. This requires considerable Web client computer memory. It is therefore recommended that you exit the Storage Navigator program to release system memory when not conducting performance management operations.
Overview of Performance Monitor

Performance Monitor tracks your storage system and lets you obtain statistics about the following:

- resources in your storage system
- workloads on disk and ports

If your system encounters some problem (for example, if server hosts suffer delayed response times), Performance Monitor can help you detect the cause of the problem.

Performance Monitor can also display the status of remote copies by TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS. The displayed contents are the same as those displayed in the Usage Monitor windows of each remote copy function.

The Export Tool enables you to save information on the Performance Management window into files, so you can use spreadsheet or database software to analyze the monitoring results. For detailed information about the Export Tool, see Overview of Export Tool.

Understanding Statistical Storage Ranges

Performance Monitor has two kinds of periods (ranges) for collecting and storing statistics: short range and long range. The difference of the two ranges and the statistics at which they are targeted is as follows:

- **Storing in short range**

 If the number of CUs to be monitored is 64 or less, Performance Monitor collects statistics at a user-specified interval that is between 1 and 15 minutes, and stores them between 1 and 15 days.

 If the number of CUs to be monitored is 65 or more, Performance Monitor collects statistics at a user-specified interval that is 5, 10 or 15 minutes, and stores them between 8 hours and 1 day.

 All the statistics that can be monitored by Performance Monitor are collected and stored in short range.

- **Storing in long range**

 Performance Monitor collects statistics at fixed 15-minutes interval, and stores them for 3 months (i.e., 93 days).

 The usage statistics about resources in the storage system are collected and stored also in long range, in parallel with in short range. However, some of the usage statistics about resources cannot be collected in long range.
Performance Management window can display the statistics within the range of the storing periods above. You can specify a part of the storing period to display the statistics on the lists and graphs of Performance Monitor.

All statistics, except some information related to Volume Migration, can be displayed in short range (for the storing period corresponding to the setting for the collecting interval) on **Performance Management** window. In addition, usage statistics about resources in the storage system can be displayed in both short range and long range because they are monitored in both ranges. When you display usage statistics about resources, you can select the displayed range.

For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

For more about statistics that can be monitored in short and long ranges, see the description of **Performance Management** window in Performance Monitor Window. For more about the relationship between collection interval and the storing period of the statistics, see Monitoring Options Window.

Parity Group Usage Statistics

A *parity group* is a group of hard disk drives (HDDs) that form the basic unit of storage for the USP V/VM storage system. All HDDs in a parity group must have the same physical capacity. The USP V/VM supports three types of parity groups as follows:

- **RAID-1 parity group**
 A RAID-1 parity group consists of two pairs of HDDs in a mirrored configuration.

- **RAID-5 parity group**
 A RAID-5 parity group consists of four or eight HDDs. One of these HDDs is used as a parity disk.

- **RAID-6 parity group**
 A RAID-6 parity group consists of eight HDDs. Two of these HDDs are used as a parity disk.

If the monitor data shows overall high parity group usage, you should consider installing additional HDDs and using Volume Migration to migrate the high-usage volumes to the new parity groups. If the monitor data shows that parity group usage is not balanced, you can use Volume Migration to migrate volumes from high-usage parity groups to low-usage parity groups.

For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

For details on how to view usage statistics about parity groups, see Viewing Usage Statistics on Parity Groups.
Volume Usage Statistics

Performance Monitor displays the average and maximum usage, including sequential and random access, of each volume (LDEV) in a parity group. The volume usage is the time in use (sequential and random access) of the physical drives of each LDEV, averaged by the number of physical drives in the parity group.

If the monitor data shows overall high volume usage, you should consider installing additional hardware (e.g., HDDs, DKAs, cache). If the monitor data shows that volume usage is not balanced, you can use Volume Migration to migrate high-usage volumes to higher HDD classes and/or to lower-usage parity groups. The volume usage data can also be used to analyze the access characteristics of volumes and determine the appropriate RAID level and/or HDD type for the volumes.

For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

For details on how to view usage statistics about volumes, see Viewing Usage Statistics on Volumes in Parity Groups.

External Volume Group Usage Statistics

If the USP V/VM storage system is connected to an external storage system by Universal Volume Manager, Performance Monitor can also monitor the usage conditions on external hard disk drives.

When you use Universal Volume Manager to map the volumes in the external storage system as volumes in the USP V/VM storage system, the mapped volumes in the external storage system are called *external volumes*. These external volumes are registered in groups by Universal Volume Manager. Performance Monitor can monitor the usage conditions for external volume groups.

An external volume group is just a group for managing external volumes. Unlike a parity group, it does not contain any parity information. However, some Performance Monitor windows treat external volume groups as parity groups.

The information that can be monitored about an external volume group differs from that of a usual parity group. For details on how to view usage conditions about external volume groups, see Viewing Usage Statistics on External Volume Groups.
External Volume Usage Statistics

An external volume is a volume existing in an external storage system that is mapped to a volume in the USP V/VM storage system using Universal Volume Manager. Performance Monitor can monitor and display the usage conditions for external volumes.

The information that can be monitored for an external volume differs from that of a typical volume. For details on how to view usage conditions about external volumes, see Viewing Usage Statistics on External Volumes in External Volume Groups.

Channel Processor Usage Statistics

A channel processor (CHP), which is contained in a channel adapter (CHA), processes host commands and controls data transfer between hosts and the cache. A channel adapter contains multiple channel processors that process host commands and control data transfer. A channel adapter can also be called port controller.

If monitoring data shows high overall CHP usage, you should consider installing additional CHAs. If monitoring data shows that CHP usage is not balanced, you should consider moving some devices that are defined on overloaded ports to ports with lower-usage CHPs to balance front-end usage.

For details on how to view usage statistics about channel adapters and channel processors groups, see Viewing Usage Statistics on Channel Processors.

Disk Processor Usage Statistics

A disk processor (DKP), which is contained in a disk adapter (DKA), controls data transfer between the cache and the disk devices. A disk adapter contains multiple disk processors (DKPs).

If monitor data shows high DKP usage overall, you should consider installing additional HDDs and/or DKA, and then using Volume Migration to migrate the high-write-usage volumes (especially sequential writes) to the new parity groups. If the monitor data shows that DKP usage is not balanced, you can use Volume Migration to migrate volumes from high-usage parity groups to low-usage parity groups.

For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center.

When considering migrating a volume from one parity group to another, take the following steps:

1. Refer to Table 2-1 to determine the parity groups from which you want to migrate volumes.
The information in the table does not apply to the USP VM storage system because USP VM has only one pair of DKA. If you are using USP VM and you want to know usage rates of DKPs, check the usage rate of each parity group. For details on how to view usage statistics about disk adapters and disk processors, see Viewing Usage Statistics on Disk Processors.

2. Check the usage rate of each parity group to find parity groups whose usage rate is lower than the parity groups that you want to migrate. It is recommended you migrate volumes from higher-usage parity groups to lower-usage parity groups.

Table 2-1 Migrating Volumes in USP V Storage Systems When Disk Processor Usage Rate is High

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Disk Adapter</th>
<th>Disk Processor</th>
<th>Migrating Volumes in USP V Storage System</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DKA1AU</td>
<td>DKP40-1AU</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP41-1AU</td>
<td>1-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP42-1AU</td>
<td>3-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP43-1AU</td>
<td>11-X</td>
</tr>
<tr>
<td>1</td>
<td>DKA-1BU</td>
<td>DKP50-1BU</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP51-1BU</td>
<td>2-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP52-1BU</td>
<td>4-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP53-1BU</td>
<td>12-X</td>
</tr>
<tr>
<td>1</td>
<td>DKA-AL</td>
<td>DKP44-1AL</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP45-1AL</td>
<td>5-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP46-1AL</td>
<td>13-X</td>
</tr>
<tr>
<td>1</td>
<td>DKA-BL</td>
<td>DKP54-1BL</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP55-1BL</td>
<td>6-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP56-1BL</td>
<td>14-X</td>
</tr>
<tr>
<td>1</td>
<td>DKA-1LU</td>
<td>DKP60-1LU</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP61-1LU</td>
<td>7-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP62-1LU</td>
<td>15-X</td>
</tr>
<tr>
<td>1</td>
<td>DKA-1KU</td>
<td>DKP70-1KU</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP71-1KU</td>
<td>8-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP72-1KU</td>
<td>16-X</td>
</tr>
<tr>
<td>1</td>
<td>DKA-1LL</td>
<td>DKP64-1LL</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP65-1LL</td>
<td>9-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP66-1LL</td>
<td>17-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKP67-1LL</td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td>Disk Adapter</td>
<td>Disk Processor</td>
<td>Migrating Volumes in USP V Storage System</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>DKA-1KL</td>
<td>DKA-1KL 1KL</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-1KL 1KL</td>
<td>10-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-1KL 1KL</td>
<td>18-X</td>
</tr>
<tr>
<td>2</td>
<td>DKA-2MU</td>
<td>DKA-2MU 2MU</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2MU 2MU</td>
<td>1-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2MU 2MU</td>
<td>3-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2MU 2MU</td>
<td>11-X</td>
</tr>
<tr>
<td>2</td>
<td>DKA-2NU</td>
<td>DKA-2NU 2NU</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2NU 2NU</td>
<td>2-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2NU 2NU</td>
<td>4-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2NU 2NU</td>
<td>12-X</td>
</tr>
<tr>
<td>2</td>
<td>DKA-2ML</td>
<td>DKA-2ML 2ML</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2ML 2ML</td>
<td>5-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2ML 2ML</td>
<td>13-X</td>
</tr>
<tr>
<td>2</td>
<td>DKA-2NL</td>
<td>DKA-2NL 2NL</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2NL 2NL</td>
<td>6-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2NL 2NL</td>
<td>14-X</td>
</tr>
<tr>
<td>2</td>
<td>DKA-2XU</td>
<td>DKA-2XU 2XU</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2XU 2XU</td>
<td>7-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2XU 2XU</td>
<td>15-X</td>
</tr>
<tr>
<td>2</td>
<td>DKA-2WU</td>
<td>DKA-2WU 2WU</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2WU 2WU</td>
<td>8-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2WU 2WU</td>
<td>16-X</td>
</tr>
<tr>
<td>2</td>
<td>DKA-2XL</td>
<td>DKA-2XL 2XL</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2XL 2XL</td>
<td>9-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2XL 2XL</td>
<td>17-X</td>
</tr>
<tr>
<td>2</td>
<td>DKA-2WL</td>
<td>DKA-2WL 2WL</td>
<td>Migrate volumes from parity groups with the following IDs to another parity group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2WL 2WL</td>
<td>10-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DKA-2WL 2WL</td>
<td>18-X</td>
</tr>
</tbody>
</table>

Note: The letter "X" is a placeholder for numerical values. For example, "parity group 1-X" indicates parity groups such as 1-1 and 1-2.
Volume Migration cannot estimate DKP usage, and may not provide any performance improvement for cases in which DKP usage values vary only slightly or for cases in which overall DRR usage values are relatively high. Volume Migration is designed for use with obvious cases of high or unbalanced DKP usage. For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

DRR Processor Usage Statistics

A data recovery and reconstruction processor (DRR) is a microprocessor (located on the DKAs) that is used to generate parity data for RAID-5 or RAID-6 parity groups. The DRR uses the formula "old data + new data + old parity" to generate new parity.

If the monitor data shows high DRR usage overall, this can indicate high write penalty condition. Please consult your Hitachi Data Systems representative about high write penalty conditions. If the monitor data shows that DRR usage is not balanced, you should consider relocating volumes using Volume Migration to balance DRR usage within the storage system.

For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

For details on how to view usage statistics on DRRs, see Viewing Usage Statistics on Data Recovery and Reconstruction Processors.

Write Pending Rate and Cache Memory Usage Statistics

The write pending rate indicates the ratio of write-pending data to the cache memory capacity. The Performance Management window displays the average and the maximum write pending rate for the specified period of time. When you display monitoring results in a short range, the window also displays the average and the maximum usage statistics about the cache memory for the specified period of time. In addition, the window can display a graph that indicates how the write pending rate or the usage statistics of the cache memory changed within that period.

For details on how to view the write pending rate and the usage statistics about the cache memory, see Viewing Write Pending and Cache Memory Usage Statistics.
Access Path Usage Statistics

An *access path* is a path through which data and commands are transferred within a storage system.

In a storage system, channel adapters control data transfer between hosts and the cache memory. Disk adapters control data transfer between the cache memory and hard disk drives. Data transfer does not occur between channel adapters and disk adapters. Data is transferred via the cache switch (CSW) to the cache memory.

When hosts issue commands, the commands are transferred via channel adapters to the shared memory (SM). The content of the shared memory is checked by disk adapters.

![Access Path Diagram](image)

Figure 2-1 Access Paths

Performance Monitor tracks and displays the usage rate for the following access paths.

- Paths between channel adapters and the cache switch
- Paths between disk adapters and the cache switch
- Paths between the cache switch and the cache memory
- Paths between channel adapters and the shared memory
- Paths between disk adapters and the shared memory

For details on how to view usage statistics about access paths, see Viewing Usage Statistics on Access Paths.
Hard Disk Drive Workload Statistics

If particular hard disk drives or data are heavily accessed, system performance might deteriorate. Performance Monitor lets you view statistics about parity groups and logical devices to help you detect bottlenecks in your system. If you mapped volumes in an external storage system, Performance Monitor can also monitor the access workloads of the external volume groups and the external volumes. Performance Monitor displays a line graph indicating changes in access workloads, so that you can detect the peak I/O access times.

You will be unable to view workload statistics that expired a specific storing period because such statistics are erased from the storage system. The storing period of statistics is only short range (between 8 hours to 15 days) and that changes depending on the collecting interval and the number of CUs to be monitored specified by the user. For details on the storing period of statistics, see Understanding Statistical Storage Ranges.

Workload information mainly displayed by Performance Monitor is as follows:

- **I/O rate**
 The I/O rate indicates how many I/Os are made to the hard disk drive in one second. If the I/O rate is high, the hosts might consume a lot of time for accessing disks and the response time might be long.

- **Transfer rate**
 The transfer rate indicates the size of data transferred to the hard disk drive in one second. If the transfer rate is high, the hosts might consume a lot of time for accessing disks and the response time might be long.

- **The read hit ratio**
 For a read I/O, when the requested data is already in cache, the operation is classified as a read hit. For example, if ten read requests have been made from hosts to devices in a given time period and the read data was already on the cache memory three times out of ten, the read hit ratio for that time period is 30 percent. A higher read hit ratio implies higher processing speed because fewer data transfers are made between devices and the cache memory.

- **The write hit ratio**
 For a write I/O, when the requested data is already in cache, the operation is classified as a write hit. For example, if ten write requests were made from hosts to devices in a given time period and the write data was already on the cache memory three cases out of ten, the write hit ratio for that time period is 30 percent. A higher write hit ratio implies higher processing speed because fewer data transfers are made between devices and the cache memory.
Apart from the items listed above, Performance Monitor also displays additional information about hard disk drive workloads. For details on how to view workload statistics about hard disk drives, see Monitoring Hard Disk Drives.

Port Traffic Statistics

Performance Monitor tracks host ports and storage system ports to obtain statistics about I/O rates and transfer rates at these ports. If you analyze these I/O rates and transfer rates, you can determine which hosts issue a lot of I/O requests to the disk and which hosts transfer a lot of data to the disk. For details on how to view statistics about traffic at ports, see Monitoring Ports.

You will be unable to view workload statistics that expired a specific storing period because such statistics are erased from the storage system. The storing period of statistics is only short range (between 8 hours to 15 days) and that changes depending on the collecting interval specified by the user. For details on the storing period of statistics, see Understanding Statistical Storage Ranges.

Important: Performance Monitor can obtain statistics about traffics of ports connected to open-system host groups only. The statistics about traffics of ports connected to mainframe host groups cannot be obtained.

LU Paths Traffic Statistics

Performance Monitor tracks LU paths to obtain statistics about I/O rates and transfer rates at these LU paths. If you analyze these I/O rates and transfer rates, you can detect LU paths though which a lot of I/O requests are made to the disk. You can also determine the LU paths through which a lot of data are transferred to the disk. For details on how to view workload statistics about LU paths, see Monitoring LU Paths.

You will be unable to view workload statistics that expired a specific storing period because such statistics are erased from the storage system. The storing period of statistics is only short range (between 8 hours to 15 days) and that changes depending on the collecting interval specified by the user. For details on the storing period of statistics, see Understanding Statistical Storage Ranges.

The traffic statistics reported for an LU is aggregated across all LU paths defined for an LU.

- I/O rate is the sum of I/Os across all LU paths defined for an LU.
- Transfer rate is the total transfer rate across all LU paths defined for an LU.
- **Response Time** is the average response time across all LU paths defined for an LU.
Traffic between HBAs and Storage System Ports

Host bus adapters (HBAs) are adapters contained in hosts. HBAs, which serve as ports on hosts, are connected to ports on the storage system.

If Server Priority Manager is enabled, Performance Monitor lets you view statistics about traffic between HBAs and storage system ports. The traffic statistics reveals the number of I/O requests that have been made from hosts and also reveals the size of data transferred between hosts and storage system ports. For details on how to view traffic statistics about HBAs, see Viewing HBA Information.

Statistics can be stored for time periods of 8 hours or up to 15 days, and changes depending on the collecting interval specified. Statistics that have expired are erased from the storage system. For details on the storing period of statistics, see Understanding Statistical Storage Ranges.

Overview of Server Priority Manager

When Server Priority Manager is used, I/O operations from hosts requiring high performance are given higher priority over I/O operations from other hosts.

Performance of High-Priority Hosts

In an SAN (storage area network) environment, the storage system is usually connected with a lot of host servers. Some types of the host servers often require high performance but others might not require as high performance.

For example, *production servers* usually require high performance. Production servers, which include database servers and application servers, are used to perform daily tasks of business organizations. If production servers suffer lowered performance, productivity in business activities is likely to be damaged. For this reason, the system administrator needs to maintain performance of production servers at a higher level.

Computer systems in business organizations often include *development servers* as well as production servers. Development servers are used for developing, testing and debugging business applications. If development servers suffer lowered performance, it would bring undesirable results to developers. However, a decline in development server performance would not bring as much negative impact to the entire organization as a decline in production server performance. In this sense, production servers should be given higher priority over development servers.
Server Priority Manager allows you to limit the number of I/Os requests from development servers to the storage system. Server Priority Manager also allows you to limit the size of data that should be transferred between the development servers and the storage system. Production servers can expect reduced response time. Production server performance can be maintained at a higher level.

Throughout this document, the term *upper limit control* is used to refer to an act of limiting performance of low-priority host servers in order to maintain high-priority host servers at a higher level.

Upper-Limit Control

Upper-limit control can help production servers to perform at higher levels, but it is not necessarily useful when production servers are not busy.

For example, if the number of I/Os from production servers greatly increases from 9:00 a.m. to 3:00 p.m. and decreases significantly after 3:00 p.m., upper-limit control would suppress performance of development servers even after 3:00 p.m. Development servers should be free from upper-limit control when production servers are not busy.

Server Priority Manager provides a function called *threshold control*. If threshold control is used, upper limit control is automatically disabled when traffic between production servers and the storage system decreases to a certain level. A *threshold* is a value that indicates the timing at which upper limit control is disabled. For example, if a threshold of 500 IO/s (500 I/Os per second) is applied to the entire storage system, development servers are free from the limit on the I/O rate (i.e. the number of I/Os per second) when the number of I/Os from all the production servers is below 500 IO/s. If the number of I/Os from the production servers increases and exceeds 500 IO/s, upper limit control is restored to limit the number of I/Os from the development servers again.

The threshold can be used to control the I/O rate (the number of I/Os per second) or the transfer rate (the size of data transferred per second). For example, if a threshold of 20 MB/s (20 megabytes per second) is set to a storage system, the I/O rate limit for development servers is disabled when the amount of data transferred between the storage system and all the production servers is below 20 MB/s.
Overview of Export Tool

The Export Tool enables you to export monitoring data (i.e., statistics) that can display in the Performance Management window to text files. The Export Tool also enables you to export monitoring data on remote copy operations performed by TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS. If you export monitoring data to text files, you can import the monitoring data into word processor documents. You can also import the monitoring data into spreadsheet or database software to analyze the monitoring data.

Figure 2-2 is an example of a text file imported into spreadsheet software:

Transfer rates for LUs (Filename: LU_IOPS.csv)

<table>
<thead>
<tr>
<th>No.</th>
<th>time</th>
<th>CL1-A.00(1A-G00).0001</th>
<th>CL1-A.00(1A-G00).0002</th>
<th>CL1-A.00(1A-G00).0003</th>
<th>CL1-A.00(1A-G00).0004</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2006/3/28 18:58</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2006/3/28 18:59</td>
<td>12</td>
<td>20</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2006/3/28 19:00</td>
<td>11</td>
<td>21</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2006/3/28 19:01</td>
<td>13</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
- In this LU_IOPS.csv file, the last four digits of a table column heading (such as 0001 and 0002) indicate an LUN. For example, the heading CL1-A.00(1A-G00).0001 indicates the port CL1-A, the host group ID 00, the host group name 1A-G00, and the LUN 0001.
- If you export monitoring data about concatenated parity groups, the resulting CSV file do not contain column headings for the concatenated parity groups. For example, if you export monitoring data about a concatenated parity group named 1-3[1-4], you will be unable to find 1-3[1-4] in column headings. To locate monitoring data about 1-3[1-4], find the 1-3 column or the 1-4 column. Either of these columns contains monitoring data about 1-3[1-4].

Figure 2-2 Example of a Text File
Notes:
When you run the Export Tool, text files are usually compressed in a ZIP-format archive file. To be able to open a text file, you must use decompress the ZIP file to extract the text files.

Text files are in CSV (comma-separated value) format, in which values are delimited by commas. Many spreadsheet applications can be used to open CSV files.

Do not run multiple instances of the Export Tool simultaneously. If you run multiple instances, the SVP may be overloaded and a timeout error may occur.
Interoperability with Other Products

Performance Monitor

Keep the following in mind while viewing Performance Management windows.

- **User types**

 If the user type of your user ID is *storage partition administrator*, the functions you can use are limited. For details, see Storage Partition Administrators Limitations.

- **Maintenance**

 If the storage system is undergoing maintenance during monitoring, the monitoring data might contain extremely large values.

- **Powering off the storage system**

 If the storage system is powered off during monitoring, monitoring stops while the storage system is powered off. When the storage system is powered up again, monitoring continues. However, Performance Monitor cannot display information about the period while the storage system is powered off. Therefore, the monitoring data immediately after powering on again might contain extremely large values.

- **Viewing the Physical tab**

 - You will be able to view usage statistics that have been obtained for the last three months (i.e., 93 days) in long-range monitoring, and for the last 15 days in short-range monitoring. You will not be able to view usage statistics that expired after these storing periods because such statistics are erased from the storage system.

 - In short range, if I/O workloads between hosts and the storage system become heavy, the storage system gives higher priority to I/O processing than monitoring processing, therefore, a part of monitoring data might be missing. In case that monitoring data are missing frequently, use the Gathering Interval option in the Monitoring Options window to change the collection interval longer. For details, see Start Monitoring and Monitoring Options Window.

 - Short-range monitoring data and long-range monitoring data may have some margin of error.

- **Viewing the LDEV, Port-LUN, and WWN tab**

 - Monitoring results are stored for the last 8 hours to 15 days depending on the specified gathering interval. If the storing period has passed since a monitoring result was obtained, the result is erased from the storage system and you will not be able to view that monitoring result.
If I/O workloads between hosts and the storage system become heavy, the storage system gives higher priority to I/O processing than monitoring processing, therefore, a part of monitoring data might be missing. In case that monitoring data are missing frequently, use the **Gathering Interval** option in the **Monitoring Options** window to change the collection interval longer. For details, see **Start Monitoring and Monitoring Options Window**.

- The statistics of monitoring data of pool volumes is included in the statistics of monitoring data of V-VOLs. For this reason, the pool volumes are not displayed in **LDEV** tab.

- **Viewing the WWN** tab

 To start monitoring traffic between host bus adapters and storage system ports, you must make settings before starting monitoring. For details, see **Monitoring All Traffic between HBAs and Ports and Setting Priority for Host Bus Adapters**.

- **Displaying monitoring data**

 - In lists of the **Performance Management** window contents, a hyphen (-) might be displayed in monitoring data columns. It means that the statistics of that monitoring item cannot be collected.

 - If the SVP is overloaded, more time than the gathering interval allots might be required for updating the display of monitoring data. In this case, some portion of monitoring data will not be displayed in the window. For example, suppose that the gathering interval is 1 minute. In this case, if the display in the **Performance Management** window is updated at 9:00 and the next update occurs at 9:02, the window (including the graph) does not display the monitoring result for the period of 9:00 to 9:01. This situation occurs when you use a Storage Navigator computer, as well as when the SVP is used to perform maintenance operations for the DKC.

 - After you set **Monitoring Switch** to **Enable**, the SVP might be overloaded for up to 15 minutes if Performance Monitor receives a couple of data items.

 - After LDEVs are installed or CUs to be monitored are added, the SVP might be overloaded for up to 15 minutes if Performance Monitor receives a couple of data items.

- **Replacing the microprogram**

 After the microprogram was replaced, the monitoring data is not stored until a service engineer releases the SVP from **Modify** mode. Therefore, inaccurate monitoring data may be displayed temporarily.

Server Priority Manager

- **User types.** If the user type of your user ID is **storage partition administrator**, you cannot use Server Priority Manager. For details on the limitations when using Performance Manager logged in as a storage partition administrator, see **Storage Partition Administrators Limitations**.

I/O rates and transfer rates. Server Priority Manager runs based on I/O rates and transfer rates measured by Performance Monitor. Performance Monitor measures I/O rates and transfer rates every second, and calculates the average I/O rate and the average transfer rate for every gathering interval (specified between 1 and 15 minutes) regularly.

Suppose that 1 minute is specified as the gathering interval and the I/O rate at the port 1-A changes as illustrated in Graph 1 in Figure 2-3. When you use Performance Monitor to display the I/O rate graph for 1A, the line in the graph indicates changes in the average I/O rate calculated every minute (refer to Graph 2). If you select the **Detail** check box in the **Performance Management** windows, the graph displays changes in the maximum, average, and minimum I/O rates in one minute.

Server Priority Manager applies upper limits and thresholds to the average I/O rate or the average transfer rate calculated every gathering interval. For example, in Figure 2-3 in which the gathering interval is 1 minute, if you set an upper limit of 150 IO/s to the port 1A, the highest data point in the line CL1-A in Graph 2 and the line Ave. (1 min) in Graph 3 is somewhere around 150 IO/s. It is possible that the lines Max (1 min.) and Min (1 min.) in Graph 3 might exceed the upper limit.

![Graphs](image)

Figure 2-3 Line Graphs Indicating Changes in Port Traffic

Note on using TrueCopy: Server Priority Manager monitors write I/O requests issued from initiator ports of your storage system.
• **Note on using the remote copy functions:** When the remote copy functions (TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS) are used in your environment, Server Priority Manager monitors write I/O requests issued from initiator ports of your storage system.

If you specify an RCU target port as a prioritized port, I/O requests from the initiator port will **not** be a target of threshold control.

If you specify an RCU target port as a non-prioritized port, I/O requests from the initiator port will **not** be a target of upper limit control.

• **Note on the statistics of Initiator/External ports:** The initiator ports and external ports of your storage subsystem are not controlled by Server Priority Manager. Although you can set **Prioritize** or **Non-Prioritize** to initiator ports and external ports by using Server Priority Manager, the initiator ports and the external ports become the prioritized ports that are not under threshold control, regardless of whether the setting of the ports are **Prioritize** or **Non-Prioritize**. If the port attributes are changed from Initiator/External into Target/RCU Target, the settings by Server Priority Manager take effect instantly and the ports are subject to threshold or upper limit control.

The statistics of **All Prio.** and **All Non-Prio.** that is indicated in the Port-LUN tab of Performance Management windows are sum total of statistics on Target/RCU Target ports that are controlled by Server Priority Manager. The statistics of **All Prio.** and **All Non-Prio.** does not include the statistics of Initiator/External ports. Because the statistics of Initiator/External ports and Target/RCU Target ports are based on different calculation methods, it is impossible to sum up the statistics of Initiator/External ports and Target/RCU Target ports.
Preparing for Performance Manager Operations

This chapter explains the preparations for performance manager operations.

- System Requirements
- Storage Partition Administrators Limitations
System Requirements

To use Performance Manager, you need:

- USP V/VM storage system
- Performance Manager software (Server Priority Manager is optional, but Performance Monitor is required)
- A Web client computer (intended for use as a Storage Navigator) connected to USP V/VM via LAN.

To use Performance Manager, you use the Web client computer to log on to the SVP (Web server). When you are logged on, the Storage Navigator program, which is a Java application program, will be downloaded to the Web client computer. You can then perform Performance Monitor operations in the Storage Navigator window.

For a summary of Web client computer requirements, see the Storage Navigator User’s Guide.

Performance Manager operations require the Storage Navigator program, which is downloaded to your WWW client computer. Your WWW client computer must be connected to the USP V/VM storage system via LAN. Browser settings are also required on your WWW client computer. For details, see the Storage Navigator User’s Guide.

Caution: Performance Manager operations (Performance Monitor and Server Priority Manager) involve the collection of large amounts of monitoring data. This requires considerable Web client computer memory. It is therefore recommended that you exit the Storage Navigator program to release system memory when not conducting Performance Manager operations.

For details on how to install Performance Monitor and Server Priority Manager, see the Storage Navigator User’s Guide.
Storage Partition Administrators Limitations

If your user ID is of the *storage partition administrator* type, you can use only Performance Monitor and the Export Tool among Performance Manager programs. Server Priority Manager is not available to storage partition administrators.

This section explains the permission-driven limitations of Performance Monitor and the Export Tool.

Performance Monitor Limitations

The Performance Monitor functions, which are limited when you logged in as a storage partition administrator, are shown in Table 3-1. For the window of Performance Monitor displayed when you logged in as a storage partition administrator, see Figure 3-1.

Table 3-1 Limitations for Storage Partition Administrators (Performance Monitor)

<table>
<thead>
<tr>
<th>Window</th>
<th>Limited function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical tab in the Performance Management window</td>
<td>The tree and list display only the information in the SLPR (storage management logical partition) allocated to the user ID. The Volume Migration button is not displayed. Therefore, the user cannot start Volume Migration. For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).</td>
</tr>
<tr>
<td>LDEV tab in the Performance Management window</td>
<td>The tree and list display only the information in the SLPR allocated to the user ID.</td>
</tr>
<tr>
<td>Port-LUN tab in the Performance Management window</td>
<td>The tree and list display only the information in the SLPR allocated to the user ID. The SPM button is not displayed. Therefore, the user cannot start Server Priority Manager.</td>
</tr>
<tr>
<td>WWN tab in the Performance Management window</td>
<td>The WWN tab is not displayed. The user cannot view the traffics between host bus adapters and ports.</td>
</tr>
<tr>
<td>TC Monitor window TCz Monitor window UR Monitor window URz Monitor window</td>
<td>These windows are not displayed. The user cannot view the information about remote copy operations performed by TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS.</td>
</tr>
<tr>
<td>Monitoring Options window</td>
<td>The Monitoring Options windows are not displayed. The user cannot start or stop monitoring, or change the gathering interval.</td>
</tr>
</tbody>
</table>
The TC Monitor window, TCz Monitor window, UR Monitor window, URz Monitor window, and the Monitoring Options window are not displayed.

The WWN tab is not displayed. The tree and list display only the information in the SLPR allocated to the user ID.

The SPM button and the Volume Migration button are not displayed.

Figure 3-1 Performance Management Window displayed When You Logged in as a Storage Partition Administrator
Export Tool Limitations

The Export Tool functions which are limited when you logged in as a storage partition administrator are as follows:

- Only the monitoring data about SLPR allocated to the user ID can be exported into files.

- When a storage partition administrator use the `group` subcommand with specifying the `PPCG` or `PPCGWWN` operand to export the monitoring data about SPM groups or the host bus adapters belonging to these SPM groups, an error will occur in the following conditions:

 - One SPM group contains multiple host bus adapters which are allocated to different SLPRs.

 - One host bus adapter is connected to multiple ports which exist in different SLPRs.

- The monitoring data about remote copy operations performed by TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS cannot be exported.

- A storage partition administrator cannot use the `set` subcommand to start or stop monitoring, or change the gathering interval.
Using the Performance Manager GUI

This chapter explains performance manager windows.

- Using the Performance Monitor Windows
- Using the Server Priority Manager Windows
Using the Performance Monitor Windows

This chapter describes **Performance Management** windows and operations. This chapter explains in the following order: each window of Performance Monitor, the procedure for starting and stopping monitoring, and various operations about obtaining and viewing statistics such as resource usage.

Caution: If the user type of your user ID is *storage partition administrator*, the functions you can use are limited. For details, see Storage Partition Administrators Limitations.

Performance Monitor Window

Performance Monitor has the following windows:

- **Performance Management window**

 This window displays the monitoring results about the storage system performance collected by Performance Monitor. You can change the information to be viewed by selecting each tab in the tree. The information displayed by selecting each tab is as follows:

 - **Physical** tab

 Displays the usage statistics about resources in the storage system.

 - **LDEV** tab

 Displays the statistics about workload on disks.

 - **Port-LUN** tab

 Displays the statistics about traffic at ports and LU paths in the storage system.

 - **WWN** tab

 Displays the statistics about traffic at path between host bus adapters and ports.

This section explains the contents of the tabs in the **Performance Management** window and the contents of the **Monitoring Options** window.
When you click Go, Performance Manager and then Performance Management on the menu bar of the Storage Navigator main window, Performance Monitor starts and the Performance Management window is active. The Performance Management window includes the Physical tab, which lets you view usage rates for parity groups, volumes, channel processors, disk processors, etc. In addition, when you use Universal Volume Manager to map volumes in an external storage system (storage system other than USP V/VM) to the internal volumes, the Physical tab also lets you view usage conditions of volumes in the external storage system (i.e., external volumes) and the groups of external volumes.

For details on how to use this window, see Monitoring Resources in the Storage System.

Figure 4-1 Physical Tab of the Performance Management Window

When the Physical tab is active, the Performance Management window contains the following items:

- When Monitoring Switch is Enable, Performance Monitor is monitoring the storage system (Disable indicates that the storage system is not being monitored).
• **Gathering Interval** indicates the interval of collecting statistics in short range monitoring. For example, if the number of the CUs to be monitored is 64 or less, and 1 min. is displayed and **shortrange** is selected as the storing period of statistics, the list and graph in the Physical tab display the statistics obtained every one minute. In case 65 or more CUs are monitored, the statistics are displayed every 5, 10 or 15 minutes.

The gathering interval in long range monitoring is fixed to 15 minutes. If you select **longrange** as the storing period of statistics, the list and graph display the statistics obtained every 15 minutes regardless of the value of **Gathering Interval**. For details on the storing period of statistics (short range and long range), see Understanding Statistical Storage Ranges.

• From the list on the right of **Monitoring Data**, select a range of statistics to view in the window: **shortrange** or **longrange**.

![Figure 4-2 Storing Period of Statistics (Physical Tab)](image)

The storing period of statistics is the range of monitoring data (statistics collected by monitoring) that can be displayed. You can specify a part of term within the selected range to narrow the statistics to be displayed in the list and graph on the **Performance Management** window.

The differences in selecting **shortrange** and **longrange** are described in Long-Range Storage and Short-Range Storage.

• **Monitoring Term** lets you narrow the range of usage statistics that should be displayed in the window.

Starting and ending times for collecting statistics are displayed on both sides of the slide bar. Performance Monitor stores the monitoring data between these times, and you can specify the desired term within this range as the target of display in lists and graphs.

For example, if you want to view usage statistics within the range of 10:30 July 1 2006 to 22:30 July 31 2006, you set 2006/07/01 10:30 to the **From** box, set 2006/07/31 22:30 to the **To** box, and then click **Apply**.

To set a date and time in **From** and **To**, do either of the following:
- Move the slider to the left or to the right.
- In the text box, select the number that you want to change. Next, click the upward or downward arrow button.
When you specify dates and time in **From** and **To**, Performance Monitor calculates the length of the specified period and displays the calculated length. The length of the period is displayed in days when you select **longrange**, and it is displayed in minutes when you select **shortrange**.

Notes:

- **From** and **To** are unavailable if the monitoring data (that is, usage statistics) is not stored in the storage system.

The **Real Time** option is unavailable when the Physical tab is active.

- In the **Monitoring Data** area, the list on the upper right specifies the type of statistics to be displayed in the window. When the **Physical** tab is active, the list contains only one entry (i.e., **Usage**).

- The tree lists items such as parity groups, channel adapters (CHAs). The tree can display the following items.
 - Icon displayed below the **Parity Group** or **External Group** folder:
 - a parity group or an external volume group
 - Icons displayed below the **CHA** folder:
 - **CHA-2T (Serial 8Port)**: an ESCON channel adapter
 - **CHA-1G (Fibre 4Port)**: a FICON channel adapter
 - **CHA-1E (Fibre 16Port)**: a Fibre Channel adapter in **Standard** mode
 - **CHA-1E (Fibre 16Port)**: a Fibre Channel adapter in **High Speed** mode
 - **CHA-1E (Fibre 16Port)**: a Fibre Channel adapter in **Initiator/External MIX** mode

* The channel adapter number and number of ports that displayed on the right side of the icon are examples.

- Icons displayed below the **DKA** folder:
 - a disk processor (DKP)
 - a data recovery and reconstruction processor (DRR)

- Icon displayed below the **Access Path Usage** folder:
 - an access path

No icon is displayed below the **Cache** folder.

The numbers on the right of icons (ıdır) displayed below the **Parity Group** or **External Group** folder are IDs of parity groups or external volume groups. The letter "E" at the beginning of an ID indicates that the group is an external volume group.

A volume existing in an external storage system and mapped to a volume in the USP V/VM storage system by using Universal Volume Manager is called an external volume. An external volume group is a quantity of external volumes grouped together for managing and that do not contain any parity information, unlike a parity group. However, **Performance Management** window treats external volume groups same as parity groups for convenience.
The parity group icon can represent a single parity group. The parity group icon can also represent two or more parity groups that are concatenated. If two or more parity groups are concatenated, volumes can be striped across two or more drives. Therefore, concatenated parity groups provide faster access (particularly, faster sequential access) to data.

For example, if the parity group icon indicates a single parity group 1-3, the text 1-3 appears on the right of the icon. If the parity group icon indicates two or more parity groups that are connected together, all the connected parity groups appear on the right of the icon. For example, if the parity group 1-3 is connected with the parity group 1-4, the text 1-3[1-4] appears on the right of the parity group icon. (All the parity groups connected with 1-3 are enclosed by square brackets).

Storage Navigator does not allow you to connect two or more parity groups. If you want to use connected parity groups, contact the maintenance personnel.

- The list displays statistics about parity group usage, processor usage, etc.

The list displays up to a maximum of 4,096 resources at a time. If the number of resources exceeds 4,096, use Previous and Next to display the remaining resources. If you select connected parity groups in the tree, the list displays usage statistics for all the connected parity groups.

If you select the Array Control Processor (ACP) folder in the tree, the list displays a list of disk adapters (see the figure below), so that you are able to confirm whether each disk adapter is located in Cluster-1 or Cluster-2. For example, if the Cluster-1 column displays 0 and the Cluster-2 column displays a hyphen, the disk adapter is located in Cluster-1.

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Cluster-1</th>
<th>Cluster-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DK-1B</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DK-1C</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DK-1D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DK-1E</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DK-2H</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>DK-2J</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>DK-2K</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>DK-2L</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4-3 List of Disk Adapters

When you click the parity group icon and the list displays the icon of concatenated parity groups, the list only displays the ID of the parity group at the top of the concatenated parity groups.

For details on the list contents, see Monitoring Resources in the Storage System.

- The Page area displays the number of the current page and the following items are being used to change pages of list.
 - Previous button allows you to display the previous 4,096 resources.
- **N/M** list: The **N** displays the number of the current page. The **M** displays total number of pages. Use the list to choose the number of the page to display.

- **Next** button allows you to display the next 4,096 resources.

- The **Volume Migration** button starts the Volume Migration if that program is enabled and **longrange** is specified for the display range. Volume Migration lets you optimize hard disk drive performance. For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

- The **Draw** button displays a line graph illustrating changes in usage statistics. The graph can display up to eight lines simultaneously.

- The line graph illustrates changes in usage statistics. The vertical axis indicates the usage rates (in percentage). The horizontal axis indicates dates and/or times.

If you select connected parity groups in the tree, the graph displays changes in usage statistics for all the connected parity groups.

When you illustrate a graph of the following information with specifying **shortrange**, you can select an item to be displayed in the graph from the list on the upper-right of the graph:

- Information of external volume groups or external volumes.
- Information of cache memory (write pending rates or usage statistics about cache memory).

In addition, when you display information of external volume groups or external volumes, you can select the highest value of the Y-axis (the vertical axis) of the graph at the **Chart Y Axis Rate** list on the upper left of the graph.

Figure 4-4 shows how to select an item displayed in the graph and how to select the highest value of the Y-axis.

![Figure 4-4 Selecting an Item Displayed in the Graph and the Highest Value of the Y-Axis (Physical Tab)](image-url)
If you select an item to be displayed from the list before clicking **Draw**, the graph shows the selected item. After drawing, if you select another item from the list, the graph will be updated without re-clicking **Draw**. Depending upon the values of the selected item, arrange the graph by changing the highest value of the Y-axis.

Long-Range Storage

When **longrange** is selected, the **Performance Management** window displays the statistics collected and stored in long range. The usage statistics about resources for 3 months (i.e., 93 days) collected every 15 minutes can be displayed in the window.

When **longrange** is selected, the **Volume Migration** button is activated. The system administrator can start Volume Migration to migrate volumes for balancing workloads based on the monitoring results displayed in the **Performance Management** window. For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

When **longrange** is selected:

- The value displayed at **Gathering Interval** is ineffective. The gathering interval is fixed to 15 minutes regardless of the displayed value.

- You cannot view the statistics of external volume groups and external volumes, and hyphens (-) appear in the list instead of these values. In this case, you cannot draw the graph. To view this data, select **shortrange**. For details on viewing the usage statistics of external volume groups and external volumes, see Viewing Usage Statistics on External Volume Groups and Viewing Usage Statistics on External Volumes in External Volume Groups.

- You cannot view the ratio of ShadowImage processing, and so on, to all processing, and the usage statistics about cache memory. For details on "the ratio of ShadowImage processing, and so on, to all processing", see the description about the **ShadowImage** column in Viewing Usage Statistics on Volumes in Parity Groups.

Short-Range Storage

When **shortrange** is selected, the **Performance Management** window displays the statistics collected and stored in short range. The usage statistics about resources are collected with the interval indicated by **Gathering Interval**. The storing period of statistics, which is equivalent to the range of monitoring data that can be displayed, changes between 8 hours and 15 days depending on the gathering interval.

When **shortrange** is selected, the **Volume Migration** button is deactivated. In addition, estimated usage rates of volumes after migration by Volume Migration cannot be displayed.
The usage statistics for a same term might be slightly different between selecting **shortrange** and **longrange** because the monitoring precision of these two interval types differs.

For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges. For details on the relationship between collection interval and the storing period of the statistics, see Monitoring Options Window.

LDEV Tab of the Performance Monitor Window

When you click **Go, Performance Manager** and then **Performance Management** on the menu bar of the Storage Navigator main window, Performance Monitor starts and the **Performance Management** window is active. The **Performance Management** window includes the **LDEV** tab, which lets you view statistics about disk access performance. For example, the window displays the I/O rate (the number of I/Os per second), the transfer rate (the size of data transferred per second), the average response time for parity groups and volumes.

For details on how to use this window, see Monitoring Hard Disk Drives.

![LDEV Tab of the Performance Management Window](image)

Figure 4-5 LDEV Tab of the Performance Management Window

When the **LDEV** tab is active, the **Performance Management** window contains the following items:
• When **Monitoring Switch** is **Enable**, Performance Monitor is monitoring the storage system (a **Disable** setting indicates that the system is not being monitored).

• **Gathering Interval** displays a number between 1 and 15 to indicate how often data collection is performed. If the number of the CUs to be monitored is 64 or less, the value between 1 and 15 appears as a gathering interval by minutes. For example, if 1 **min.** is displayed, the information obtained every one minute is displayed in the list and the graph. In case 65 or more CUs are monitored, the statistics are displayed every 5, 10 or 15 minutes.

• The list on the right of **Monitoring Data** indicates storing period of statistics (monitoring data). The statistics displayed in the **LDEV** tab are stored only in short range, therefore, **shortrange** is displayed in this list and you cannot change it. The range of monitoring data that can be displayed in the window is between 8 hours and 15 days depending on the gathering interval.

For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges.

For details on the relationship between collection interval and the storing period of the statistics, see Monitoring Options Window.

• **Monitoring Term** lets you narrow the range of statistics that should be displayed in the window.

Starting and ending times for collecting statistics are displayed on both sides of the slide bar. Performance Monitor stores the monitoring data between these times, and you can specify the desired term within this range as statistics for the specified term will be displayed the target of display in lists and graphs formats.

For example, if you want to view statistics within the range of 10:30 July 1 2006 to 10:30 July 2 2006, you set 2006/07/01 10:30 to the **From** box, set 2006/07/02 10:30 to the **To** box, and then click **Apply**.

To set a date and time in **From** and **To**, do either of the following:
 – Move the slider to the left or to the right.
 – In the text box, select the number that you want to change. Next, click the up or down arrow.

When you specify dates and time in **From** and **To**, Performance Monitor calculates the length (in minutes) of the specified period and displays the calculated length. When calculating the length in minutes, Performance Monitor rounds up to the nearest minute.

Notes:

From and **To** are unavailable if the monitoring data (that is, obtained statistics) is not stored in the storage system.

The Real Time option is grayed out when the **LDEV** tab is active.
In the Monitoring Data area, the list on the upper right of the list specifies the type of statistics to be displayed in the window. If you want to view I/O rate, select IOPS (I/Os per second) from the list. If you want to view transfer rate, select MB/s (megabytes per second) from the list.

The tree lists parity groups, external volume groups, and V-VOL groups. Box folders (for example, Box 1, Box E1, Box V1, and Box X1) are displayed below the storage system folder. The number at the end of a Box folder name indicates the number at the beginning of parity group ID, external volume group ID or V-VOL group ID. For example, if you double-click the Box 1 folder, the tree displays a list of parity groups whose IDs begin with 1 (for example, 1-1 and 1-2). At the right of each ID, the RAID level appears. When you select a parity group, the list on the right lists volumes in the parity group.

The IDs of external volume groups are beginning with the letter "E". Therefore, a folder whose number is beginning with the letter "E", such as Box E1, contains external volume groups. For example, if you double-click the Box E1 folder, the tree displays a list of external volume groups whose IDs begin with E1 (for example, E1-1 and E1-2). The external volume groups do not have parity in formation, and no RAID level appears at the right of IDs.

A volume existing in an external storage system and mapped to a volume in the USP V/VM storage system by using Universal Volume Manager is called an external volume. An external volume group is a quantity of external volumes grouped together for managing and that does not contain any parity information, unlike a parity group. However, Performance Management window treats external volume groups same as parity groups for convenience.

When Copy-on-Write Snapshot is used, the IDs of V-VOL groups begin with the letter "V". When Dynamic Provisioning is used, the IDs of V-VOL groups begin with the letter "X". Therefore, if a folder number ends with the letter "V" or "X", such as Box V1 or Box X1, it contains V-VOL groups.

For example, if you double-click the Box V1 folder, the tree displays V1-1, which is a V-VOL group ID beginning with V1. If you double-click the Box V2 folder, the tree displays V2-1, which is a V-VOL group ID beginning with V2. The V-VOL groups do not have parity information, and no RAID level appears at the right of IDs.

Unlike a parity group, a V-VOL group is a group of virtual volumes and does not contain any parity information. However, Performance Management windows treat V-VOL groups the same as parity groups for convenience.

The parity group icon (■) can represent a single parity group. The parity group icon can also represent two or more parity groups that are connected together. If two or more parity groups are connected together, volumes can be striped across two or more drives. Therefore, connected parity groups provide faster access (particularly, faster sequential access) to data.
For example, if the parity group icon (icons) indicates a single parity group 1-3, the text 1-3 appears on the right of the icon. If the parity group icon indicates two or more parity groups that are connected together, all the connected parity groups appear on the right of the icon. For example, if the parity group 1-3 is connected with the parity group 1-4, the text 1-3[1-4] appears on the right of the parity group icon. (All the parity groups connected with 1-3 are enclosed by square brackets).

Notes:

Storage Navigator does not allow you to connect two or more parity groups. If you want to use connected parity groups, contact the maintenance personnel.

When the ShadowImage or ShadowImage for IBM z/OS quick restore operation is being performed, a Storage Navigator window may display old information (status before the quick restore operation) on volume (LDEV) configurations.

In this case, wait until the quick restore operation completes, and then click File, Refresh on the menu bar of the Storage Navigator main window to update the Storage Navigator window.

- The list displays statistics about disk access performance (for example, I/O rate, transfer rate, read hit ratio, write hit ratio, and average response time). For details on the list contents, see Monitoring Hard Disk Drives.

If you select connected parity groups in the tree, the list displays statistics about disk access performance for all the connected parity groups.

The list displays up to a maximum of 4,096 resources at a time. If the number of resources exceeds 4,096, use Previous and Next to display the remaining resources.

When you select a folder icon such as Box 1 or Box 3, the concatenated parity group icon is displayed in a list. The only parity group ID displayed will be that of the group at the top of the concatenated parity groups. The icon used for concatenated parity groups is the same as a regular parity group icon. There is no specific icon for concatenated parity groups.

- The Page area displays the number of the current page and the following items are being used to change pages of list.
 - Previous button allows you to display the previous 4,096 resources.
 - \textit{N/M} list: The \textit{N} displays the number of the current page. The \textit{M} displays total number of pages. Use the list to choose the number of the page to display.
 - Next button allows you to display the next 4,096 resources.

- The Draw button displays a line graph illustrating changes in the I/O rate, the transfer rate, etc. The graph can display up to eight lines simultaneously.
The line graph illustrates changes in the I/O rate, the transfer rate, etc. The vertical axis indicates the usage rates (in percentage). The horizontal axis indicates dates and/or times.

If you select connected parity groups in the tree, the graph illustrates changes in disk access performance (e.g., the I/O rate and the transfer rate) for all the connected parity groups.

Before clicking **Draw**, use the list at the right corner of the list (just below the list for specifying the type of statistics) to specify the type of information that will be displayed in the graph. The list to specify the item to be displayed is shown below.

![Figure 4-6 Selecting an Item to be Displayed in the Graph (LDEV Tab)](image)

The items that can be selected in the list change depending on the type of statistics you selected. Some items can be selected only when you select I/O rate (**IOPS**) or the transfer rate (**MB/s**). The items you can select in the list and the corresponding type of statistics are shown in Table 4-1.

<table>
<thead>
<tr>
<th>Item selected in the list</th>
<th>Meaning</th>
<th>Type of statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Rate</td>
<td>The I/O rate. The number of I/O accesses per second.</td>
<td>✓</td>
</tr>
<tr>
<td>Read</td>
<td>The number of read accesses per second.</td>
<td>✓</td>
</tr>
<tr>
<td>Write</td>
<td>The number of write accesses per second.</td>
<td>✓</td>
</tr>
<tr>
<td>Read Hit</td>
<td>The read hit ratio.</td>
<td>✓</td>
</tr>
<tr>
<td>Write Hit</td>
<td>The write hit ratio.</td>
<td>✓</td>
</tr>
<tr>
<td>Back Trans.</td>
<td>Backend transfer. The number of data transfers between the cache memory and the hard disk drive.</td>
<td>✓</td>
</tr>
<tr>
<td>Trans.</td>
<td>The transfer rate. The size of data transferred per second.</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓: Can be selected (blank): Cannot be selected
When you draw a graph, use the **Detail** check box to illustrate the desired information and the **Chart Y Axis Rate** list to arrange the graph as you like.

![Figure 4-7 Chart Y Axis Rate List and Detail Check Box (LDEV Tab)](image)

Use the **Chart Y Axis Rate** list to select the highest value of the Y-axis (the vertical axis) of the graph.

If you select **Detail** and then click **Draw**, the graph displays detailed statistics as explained in Table 4-2. The information in the graph depends on the item selected in the list on the right.

Table 4-2 Detailed Information that can be Displayed in the Graph (LDEV Tab)

<table>
<thead>
<tr>
<th>Select Detail and this Item in the List</th>
<th>The Graph Contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO Rate</td>
<td>- statistics in sequential access mode</td>
</tr>
<tr>
<td>Read</td>
<td>- statistics in random access mode</td>
</tr>
<tr>
<td>Write</td>
<td>- statistics in CFW (cache fast write) mode</td>
</tr>
<tr>
<td>Read Hit</td>
<td>Note: If the read hit ratio or the write hit ratio is high, random access mode is used for transferring data instead of sequential access mode. For example, random access mode is likely to be used for transferring data to disk areas to which the Cache Residency Manager function is applied.</td>
</tr>
<tr>
<td>Write Hit</td>
<td></td>
</tr>
<tr>
<td>Back Trans.</td>
<td>- the number of data transfers from the cache memory to hard disk drives ("Cache to Drive")</td>
</tr>
<tr>
<td></td>
<td>- the number of data transfers from hard disk drives to the cache memory in sequential access mode ("Drive to Cache Sequential")</td>
</tr>
<tr>
<td></td>
<td>- the number of data transfers from hard disk drives to the cache memory in random access mode ("Drive to Cache Random")</td>
</tr>
<tr>
<td>Trans.</td>
<td>The graph does not display detailed information.</td>
</tr>
</tbody>
</table>
Port-LUN Tab of the Performance Monitor Window

When you click Go, Performance Manager and then Performance Management on the menu bar of the Storage Navigator main window, Performance Monitor starts and the Performance Management window is active. The Performance Management window includes the Port-LUN tab, which lets you view statistics about I/O rates, transfer rates, and average response time at storage system ports, host groups, LU paths, etc.

Performance Monitor can obtain statistics about traffics of ports connected to open-system host groups only. The statistics about traffics of ports connected to mainframe host groups cannot be obtained.

For details on how to use this window, see Monitoring Ports and Monitoring LU Paths.

Figure 4-8 Port-LUN tab of the Performance Management Window

When the Port-LUN tab is active, the Performance Management window contains the following items:

- When Monitoring Switch is Enable, Performance Monitor is monitoring the storage system (a Disable setting indicates that the system is not being monitored).
• **Gathering Interval** indicates that the statistics are collected at the interval displayed here. If the number of the CUs monitored is 64 or less, the value between 1 and 15 appears as a gathering interval by minutes. For example, if **1 min.** is displayed, the information obtained every one minute is displayed in the list and the graph. In case 65 or more CUs are monitored, the statistics are displayed every 5, 10 or 15 minutes.

• The list on the right of **Monitoring Data** indicates storing period of statistics (monitoring data). The statistics displayed in the **Port-LUN** tab are stored only in short range. The range of monitoring data that can be displayed in the window is between 8 hours and 15 days depending on the gathering interval.

 For details on the types of storing period of statistics, see **Understanding Statistical Storage Ranges**.

 For details on the relationship between collection interval and the storing period of the statistics, see **Monitoring Options Window**.

• **Monitoring Term** let you narrow the range of statistics that should be displayed in the window.

 The starting and ending time for collecting statistics is displayed on both sides of the slide bar. Performance Monitor stores the monitoring data between these times, and you can specify desired term within this range as the target to display in lists and graphs.

 For example, if you want to view statistics within the range of 10:30 July 1 2007 to 10:30 July 2 2007, you set 2007/07/01 10:30 to the **From** box, set 2007/07/02 10:30 to the **To** box, and then click **Apply**.

 To set a date and time in **From** and **To**, do either of the following:
 – Move the slider to the left or to the right.
 – In the text box, select the number that you want to change. Next, click the upward or downward arrow button.

 When you specify dates and time in **From** and **To**, Performance Monitor calculates the length (in minutes) of the specified period and displays the calculated length. When calculating the length in minutes, Performance Monitor rounds up the fraction.

 Note: **From** and **To** are unavailable if the monitoring data (that is, obtained statistics) is not stored in the storage system.

• The **Real Time** option lets you view statistics in real-time mode, where statistics are updated at a gathering interval you specify between 1 and 15 minutes.
When you select the **Real Time** option, use the list to select the number of recent collections of statistics which should be displayed in the graph. You can select the number of times from 5 or 90. This setting determines the range of recent statistics to be displayed in the graph. For example, suppose the gathering interval is 1 minute. In this case, if you select **90** from the list, the graph displays statistics obtained in the last 90 minutes (multiplying 1 minute by 90 times).

- In the **Monitoring Data** area, the list on the upper right specifies the type of statistics to be displayed in the window. If you want to view I/O rates, select **IOPS** (I/Os per second) from the list. If you want to view transfer rates, select **MB/s** (megabytes per second) from the list.

- The tree contains the **Subsystem** folder. Below the **Subsystem** folder are ports (such as and):

 ![This icon indicates the attribute of the stored port is Target, or Initiator/External.](image)

 ![This port icon indicates either of the following:](image)

 A Fibre Channel port in **Standard** mode. LUN security is applied to this port.

 If the port name is followed by its fibre address, the port is a Fibre Channel port. For example, CL1-A(EF) indicates that the CL1-A port is a Fibre Channel port.

 ![This port icon indicates either of the following:](image)

 A Fibre Channel port in **Standard** mode. LUN security is **not** applied to this port.

- A Fibre Channel port in **High Speed** mode. LUN security is applied to this port.
- A Fibre Channel port in **High Speed** mode. LUN security is **not** applied to this port.
- A Fibre Channel port in **Initiator/External MIX** mode. LUN security is **not** applied to this port.
- A Fibre Channel port in **Initiator/External MIX** mode. LUN security is applied to this port.

When you double-click a port, the host groups () that correspond to that port are displayed. The host group ID appears on the left of the colon (:). The host group name appears on the right of the colon.

When you double-click a host group, an item named **LUN** () appears. When you select **LUN**, the list on the right lists LU paths.

For details about LUN security, host groups, and LU paths, see the *LUN Manager User’s Guide*.

- The list displays statistics (that is, I/O rates, transfer rates, or average response time). For details on the list contents, see Monitoring Ports and Monitoring LU Paths.

- The **SPM** button starts the Server Priority Manager program product if that program has been enabled. For details of Server Priority Manager, see Overview of Server Priority Manager and **Server Priority Manager Operation**.
The SPM button is deactivated in real-time mode. To start Server Priority Manager, activate the From and To boxes and release Performance Monitor from real-time mode.

- If the Current Control label displays Port Control, the system is controlled by the upper limits and the threshold specified in the Port tab of the Server Priority Manager window.
 - If the Current Control label displays WWN Control, the system is controlled by the upper limits and the threshold specified in the WWN tab of the Server Priority Manager window.
 - If the Current Control label displays No Control, the system performance is not controlled by Server Priority Manager.

- The Draw button displays a line graph illustrating changes in the I/O rate or the transfer rate. The graph can display up to eight lines simultaneously.

- The line graph illustrates changes in the I/O rate or the transfer rate. The vertical axis indicates the I/O rate or the transfer rate. The horizontal axis indicates dates and/or times.

When the graph displays I/O rates or the transfer rates for a port controlled by an upper limit or a threshold, the graph also displays a line that indicates the upper limit or the threshold.

When you draw a graph, use the Detail check box and the list to illustrate the desired information, and use the Chart Y Axis Rate list to arrange the graph convenient to work.

Figure 4-9 Chart Y Axis Rate List, Detail Check Box, and the List to Select the Item to be Displayed (Port-LUN Tab)

Use the Chart Y Axis Rate list to select the highest value of the Y-axis (the vertical axis) of the graph.

If you select Detail after drawing a graph by clicking Draw, the graph displays detailed statistics as explained. The detailed statistics can be displayed only:

- When you select the Subsystem folder (✉) in the tree and select a port in the list.
The graph displays detailed statistics about workloads on the port selected in the list. For details on the graph, see Viewing Port Workload Statistics.

- When you select LUN in the tree and select a LUN (an address of a volume) in the list.

The graph displays detailed statistics about workloads on the LU paths selected in the list. The information in the graph depends on the item selected in the list on the right of the Detail check box. For details on the graph see Viewing Workload Statistics on LU Paths.

Viewing Port Workload Statistics

Figure 4-10 shows an example of a graph displaying information about workload of a port. In this example, port CL1-A was selected in the list before clicking Draw. In this example, 1 minute is specified as the gathering interval. The graph contents changes depending on the selection of the Detail check box. The figure shows the following:

- The workload on the port CL1-A is 200 IO/s at 8:00, and 300 IO/s at 10:00 (refer to the graph on the left).
- For the period of 7:59 to 8:00, the maximum workload on CL1-A is 300 IO/s. The average workload on CL1-A is 200 IO/s. The minimum workload on CL1-A is 100 IO/s (refer to the graph on the right).
- For the period of 9:59 to 10:00, the maximum workload on CL1-A is 400 IO/s. The average workload on CL1-A is 300 IO/s. The minimum workload on CL1-A is 200 IO/s (refer to the graph on the right).
- When Detail is deselected, only one line appears in the graph. This line is equivalent to the line Ave. (1 min), which appears when Detail is selected.

![Graphs Illustrating Changes in Workloads on a Port](image)

Figure 4-10 Graphs Illustrating Changes in Workloads on a Port
Viewing Workload Statistics on LU Paths

When you select LUN (ۇ) in the tree, select a LUN in the list, click **Draw**, and then select **Detail**, the graph displays detailed statistics about workload on the LU paths. The detailed statistics that can be displayed differ depending on items you select in the list, as explained in Table 4-3.

Table 4-3 Detailed Information that can be Displayed in the Graph (Port-LUN Tab)

<table>
<thead>
<tr>
<th>Select Detail and this Item in the List</th>
<th>The Graph Contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO (the number of I/Os per second)*</td>
<td>- statistics in sequential access mode</td>
</tr>
<tr>
<td></td>
<td>- statistics in random access mode</td>
</tr>
<tr>
<td>Read (the number of read accesses per second)*</td>
<td>Note: If the read hit ratio or the write hit ratio is high, random access mode is used for transferring data instead of sequential access mode. For example, random access mode is likely to be used for transferring data to disk areas to which the Cache Residency Manager function is applied.</td>
</tr>
<tr>
<td>Write (the number of write accesses per second)*</td>
<td></td>
</tr>
<tr>
<td>Read Hit (the read hit ratio)</td>
<td></td>
</tr>
<tr>
<td>Write Hit (the write hit ratio)</td>
<td></td>
</tr>
<tr>
<td>Back Trans. (backend transfer; the number of I/Os between the cache memory and hard disk drives)</td>
<td>- the number of data transfers from the cache memory to hard disk drives ("Cache to Drive")</td>
</tr>
<tr>
<td></td>
<td>- the number of data transfers from hard disk drives to the cache memory in sequential access mode ("Drive to Cache Seq.")</td>
</tr>
<tr>
<td></td>
<td>- the number of data transfers from hard disk drives to the cache memory in random access mode ("Drive to Cache Rnd.")</td>
</tr>
</tbody>
</table>

* You can select this item only when I/O rates are displayed.
WWN Tab of the Performance Monitor Window

When you click **Go**, **Performance Manager** and then **Performance Management** on the menu bar of the Storage Navigator main window, Performance Monitor starts and the **Performance Management** window is active. The **Performance Management** window includes the **WWN** tab, where you view statistics (I/O rates, transfer rates, and average response time) about traffic between host bus adapters in the hosts and ports on the storage system.

Caution: The **WWN** tab is unavailable if Server Priority Manager is not enabled.

A **WWN** (Worldwide Name) is a 16-digit hexadecimal number used as the unique identifier for a host bus adapter. Host bus adapters are contained in hosts and serve as ports for connecting the hosts and the storage system. One WWN represents one host bus adapter.

For details on how to use this window, see Monitoring Paths between Host Bus Adapters and Ports.

![Figure 4-11 WWN tab of the Performance Management Window](image)

When the **WWN** tab is active, the **Performance Management** window contains the following items:
• When **Monitoring Switch** is **Enable**, Performance Monitor is monitoring the storage system (a **Disable** setting indicates that the system is not being monitored).

• **Gathering Interval** indicates that the statistics are collected at the interval displayed here. If the number of the CUs to be monitored is 64 or less, the value between 1 and 15 appears as a gathering interval by minutes. For example, if **1 min.** is displayed, the information obtained every one minute is displayed in the list and the graph. In case 65 or more CUs are monitored, the statistics are displayed every 5, 10 or 15 minutes.

• The list on the right of **Monitoring Data** indicates storing period of statistics (monitoring data). The statistics displayed in the **WWN** tab are stored only in short range, therefore, **shortrange** is displayed in this list and you cannot change it. The range of monitoring data that can be displayed in the window is between 8 hours and 15 days depending on the gathering interval. For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges.

 For details on the relationship between collection interval and the storing period of the statistics, see Monitoring Options Window.

• **Monitoring Term** let you narrow the range of statistics that should be displayed in the window.

 The starting and ending time for collecting statistics are displayed on both sides of the slide bar. Performance Monitor stores the monitoring data between these times, and you can specify the desired term within this range. Statistics for the specified term will be displayed in list and graph formats.

 For example, if you want to view statistics within the range of 10:30 July 1 2007 to 10:30 July 2 2007, you set 2007/07/01 10:30 to the **From** box, set 2007/07/02 10:30 to the **To** box, and then click **Apply**.

 To set a date and time in **From** and **To**, do either of the following:

 – Move the slider to the left or to the right.

 – In the text box, select the number that you want to change. Next, click the upward or downward arrow button.

 When you specify dates and time in **From** and **To**, Performance Monitor calculates the length (in minutes) of the specified period and displays the calculated length. When calculating the length in minutes, Performance Monitor rounds up the fraction.

 Note: **From** and **To** are unavailable if the monitoring data (that is, obtained statistics) is not stored in the storage system.

• The **Real Time** option lets you view statistics in real-time mode, where statistics are updated at a gathering interval you specify between 1 and 15 minutes.
When you select the **Real Time** option, use the list to select the number of recent collections of statistics which should be displayed in the graph. You can select the number of times from 5 or 90. This setting determines the range of recent statistics to be displayed in the graph. For example, suppose the gathering interval is 1 minute. In this case, if you select 90 from the list, the graph displays statistics obtained in the last 90 minutes (multiplying 1 minute by 90 times).

- In the **Monitoring Data** area, the list on the upper right of the list specifies the type of statistics to be displayed in the window. If you want to view I/O rates, select **IOPS** (I/Os per second) from the list. If you want to view transfer rates, select **MB/s** (megabytes per second) from the list.

- The tree contains the **Subsystem** folder. Below the **Subsystem** folder are **SPM groups**, which are groups of multiple **WWNs**. When you double-click an SPM group (قضاء), the host bus adapters (обеспيل) belonging to that SPM group are displayed. The WWN and the SPM name of the host bus adapter are displayed to the right of the (icon). If you double-click **Not Grouped** in the tree, host bus adapters (WWNs) that do not belong to any SPM group are displayed.

 If the WWN of a host bus adapter (HBA) is displayed in red in the tree, the host bus adapter is connected to two or more ports, but the traffic between the HBA and some of the ports are *not* monitored by Performance Monitor. When many-to-many connections are established between HBAs and ports, make sure that all the traffic between HBAs and ports is monitored (see Monitoring All Traffic between HBAs and Ports for instructions).

- The list displays statistics (that is, I/O rates, transfer rates, or average response time). For details on the list contents, see Monitoring Paths between Host Bus Adapters and Ports.

- The **SPM** button starts the Server Priority Manager program product if Server Priority Manager is enabled. For details on Server Priority Manager, see **Overview of Server Priority Manager** and Server Priority Manager .

 The **SPM** button is deactivated in real-time mode. To start Server Priority Manager, activate the **From** and **To** boxes and release Performance Monitor from real-time mode.

- If the **Current Control** label displays **Port Control**, the system is controlled by the upper limits and the threshold specified in the **Port** tab of the **Server Priority Manager** window.

 - If the **Current Control** label displays **WWN Control**, the system is controlled by the upper limits and the threshold specified in the **WWN** tab of the **Server Priority Manager** window.

 - If the **Current Control** label displays **No Control**, the system performance is not controlled by Server Priority Manager.

- The **Draw** button displays a line graph illustrating changes in the I/O rate or the transfer rate. The graph can display up to eight lines simultaneously.
The line graph illustrates changes in the I/O rate or the transfer rate. The vertical axis indicates the usage rates (in percentage). The horizontal axis indicates dates and/or times.

When the graph displays I/O rates or the transfer rates for a host bus adapter or an SPM group controlled by an upper limit, the graph also displays a line that indicates the upper limit.

When you draw a graph, the **Chart Y Axis Rate** list lets you select the highest value of the Y-axis (the vertical axis) of the graph.

Figure 4-12 Chart Y Axis Rate List, Detail Check Box, and the List to Select the Item to be Displayed (Port-LUN tab)
Monitoring Options Window

When you click **Go, Performance Manager** and then **Performance Management** on the menu bar of the Storage Navigator main window, Performance Monitor starts. When you click the **Monitoring Options** tab, the **Monitoring Options** window is displayed. Use it to make settings for obtaining usage rates about hard disk drives, channel processors, disk processors, etc.

Note: This note explains the following statistics to be displayed in tabs of **Performance Management** windows.

The statistics of LUs that are displayed in the **Port-LUN** tab.

The statistics of volumes that are displayed in the **LDEV** tab.

In the above tabs, performance statistics of unused volumes are displayed as hyphens (-), if the range of monitored CUs does not match the range of CUs used in the disk storage system or registered as external volumes. In addition, depending on your disk subsystem configuration, the list may display performance statistics for some volumes and not display performance statistics for other volumes.

To correctly display performance statistics, you must specify CUs to be monitored as follows:

To display performance statistics of a LUSE volume in the **Port-LUN** tab, you must specify all volumes that make up the LUSE volume as the monitoring targets.

To display performance statistics of parity group to be displayed in the **LDEV** tab, you must specify all volumes that belong to the parity group as the monitoring target.
Using the Performance Manager GUI

Hitachi Universal Storage Platform V/VM Hitachi Performance Manager User's Guide

Figure 4-13 Monitoring Options Window of Performance Monitor

The Monitoring Switch area in the Monitoring Options window contains the following items:

- **Current Status**

 Select **Enable** to start obtaining statistics from the storage system (that is, monitoring). To stop monitoring, select **Disable**. The default setting is **Disable**.

- **Gathering Interval**

 Specify the interval to obtain usage statistics about the storage system for short range monitoring. This option is activated when you specify **Enable** for Current Status. If CUs to be monitored are 64 or less, you can specify the value between 1 and 15 minutes by minutes, and the default setting is 1 minute. For example, if you specify 1 minute for the gathering interval, Performance Monitor collect statistics (such as I/O rates and transfer rates) every one minute.

 If CUs to be monitored are 65 or more, the gathering interval can be specified to the value 5, 10 or 15 minutes (in the 5-minuted interval), and default is 5 minutes. For example, if you specify the gathering interval to 5 minutes, Performance Monitor gathers statistics (such as I/O rate and transfer rate) every 5 minutes.
This option is effective only for:
- Statistics displayed in the LDEV, Port-LUN, and WWN tabs
- Statistics displayed in the Physical tab with selecting shortrange for the storing period

When viewing the Physical tab with longrange selected for the storing period, the statistics collected every 15 minutes are displayed regardless of the value of the Gathering Interval.

The Monitoring Target area in the Monitoring Options window contains the following items:

- **PG Selection Support**
 If you click this button, all parity groups are listed in the PG list. If you click this button when a large-sized configuration is being used, it may take long time to gather the PG list.

- **PG list:**
 Indicates the list of IDs of the parity groups that can be monitored. Each cell displayed in the list is accompanied by an icon . Click PG on the header to sort the parity groups by ID. If you click the cell for an individual parity group, the CUs that belong to that parity group are displayed in the CU table on the right.

- **LDKC list:**
 Indicates LDKC numbers. To select an LDKC as a monitoring target, click the LDKC number. All the CUs that belong to that LDKC are displayed.

- **CU table:**
 The CU table consists of cells representing CUs. Each row consists of 16 cells (CUs). A set of 16 rows represents CUs for one LDKC. The table header row displays the last digit of each CU number in the form of +n (n is an integer between 0 and 9, or a letter from A to F).

 To select a CU, click a cell to invert its color. To restore the cell to its original color, click the inverted cell. To select all the (16) CUs of the same number in the second last digits, click the CU number (00 to F0). By dragging the cursor over multiple cells, you can select all the cells from the source to the destination.

 For your information, one cell corresponds to one CU. The relation of the display of a cell to the CU status is shown below:
Table 4-4 Relationship between the Display of a Cell and the CU Status in the CU Table

<table>
<thead>
<tr>
<th>CU Exists</th>
<th>CU Monitoring Status</th>
<th>Letter Displayed in The Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>CU is being monitored</td>
<td>S: in black</td>
</tr>
<tr>
<td></td>
<td>CU is to be released from monitoring</td>
<td>R: in blue italics</td>
</tr>
<tr>
<td></td>
<td>CU is not being monitored</td>
<td>None</td>
</tr>
<tr>
<td>No</td>
<td>CU will be monitored when it exist</td>
<td>N: in black</td>
</tr>
<tr>
<td></td>
<td>CU is to be released from monitoring</td>
<td>-: in black bold</td>
</tr>
<tr>
<td></td>
<td>CU will not be monitored when it exist</td>
<td>-: in black</td>
</tr>
</tbody>
</table>

- Monitoring Target CUs:
 Indicates the number of existing and newly added CUs to be monitored.

- The **Select** button adds the CU selected in the CU table to the CUs to be monitored.

Table 4-5 Characters Indicated in a Cell When the Select Button is Clicked

<table>
<thead>
<tr>
<th>Before Click</th>
<th>After Click</th>
</tr>
</thead>
<tbody>
<tr>
<td>-: Hyphen in black</td>
<td>N: in black italics</td>
</tr>
<tr>
<td>R: in blue italics</td>
<td>S: in black</td>
</tr>
</tbody>
</table>

- The **Release** button removes the CU from monitoring targets.

Table 4-6 Characters Indicated in a Cell When Release Button is Clicked

<table>
<thead>
<tr>
<th>Before Click</th>
<th>After Click</th>
</tr>
</thead>
<tbody>
<tr>
<td>N: in black</td>
<td>-: Hyphen in black bold</td>
</tr>
<tr>
<td>S: in black</td>
<td>R: slanted in blue italics</td>
</tr>
</tbody>
</table>

- The **Apply** button applies settings in the **Monitoring Options** window to the storage system.

- The **Reset** button resets the settings in the **Monitoring Options** window.

Performance Monitor has two kinds of periods (ranges) for collecting and storing statistics: short range and long range.

The storing period of statistics in *short range* is determined by the settings of **Gathering Interval** option. Performance Monitor saves the statistics obtained up to 1440 times in SVP. Therefore, you can estimate the storing period of statistics with "gathering interval multiplied by 1440". For example, if you specify one minute for the gathering interval, the statistics for one day can be stored at the maximum from the following formula:

\[1 \text{ minute} \times 1440 = 1440 \text{ minutes} = 24 \text{ hours} = 1 \text{ day} \]
This storing period is the range of display in the Performance Management windows. When you specify one minute for the gathering interval like the example above, Performance Monitor can display the statistics for one day (i.e., 24 hours) in the list and graph at the maximum. Also, when you specify 15 minutes for the gathering interval, Performance Monitor can display the statistics for 15 days in the list and graph at the maximum.

However, the value of the Gathering Interval option has nothing to do with the storing period of statistics in long range monitoring. The gathering interval in long range is fixed to 15 minutes. Therefore, when you select the longrange storing period in the Physical tab of Performance Monitor, the display range in the window is always three months (i.e., 93 days).

The monitoring switch settings in the Monitoring Options window work in conjunction with the monitoring switch settings in the Usage Monitor windows of TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS. Therefore, if you use the Monitoring Options window to start or stop monitoring, or to change the gathering interval, the monitoring settings of these remote copy functions will also change. Conversely, if the settings in each Usage Monitor window are changed, the settings in the Monitoring Options window of Performance Monitor also change automatically.

Other Windows

Apart from the Performance Monitor window and its tabs, the Performance Monitor interface also includes the following windows:

- **TC Monitor window**
 This window displays the information about remote copy operation of TrueCopy. The contents in this window are the same as those of the Usage Monitor window of TrueCopy. For details on the contents in this window, see the *TrueCopy User's Guide*.

- **TCz Monitor window**
 This window displays the information about remote copy operation of TrueCopy for IBM z/OS. The contents in this window are the same as those of the Usage Monitor window of TrueCopy for IBM z/OS. For details on the contents in this window, see the *TrueCopy for IBM z/OS User's Guide*.

- **UR Monitor window**
 This window displays the information about remote copy operation of Universal Replicator. The contents in this window are the same as those of the Usage Monitor window of Universal Replicator. For details on the contents in this window, see the *Universal Replicator User's Guide*.
- **URz Monitor** window

 This window displays the information about remote copy operation of Universal Replicator for IBM z/OS. The contents in this window are the same as those of the Usage Monitor window of Universal Replicator for IBM z/OS. For details on the contents in this window, see the Universal Replicator for IBM z/OS User's Guide.

If each remote copy function (TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, or Universal Replicator for IBM z/OS) is not installed in your environment, the corresponding tabs (TC Monitor tab, TCz Monitor tab, UR Monitor tab, or URz Monitor tab) are unavailable.

Using the Server Priority Manager Windows

The first section in this chapter explains Server Priority Manager windows. The remaining sections explain procedures for monitoring performance and setting the upper limit and threshold for I/O rates and transfer rates.

If the user type of your user ID is storage partition administrator, you cannot use Server Priority Manager. For details on the limitations when using Performance Manager logged in as a storage partition administrator, see Storage Partition Administrators Limitations.

The Server Priority Manager window has two tabs: **Port** tab and **WWN** tab. If one-to-one connections are established between host bus adapters and ports, use the **Port** tab. If many-to-many connections are established between host bus adapters and ports, use the **WWN** tab.

This section explains these tabs in the Server Priority Manager window.

Port Tab of the Server Priority Manager Window

The **Port** tab lets you set the limit on the performance of non-prioritized ports and set the threshold on the performance of prioritized ports.

For operations in this tab, see Port Tab Operations.
The Port tab displays the following:

- **Current Control Status** can display either **Port Control** or **WWN Control**.
 - If **Port Control** is displayed, the system is controlled by the upper limits and threshold specified in the Port tab.
 - If **WWN Control** is displayed, the system is controlled by the upper limits and threshold specified in the WWN tab.
 - If **No Control** is displayed, the system performance is *not* controlled by Server Priority Manager.

Tip: If **WWN Control** is displayed when the Port tab is active, click **Apply** to switch control so that **Port Control** is displayed.

Tip: To return the control status to **No Control**, specify **Prio.** for attributes of all the ports and then click **Apply**.

- The list near the upper right corner of the **Server Priority Manager** window allows you to narrow ports in the list:
 - If **All** is selected, all the ports appear in the list.
 - If **Prioritize** is selected, only the prioritized ports appear in the list.
 - If **Non-Prioritize** is selected, only the non-prioritized ports appear in the list.
If you change settings of a port, that port remains in the list regardless of the selection in the list.

- The list near the upper left corner of the Port tab allows you to change the type of performance statistics to be displayed in the list.
 - If IOPS (I/Os per second) is selected, the list displays I/O rates for ports. The I/O rate indicates the number of I/Os per second.
 - If MB/s (megabytes per second) is selected, the list displays the transfer rates for ports. The transfer rate indicates the size of data transferred via a port in one second.

- The list displays a list of ports and indicates the I/O rate or the transfer rate for each port. This list also enables you to specify the port attributes, and the threshold and upper limit of the port traffic.

The measurement unit for the values in the list can be specified by the list above the trees. The port traffic (I/O rate and transfer rate) is monitored by Performance Monitor. To specify the monitoring period, use the Monitoring Term area of Performance Monitor.

The list shows the following items:

- The Port column indicates ports on the storage system.
- The Ave. column indicates the average I/O rate or the average transfer rate for the specified period.
- The Peak column indicates the peak I/O rate or the peak transfer rate of the ports for the specified period. This value means the top of the Max. line in the detailed port-traffic graph drawn in the Port-LUN tab of Performance Monitor. For details, see Viewing I/O Rates for Disks and Viewing Transfer Rates for Disks.
- The Attribute column indicates the priority of each port. Prio indicates a prioritized port. Non-Prio indicates a non-prioritized port.
- The Threshold columns let you specify the threshold for the I/O rate and the transfer rate for each prioritized port. Either the IOPS or MB/s column in the list is activated depending on the selection from the list above.

The IOPS column lets you specify the threshold for I/O rates. The MB/s column lets you specify the threshold for transfer rates. To specify a threshold, double-click a cell to display the cursor in the cell. If you specify a value in either of the IOPS or MB/s column, the other column is deactivated. You can specify thresholds for I/O rates and transfer rates all together for different prioritized ports.

Even if you use the different type of rate for the threshold as that used for the upper limit values, the threshold control can work for all the ports.

- The Upper columns let you specify the upper limit on the I/O rate and the transfer rate for each non-prioritized port. Either the IOPS or MB/s column in the list is activated depending on the selection from the list above.
The **IOPS** column lets you specify the upper limit for I/O rates. The **MB/s** column lets you specify the upper limit for transfer rates. To specify an upper limit, double-click a cell to display the cursor in the cell. If you specify a value in either of the **IOPS** or **MB/s** column, the other column is deactivated. You can specify upper limit values for I/O rates and transfer rates all together for different non-prioritized ports.

- If you select the **All Thresholds** check box and enter a threshold value in the text box, the threshold value will be applied to the entire storage system. If you want to specify the threshold for the I/O rate, select **IOPS** from the list on the right of the text box. If you want to specify the threshold for the transfer rate, select **MB/s** from the list. For example, if you specify 128 IOPS in **All Thresholds**, the upper limits on non-prioritized ports are disabled when the sum of I/O rates for all the prioritized ports is below 128 IOPS.

Even if you use the different type of rate (**IOPS** or **MB/s**) for the threshold as that used for the upper limit values, the threshold control can work for all the ports.

- If you check the **Delete ports if CHA is removed** check box, Server Priority Manager will delete, from SVP, the setting information of Server Priority Manager on ports in channel adapters that have been removed.

When a channel adapter is removed, the port and its settings are removed from the **Server Priority Manager** window automatically, but they remain in SVP. This may cause that the old setting for Server Priority Manager to be applied to a different channel adapter than the one newly-installed on the same location.

The **Delete ports if CHA is removed** check box is available only when the following Server Priority Manager settings on ports in a removed channel adapter remains on SVP:

- The setting of prioritized ports or non-prioritized ports.
- The setting of prioritized WWNs or non-prioritized WWNs.

- The **Apply** button applies the settings in this window to the storage system.

- The **Reset** button restores the last applied settings in the window. When you click this button, all the changes displayed with the blue text in the window are canceled.

- The **Initialize** button changes the settings in this window as explained below, and then applies the resulting settings to the storage system:
 - All the ports become prioritized ports.
 - The threshold value for all the ports becomes 0 (zero).

The window will display a hyphen (-) instead of 0 (zero).

- If the **All Thresholds** checkbox is checked, the check mark disappears.

- The **Close** button closes the **Server Priority Manager** window.
WWN Tab of the Server Priority Manager Window

The **WWN** tab lets you set the limit on the performance of non-prioritized WWNs and set the threshold on the performance of prioritized WWNs.

For operations in this tab, see WWN Tab Operations and Grouping Host Bus Adapters.

![WWN Tab in the Server Priority Manager Window](image)

Figure 4-15 WWN Tab in the Server Priority Manager Window

The **WWN** tab displays the following:

- **Current Control Status** can display either **Port Control** or **WWN Control**.
 - If **Port Control** is displayed, the system is controlled by the upper limits and threshold specified in the Port tab.
 - If **WWN Control** is displayed, the system is controlled by the upper limits and threshold specified in the WWN tab.
 - If **No Control** is displayed, the system performance is not controlled by Server Priority Manager.

Tip: If **Port Control** is displayed when the **WWN** tab is active, click **Apply** to switch control so that **WWN Control** is displayed.

Tip: To return the control status to **No Control**, specify **Prio.** for attributes of all the host bus adapters and then click **Apply**.
• The list near the upper right corner of the Server Priority Manager window enables you to narrow WWNs (host bus adapters) in the list:
 – If All is selected, all the WWNs appear in the list.
 – If Prioritize is selected, only the prioritized WWNs appear in the list.
 – If Non-Prioritize is selected, only the non-prioritized WWNs appear in the list.

• The upper-left tree lists ports and the host bus adapters connected to these ports in the storage system.

 Ports on the storage system are shown below the Subsystem folder. The ports are indicated by icons such as and .

 When you double-click on a port, the tree expands to display two items: Monitor and Non-Monitor. The host bus adapters that are connected to the specified port are displayed below Monitor or Non-Monitor.

 – If you double-click Monitor, the host bus adapters () whose traffics with the specified port are monitored are displayed below Monitor.

 – If you double-click Non-Monitor, the host bus adapters whose traffics with the specified port are not monitored are displayed below Non-Monitor.

 The WWN and SPM names of the host bus adapters are displayed on the right of the host bus adapter icon () below Monitor. WWNs (Worldwide Name) are 16-digit hexadecimal numbers used to uniquely identify host bus adapters. SPM names are nicknames assigned by the system administrator so that they can easily identify each host bus adapter.

 Only the WWN is displayed on the right of the host bus adapter icon () below Non-Monitor.

 When many-to-many connections are established between host bus adapters (HBAs) and ports, make sure that all the traffics between HBAs and ports monitored. Therefore, make sure that all the connected HBAs are displayed below Monitor. For details on how to move an HBA displayed below Non-Monitor to below Monitor, see Monitoring All Traffic between HBAs and Ports.

 The list on the right of the tree changes depending on the item you selected in the tree as follows.

 – When you selected a port or Monitor icon, the list displays the information of host bus adapters that are connected to the ports(s) and monitored by Performance Monitor.

 – When you selected the Monitor icon or the Subsystem folder, the list becomes blank.

• The lower-left tree lists SPM groups. The tree also lists host bus adapters (WWNs) in each SPM group:

 – SPM groups (), which contain on or more WWNs, are displayed below the Subsystem folder. For details on the SPM groups, see Grouping Host Bus Adapters.
– If you double-click an SPM group, host bus adapters in that group are displayed in the tree. the WWN and SPM name are displayed to the right of the host bus adapter icon ().

If the WWN of a host bus adapter (HBA) is displayed in red in the tree, the host bus adapter is connected to two or more ports, but the traffic between the HBA and some of the ports is not monitored by Performance Monitor. When many-to-many connections are established between HBAs and ports, you should make sure that all the traffic between HBAs and ports is monitored. For details on the measures when a WWN is displayed in red, see Monitoring All Traffic between HBAs and Ports.

The list on the right of the tree changes depending on the item you selected in the tree as follows:
– When you selected the **Subsystem** folder, the list displays the information of SPM groups.
– When you selected an SPM group icon (), the list displays the information of host bus adapters () contained in that SPM group.

• The **Add WWN** button lets you add a host bus adapter to an SPM group. Before using this button, you must select a host bus adapter () from the upper-left tree and also select an SPM group () from the lower-left tree.

You can add a host bus adapter that appears below **Monitor** and does not registered on any other SPM group, yet. If you select a host bus adapter below **Non-Monitor** or a host bus adapter already registered on an SPM group, the **Add WWN** button is deactivated.

• The list at the upper left corner of the list enables you to change the type of performance statistics to be displayed in the list.
 – If **IOPS** (I/Os per second) is selected, the list displays I/O rates for WWNs (host bus adapters). The I/O rate indicates the number of I/Os per second.
 – If **MB/s** (megabytes per second) is selected, the list displays the transfer rates for WWNs (host bus adapters). The transfer rate indicates the size of data transferred in one second.

• The list displays a list of WWNs and indicates the I/O rate or the transfer rate for each host bus adapter corresponding to the selection in the upper-left tree or lower-left tree. This list also enables you to specify the host bus adapter attributes and the upper limit of the host bus adapter traffic.

The measurement unit for the values in the list can be specified by the list at the upper left corner of the list. The displayed items will change depending on the selected tree and item. The host bus adapter traffic (I/O rate and transfer rate) is monitored by Performance Monitor. To specify the monitoring period, use the **Monitoring Term** area of Performance Monitor.

On the right side of the list appear total number of WWNs, the number of prioritized WWNs, and the number of non-prioritized WWNs.

The list shows the following items:
- The **WWN** column indicates WWNs of host bus adapters. This column does not appear when you select the **Subsystem** folder in the lower-left tree.

- The **SPM Name** column indicates SPM names of host bus adapters. Server Priority Manager allows you assign an *SPM name* to each host bus adapter so that you can easily identify each host bus adapters in the **Server Priority Manager** windows. This column does not appear when you select the **Subsystem** folder in the lower-left tree.

- The **Group** column indicates the SPM group to which the host bus adapter belongs. This column appears when a port is selected in the upper-left tree and does not appear when an SPM group is selected in the lower-left tree.

- The **Per Port** column indicates the traffic (I/O rate or transfer rate) between the host bus adapter and the port selected in the upper-left tree. This item is displayed only when you select an icon in the upper-left tree. The **Per Port** column contains the following columns:

 Ave.: Indicates the average I/O rate or the average transfer rate for the specified period.

 Max.: Indicates the maximum I/O rate or the maximum transfer rate for the specified period.

- The **WWN Total** column indicates the sum of the traffic (I/O rate or transfer rate) between the host bus adapter and all the ports connected to the host bus adapter. This value means the total traffic of that host bus adapter. This item is displayed only when you select an icon in the upper-left tree. Whichever port you select in the tree, the **WWN Total** column shows the sum of the traffic to all the ports.

 The **WWN Port** column contains the following columns:

 Ave.: Indicates the average I/O rate or the average transfer rate for the specified period.

 Max.: Indicates the maximum I/O rate or the maximum transfer rate for the specified period.

- The **Ave.** column is also displayed when you select an icon in the lower-left tree. In this case, the **Ave.** column shows the average value same as that of **WWN Total**.

 When you select the **Subsystem** folder in the lower-left tree, the **Ave.** column shows the sum of the traffic of the host bus adapters registered on each SPM group.

- The **Max.** column is also displayed when you select an icon in the lower-left tree. In this case, the **Max.** column shows the maximum value same as that of **WWN Total**.

 When you select the **Subsystem** folder in the lower-left tree, the **Max.** column shows the sum of the traffic of the host bus adapters registered on each SPM group.
- The **Attribute** column indicates the priority of each WWN. **Prio.** indicates a prioritized WWN. **Non-Prio.** indicates a non-prioritized WWN. For details on how to change the priority, see Setting Priority for Host Bus Adapters.

If one host bus adapter connects to multiple ports, the attribute setting of the host bus adapter is common to all the ports. Therefore, if you specify a host bus adapter as a prioritized WWN or a non-prioritized WWN for one port, the setting is applied to all the other connected ports automatically.

- The **Upper** columns let you specify the upper limit on the I/O rate and the transfer rate for each host bus adapter. Either of the **IOPS** or **MB/s** column in the list is activated depending on the selection from the list above.

The **IOPS** column lets you specify the upper limit for I/O rates. The **MB/s** column lets you specify the upper limit for transfer rates. To specify an upper limit, double-click a cell to display the cursor in the cell.

If you specify a value in either of the **IOPS** or **MB/s** column, the other column is deactivated. You can specify upper limit values for I/O rates and transfer rates all together for different non-prioritized WWNs.

Notes:

If one host bus adapter connects to multiple ports, the setting of the upper limit value for a non-prioritized WWN is common to all the ports. Therefore, if you specify a upper limit value of non-prioritized WWN for one port, the setting is applied to all the other connected ports automatically.

You cannot change the upper limit value of a host bus adapter that has registered on an SPM group. The upper limit value of such a host bus adapter is defined by the setting of the SPM group to which the host bus adapter is registered. For details on setting the upper limit value of an SPM group, see Setting an Upper-Limit Value to HBAs in an SPM Group.

The **Upper** columns will not display if an SPM group or a host bus adapter is selected in the lower-left tree.

- If you select the **All Thresholds** check box and enter a threshold value in the text box, the threshold value will be applied to the entire storage system. If you want to specify the threshold for the I/O rate, select **IOPS** from the list on the right of the text box. If you want to specify the threshold for the transfer rate, select **MB/s** from the list. For example, if you specify 128 IOPS in **All Thresholds**, the upper limits on non-prioritized WWNs are disabled when the sum of I/O rates for all the prioritized WWNs is below 128 IOPS.
Even if you use the different type of rate (IOPS or MB/s) for the threshold as that used for the upper limit values of the non-prioritized WWNs, the threshold control can work for all the WWNs.

In the WWN tab, you cannot specify individual thresholds for each host bus adapter.

- If you check the **Delete ports if CHA is removed** checkbox, Server Priority Manager will delete, from SVP, the setting information of Server Priority Manager on ports in channel adapters that have been removed. When a channel adapter is removed, the port and its settings will disappear on the Server Priority Manager window automatically, but that remains in SVP. This may cause that the old setting for Server Priority Manager are applied to a different channel adapter that is installed on the same location newly.

The **Delete ports if CHA is removed** check box is available only when the following Server Priority Manager settings on ports in a removed channel adapter remains on SVP:

- The setting of prioritized ports or non-prioritized ports.
- The setting of prioritized WWNs or non-prioritized WWNs.

- The **Apply** button applies the settings in this window to the storage system.

- The **Reset** button restores the last applied settings in the window. When you click this button, all the changes displayed with the blue text in the window are canceled.

- The **Initialize** button changes the settings in this window as explained below, and then applies the resulting settings to the storage system:
 - All the host bus adapters become prioritized WWNs.
 - If the **All Thresholds** checkbox is checked, the check mark disappears.

- The **Close** button closes the Server Priority Manager window.
Performance Monitor Operations

This chapter explains the following performance monitor operations:

- Overview of Performance Monitor Operations
- Monitoring Resources in the Storage System
- Monitoring Hard Disk Drives
- Monitoring Ports
- Monitoring LU Paths
- Viewing HBA Information
Overview of Performance Monitor Operations

This section briefly describes how to use Performance Monitor to monitor the storage system.

Start Monitoring

To start monitoring the storage system, you start Performance Monitor and display the Monitoring Options window.

The following statistics appear in the tabs of Performance Management windows.

- LU statistics are displayed in the Port-LUN tab.
- Volume statistics are displayed in the LDEV tab.

In the above tabs, performance statistics of unused volumes are displayed as hyphens (-), if the range of monitored CUs does not match the range of CUs used in the disk storage system or registered as external volumes. In addition, depending on your disk subsystem configuration, the list may display performance statistics for some volumes and not display performance statistics for other volumes.

To correctly display performance statistics, you must specify CUs to be monitored as follows:

- To display performance statistics of a LUSE volume in the Port-LUN tab, you must specify all volumes that make up the LUSE volume as the monitoring targets.

- To display performance statistics of parity group to be displayed in the LDEV tab, you must specify all volumes that belong to the parity group as the monitoring target.
To start monitoring, select Enable for the Current Status option in Monitoring Switch, and specify the Gathering Interval option to set the interval for collecting information. Next, select or release the CUs to be monitored in Monitoring Target area. You can specify target CUs either by choosing PG numbers, LDKC numbers, CU numbers or the cells in the CU table. For the details on how to select CUs, see Monitoring Options Window. After the setting is completed, click Apply. Performance Monitor starts to obtain statistics about the storage system and saves the statistics at the specified interval.

If the number of CUs to be monitored is 64 or less, you can select a gathering interval between 1 and 15 minutes. The gathering interval you selected here determines the storing period of the statistics in short range, which is up to 15 days. For example, if you specify the gathering interval as 1 minute, the statistics can be stored 1 day, and if you specify it as 15 minutes, the statistics can be stored 15 days. If the number of the CUs to be monitored is 65 or more, you can choose the gathering interval from among 5, 10 or 15 minutes. The gathering interval you selected determines the storing period (between 8 hours and 1 day) of the statistics. In case of 510 CUs, for example, the statistics can be stored for 8 hours if you specify the gathering interval to 5 minutes, and the statistics can be stored for 1 day if the interval is specified to 15 minutes.
Moreover, the resource usage in the storage system can also be stored in a long range up to 3 months. In this case, however, the gathering interval is fixed to 15 minutes regardless of the value set for the **Gathering Interval** option. For details on the relationship of collection interval and storing period of the statistics, see Monitoring Options Window.

The monitoring switch settings in the **Monitoring Options** window work in conjunction with the monitoring switch settings in the **Usage Monitor** windows of TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS. Therefore, if you use the **Monitoring Options** window to start or stop monitoring, or to change the gathering interval, the monitoring settings of these remote copy functions will also change. Conversely, if the settings in each **Usage Monitor** window are changed, the settings in the **Monitoring Options** window of Performance Monitor will also change automatically.

View the Monitoring Results

To view the results of monitoring, use the **Performance Management** window of Performance Monitor. When you select the **Performance Management** tab, the **Performance Management** window is displayed. In that window, select a desired tab in the tree left side in the window and the icons which information you can view are displayed in the tree. Select the icon with information you want to view and the statistics obtained in the storage system are displayed in the list on the right side of the tree.

![Performance Management Window](image)

Figure 5-2 Performance Management Window
The information you can view by selecting each tab for the tree is explained below.

- **Physical** tab
 Enables you to view usage statistics about resources in the storage system.

- **LDEV** tab
 Enables you to view statistics about workload on disks.

- **Port-LUN** tab
 Enables you to view statistics about traffic at ports and LU paths in the storage system.

- **WWN** tab
 Enables you to view statistics about traffic at path between host bus adapters (HBAs) and ports.

Two sliders are displayed on the upper right of the **Performance Management** window. To the left and right of the two sliders, dates and times are displayed. The term between these dates and times is the period in which statistics are stored. If the date and time on the left is 2007/03/27 16:00 and the date and time on the right is 2007/03/28 16:00, you can view usage statistics for the period of 2007/03/27 16:00 to 2007/03/28 16:00.

If you change the dates and times in **From** and **To**, you can specify the range of statistics that should be displayed in the window. For example, if the window displays statistics for the last one month, you can change the values in **From** and **To** to display the statistics for the last week only or to display the statistics for the last three days only.

When monitoring ports, LU paths or host bus adapters in the **Port-LUN** tab or the **WWN** tab, you can view the monitoring results in near-real time. To view the monitoring results in real time, select the **Real Time** option which is included in the **Monitoring Term** area of the **Performance Management** window. The information in the window will be updated at the specified gathering interval (every 1 to 15 minutes). You cannot view the monitoring results displayed in the **Physical** tab and the **LDEV** tab in real time.
Starting and Stopping Storage System Monitoring

To monitor the storage system, start Performance Monitor at first and then start obtaining statistics. You can also stop the monitoring from Performance Monitor. Each procedure is explained below.

To start Performance Monitor:
1. Log onto Storage Navigator. The Storage Navigator main window is displayed.
2. Click *Go, Performance Manager* and then *Performance Management* on the menu bar of the Storage Navigator main window.
 The *Performance Management* window is displayed.

To start monitoring the storage system:
1. Ensure that the Storage Navigator main window is in *Modify* mode.
 The Storage Navigator main window is in *Modify* mode if the background color of the icon is light yellow. If the background color is gray, the window is in *View* mode and you must change it to *Modify* mode by taking the following steps:
 a. Check to see if the background color of the lock icon is blue.
 If the background color is red, you will not be able to switch from *View* mode to *Modify* mode. Wait for a while and click the button. If the background color turns blue, you can go to the next step.
 b. Click the icon.
 A message appears, asking whether you want to change the mode.
 c. Click *OK* to close the message.
 The background color of the icon changes to light yellow. The mode changes to *Modify* mode. The background color of the lock icon becomes red.

 Note: Even in *View* mode, you can operate the *Performance Management* window, but you cannot change the settings in the *Monitoring Options* window.

2. Start Performance Monitor and select the *Monitoring Options* tab. The *Monitoring Options* window is displayed.
3. In *Monitoring Switch*, select *Enable* for the *Current Status* option.
4. Use the lists in *Gathering Interval* to specify the interval for obtaining the statistics.
5. In the *Monitoring Target* area, click the cells representing the CUs to be monitored, and then click *Select*.
6. Click *Apply*. Performance Monitor starts monitoring the storage system.
Note: When statistics are collected, a heavy workload is likely to be placed on servers. Therefore, the client processing might slow down.

To stop monitoring the storage system:

1. Start Performance Monitor and select the Monitoring Options tab. The Monitoring Options window is displayed.
2. In Monitoring Switch, select Disable for the Current Status option. The Gathering Interval list is unavailable.
3. Click Apply. Performance Monitor stops monitoring the storage system.
Monitoring Resources in the Storage System

This section describes how to view usage statistics about resources in the storage system.

Before taking the following steps, you need to start monitoring in accordance with the procedure described in Monitoring Options Window and obtain the usage statistics.

Viewing Usage Statistics on Parity Groups

Performance Monitor monitors parity groups and lets you view the average and the maximum usage rate in a specified period. Performance Monitor also displays a graph illustrating changes in parity group usage within that period.

To view usage statistics about parity groups:

1. Ensure that the Performance Management window is displayed.
2. In the tree, click the Physical tab.
3. In the list above the tree, select the storing period of statistics from `longrange` and `shortrange` for display.

 For information on storing period of statistics, see Understanding Statistical Storage Ranges.

 When you view usage statistics about parity groups, the items displayed in the list by selecting `longrange` and `shortrange` are the same.
4. In the tree, select the Parity Group folder.

 The list on the right displays usage statistics about parity groups. The displayed statistics are the average and the maximum usage rates for the period specified in the From and To boxes.

 The list displays up to a maximum of 4,096 resources at a time. If the number of resources exceeds 4,096, use Previous and Next to display the remaining resources.

 - If you change the date and time in the From and To boxes and then click Apply, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in From and To boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

 - If an exclamation mark (!) is displayed before a usage rate, the reported parity group usage rate is likely to be inaccurate, because the configuration has changed (e.g., volumes have been moved by Volume Migration or ShadowImage, or formatted by Virtual LVI or Open Volume Management). For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

 - If a plus mark (+) is displayed before a usage rate 0, such as "+0", the usage rate is not completely 0 but less than 1.
5. To display a graph illustrating changes in usage rate for parity groups, select the desired parity groups in the list and then click **Draw**.

Note: The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.

<table>
<thead>
<tr>
<th>PG</th>
<th>RAID</th>
<th>Drive Type</th>
<th>Usage(%)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5(3D+1P)</td>
<td>DkR1B-J047FC</td>
<td>Ave.(Total): 13</td>
<td>Max: 14</td>
</tr>
<tr>
<td>1-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-3 Example of Parity Group Usage Rates Displayed in the List

Notes:
- It is possible that the usage rate for a parity group is not equal to the sum of the usage rate for each volume in that parity group (see **Viewing Usage Statistics on Volumes in Parity Groups**). This is because the Performance Management window rounds off fractions below the decimal point to the nearest whole number when displaying the usage rate for each volume.
- If there is no volume in a parity group, hyphens(-) are displayed in place of performance statistics on a parity group.
- If the CU is not the monitoring target, all items in the row are displayed in italics. If you want to monitor those items, specify the CU as the monitoring target by using the Monitoring Option window.

The list displays the following items:
- When the green checkmark icon is displayed to the left of a parity group, the graph illustrates changes in usage rate for the parity group.
- **PG:** This column indicates IDs of parity groups.
- **RAID:** This column indicates the RAID level (RAID-1, RAID-5, or RAID-6).
- **Drive Type:** This column indicates types of HDDs (hard disk drives).
- **Usage:**
 - The **Ave. (Total)** column displays the average usage rate in the specified period.
 - The **Max.** column displays the maximum usage rate in the specified period.
- **CLPR:** This column indicates numbers and names of cache logical partitions (CLPRs) corresponding to each parity group in the format "CLPR-number:CLPR-name". For details on CLPRs, see the **Virtual Partition Manager User's Guide**.
Viewing Usage Statistics on Volumes in Parity Groups

Performance Monitor monitors volumes in parity groups and lets you view the average and the maximum usage rate in a specified period. Performance Monitor also displays a graph illustrating changes in volume usage within that period.

To view usage statistics about volumes in a parity group:
1. Ensure that the Performance Management window is displayed.
2. In the tree, click the Physical tab.
3. In the list above the tree, select the storing period of statistics from longrange and shortrange for display.
 For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges.
 When you view usage statistics about volumes, some items displayed in the list differ depending on the selection of the storing period: longrange or shortrange. If you want to use Volume Migration to migrate volumes, select longrange. This enables you to confirm the estimated usage rate of parity groups after migration. For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center). If you want to examine the ratio of ShadowImage processing, and so on, to all the processing in the physical drive, select shortrange.
 The usage statistics for a same term might be slightly different between selecting shortrange and longrange because the monitoring precision of these two interval types differs. Especially, differences in read rates and write rates between the interval types are larger than other usage statistics.
4. In the tree, double-click the Parity Group folder.
 The folder opens and a list of parity groups is displayed below the folder.
5. Select the desired parity group.
 The list on the right displays usage statistics about volumes in the specified parity group. The displayed statistics are the average and the maximum usage rates for the period specified in the From and To boxes.
Notes:

The list displays up to a maximum of 4,096 resources at a time. If the number of resources exceeds 4,096, use Previous and Next to display the remaining resources.

If you change the date and time in the From and To boxes and then click Apply, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in From and To boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

If an exclamation mark (!) is displayed before a usage rate, the reported volume usage rate is likely to be inaccurate, because the configuration has changed (e.g., volumes have been moved by Volume Migration or ShadowImage, or formatted by Virtual LVI or Open Volume Management). For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center).

If a plus mark (+) is displayed before a usage rate 0, such as "+0", the usage rate is not completely 0 but less than 1.

6. To display a graph illustrating changes in usage rate for volumes, select the desired volumes in the list and then click Draw.

Note: The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.

When selecting longrange for storing period of statistics:

<table>
<thead>
<tr>
<th>LDEV</th>
<th>Emulation</th>
<th>Usage(Ave)</th>
<th>Read Rate(Avave)</th>
<th>Write Rate(Ave)</th>
<th>Capacity Utilization(Ave)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00</td>
<td>OPEN-V</td>
<td>10 1 2 3 4 5</td>
<td>11 6 12 7</td>
<td>12 8</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>00:00:01</td>
<td>OPEN-V</td>
<td>11 3 4 5 6</td>
<td>7 8 11 9 12 10</td>
<td>12 2 10</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>00:00:02</td>
<td>OPEN-V</td>
<td>2 3</td>
<td>4 5 6</td>
<td>7 8 11 9 12 10</td>
<td>12 2 10</td>
<td>00 CLPR 0</td>
</tr>
<tr>
<td>00:00:03</td>
<td>OPEN-V</td>
<td>13 4 5 6 7</td>
<td>8 11 9 12 10</td>
<td>12 2 10</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>01:00:04</td>
<td>OPEN-V</td>
<td>4 5 6 7 8</td>
<td>9 11 12 13 14</td>
<td>15 16 17 18 19</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>01:00:05</td>
<td>OPEN-V</td>
<td>15 16 17 18 19</td>
<td>20 21 22 23 24</td>
<td>25 26 27 28 29</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
</tbody>
</table>

When selecting shortrange for storing period of statistics:

<table>
<thead>
<tr>
<th>LDEV</th>
<th>Emulation</th>
<th>Usage(Ave)</th>
<th>Read Rate(Avave)</th>
<th>Write Rate(Avave)</th>
<th>ShadowImage(Avave)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00</td>
<td>OPEN-V</td>
<td>10 11 12 13 14 15</td>
<td>16 17 18 19 20</td>
<td>21 22 23 24 25</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>00:00:01</td>
<td>OPEN-V</td>
<td>11 12 13 14 15 16</td>
<td>17 18 19 20</td>
<td>21 22 23 24 25</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>00:00:02</td>
<td>OPEN-V</td>
<td>13 14 15 16 17 18</td>
<td>19 20 21 22</td>
<td>23 24 25 26 27</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>00:00:03</td>
<td>OPEN-V</td>
<td>14 15 16 17 18</td>
<td>19 20 21 22</td>
<td>23 24 25 26 27</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>01:00:04</td>
<td>OPEN-V</td>
<td>15 16 17 18 19</td>
<td>20 21 22 23</td>
<td>24 25 26 27 28</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
<tr>
<td>01:00:05</td>
<td>OPEN-V</td>
<td>16 17 18 19 20</td>
<td>21 22 23 24</td>
<td>25 26 27 28 29</td>
<td>00 CLPR 0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-4 Examples of Volume Usage Rates Displayed
Note:

- It is possible that the sum of the usage rate for each volume in a parity group is not equal to the usage rate for that parity group (see Viewing Usage Statistics on Volumes in Parity Groups). This is because the Performance Management window rounds off fractions below the decimal point to the nearest whole number when displaying the usage rate for each volume.
- If the CU is not the monitoring target, all items in the row are displayed in italics. If you want to monitor those items, specify the CU as the monitoring target by using the Monitoring Option window.

The list displays the following items:

- When the green checkmark icon ☑ is displayed on the left of a volume, the graph illustrates changes in usage rate for the volume.
- LDEV: This column indicates volumes (LDEVs), in this format: LDKC:CU:LDEV.
- Emulation: This column indicates device emulation types.
- Usage:
 - The Ave. (Total) column displays the average usage rate in the specified period.
 - The Max. column displays the maximum usage rate in the specified period.
- Read Rate:
 - The Rnd. column indicates random read rates. A random read rate is the ratio of random read requests to read and write requests.
 - The Seq. column indicates sequential read rates. A sequential read rate is the ratio of sequential read requests to read and write requests.
- Write Rate:
 - The Rnd. column indicates random write rates. A random write rate is the ratio of random write requests to read and write requests.
 - The Seq. column indicates sequential write rates. A sequential write rate is the ratio of sequential write requests to read and write requests.
- Parity Gr. Use[Exp]: This item is displayed only when you select longrange for the storing period of statistics. Parity Gr. Use[Exp] assumes the volume might be migrated out of the parity group (or uninstalled) and indicates expected (estimated) average and maximum usage rates of the parity group. The Ave. (Total) column indicates an estimated change in the average usage rate. The Max. column indicates an estimated change in the maximum usage rate.
For example, if the **Ave. (Total)** box for the volume 0:01 displays "20 -> 18", the average usage rate of the parity group that the volume belongs to is 20 percent. If the volume were migrated out of the parity group, the average usage rate of that group is expected to drop to 18 percent.

- **ShadowImage**: This item is displayed only when you select **shortrange** for the storing period of statistics. **ShadowImage** indicates the percentage of the processing of the following programs to all the processing of the physical drives, for each volume. This value is found by dividing access time to physical drives by the following programs by all the access time to physical drives.
 - ShadowImage for IBM z/OS
 - ShadowImage
 - Compatible FlashCopy
 - Compatible FlashCopy V2
 - Volume Migration (For information on using Volume Migration, contact the Hitachi Data Systems Support Center (see Calling the Hitachi Data Systems Support Center.))
 - Copy-on-Write Snapshot

The **Ave. (Total)** column displays the average percentage of processing of the above programs in the specified period.

The **Max.** column displays the maximum percentage of processing of the above programs in the specified period.

For details on the above programs, see the respective user's guides.

- **CLPR**: This column indicates numbers and names of CLPRs corresponding to each parity group which the volume belongs to, in the format "CLPR-number:CLPR-name". For details on CLPRs, see the Virtual Partition Manager User's Guide.
Viewing Usage Statistics on External Volume Groups

Performance Monitor monitors external volume groups and lets you view the usage statistics of external volume groups in a specified period. Performance Monitor also displays a graph illustrating changes in the usage statistics of external volume groups within that period.

You can view the usage statistics about external volume groups only when you select shortrange for the storing period of statistics.

To view usage statistics about external volume groups:
1. Ensure that the Performance Management window is displayed.
2. In the tree, click the Physical tab.
3. In the list above the tree, select shortrange for the storing period of statistics.
 If you select longrange, no statistics appears in the list.
4. In the tree, select the External Group folder.
 The list on the right displays usage statistics about external volume groups. The displayed statistics are the usage statistics for the period specified in the From and To boxes.

Notes:
The list displays up to a maximum of 4,096 resources at a time. If the number of resources exceeds 4,096, use Previous and Next to display the remaining resources.

If you change the date and time in the From and To boxes and then click Apply, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in From and To boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

5. To display a graph illustrating changes in usage statistics for external volume groups, select the desired external volume groups in the list and then click Draw.

Note: The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.

<table>
<thead>
<tr>
<th>ExG</th>
<th>Response Time (ms)</th>
<th>Trans. (MB/sec)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1-1</td>
<td>2000</td>
<td>4.863</td>
<td>02:CLPR2</td>
</tr>
<tr>
<td>E1-2</td>
<td>2001</td>
<td>4.864</td>
<td>03:CLPR3</td>
</tr>
<tr>
<td>E1-3</td>
<td>2002</td>
<td>4.865</td>
<td>00:CLPR0</td>
</tr>
<tr>
<td>E1-4</td>
<td>2003</td>
<td>4.866</td>
<td>01:CLPR1</td>
</tr>
</tbody>
</table>

Figure 5-5 Example of Usage Statistics of an External Volume Group Usages Displayed in the List
Note: If the CU is not the monitoring target, all items in the row are displayed in italics. If you want to monitor those items, specify the CU as the monitoring target by using the Monitoring Option window.

The list displays the following items:

- **:** When the green checkmark icon is displayed on the left of an external volume group, the graph illustrates changes in usage statistics for the external volume group.
- **ExG**: This column indicates IDs of external volume groups. The letter "E" at the beginning of IDs indicates the group is an external volume group.
- **Response Time**: This column indicates the time for replying from an external volume group when I/O accesses are made from USP V/VM storage system to the external volume group. The unit is milliseconds. The average response time in the period specified at Monitoring Term is displayed.
- **Trans.**: This column indicates the sizes of data transferred between the storage system and the external volume group in one second.
- **CLPR**: This column indicates numbers and names of CLPRs corresponding to each external volume group in the format "CLPR-number:CLPR-name". For details on CLPRs, see the Virtual Partition Manager User's Guide.
Viewing Usage Statistics on External Volumes in External Volume Groups

Performance Monitor monitors external volumes in external volume groups and lets you view the usage statistics of external volumes. Performance Monitor also displays a graph illustrating changes in the usage statistics of external volumes within that period.

You can view the usage statistics about external volumes only when you select shortrange for the storing period of statistics.

To view usage statistics about external volumes in an external volume group:

1. Ensure that the Performance Management window is displayed.
2. In the tree, click the Physical tab.
3. In the list above the tree, select shortrange for the storing period of statistics.
 If you select longrange, no statistics appears in the list.
4. In the tree, select the External Group folder.
 The folder opens and a list of external volume groups is displayed below the folder.
5. Select the desired external volume group.
 The list on the right displays usage statistics about external volumes in the specified external volume group. The displayed statistics are the average and the maximum usage rates for the period specified in the From and To boxes.

Notes:
The list displays up to a maximum of 4,096 resources at a time. If the number of resources exceeds 4,096, use Previous and Next to display the remaining resources.

If you change the date and time in the From and To boxes and then click Apply, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in From and To boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

6. To display a graph illustrating changes in usage rate for external volumes, select the desired external volumes in the list and then click Draw.
Note: The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.

<table>
<thead>
<tr>
<th>ExLDEV</th>
<th>Emulation</th>
<th>Response Time (ms)</th>
<th>Trans. (MB/sec)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:38:12 #</td>
<td>OPEN-V</td>
<td>2000</td>
<td>2.930</td>
<td>CLPR1</td>
</tr>
<tr>
<td>00:38:13 #</td>
<td>OPEN-V</td>
<td>2001</td>
<td>2.931</td>
<td>CLPR1</td>
</tr>
<tr>
<td>00:38:14 #</td>
<td>OPEN-V</td>
<td>2002</td>
<td>2.932</td>
<td>CLPR1</td>
</tr>
<tr>
<td>00:38:15 #</td>
<td>OPEN-V</td>
<td>2003</td>
<td>2.933</td>
<td>CLPR1</td>
</tr>
</tbody>
</table>

Figure 5-6 Example of External Volume Usage Rates Displayed

Note: If the CU is not the monitoring target, all items in the row are displayed in italics. If you want to monitor those items, specify the CU as the monitoring target by using the Monitoring Option window.

The list displays the following items:

- **ExLDEV:** When the green checkmark icon is displayed on the left of a external volume, the graph illustrates changes in usage rate for the external volume.
- **Emulation:** This column indicates external volumes, in this format: LDKC:CU:LDEV. A number ending in # indicates the volume is an external volume.
- **Emulation:** This column indicates device emulation types.
- **Response Time:** This column indicates the time for replying from an external volume when I/O accesses are made from USP V/VM storage system to the external volume. The unit is milliseconds. The average response time in the period specified at Monitoring Term is displayed.
- **Trans.:** This column indicates the sizes of data transferred between the storage system and the external volume in one second.
- **CLPR:** This column indicates numbers and names of CLPRs corresponding to each external volume group which the external volume belongs to, in the format "CLPR-number:CLPR-name". For details on CLPRs, see the Virtual Partition Manager User's Guide.
Viewing Usage Statistics on Channel Processors

Performance Monitor monitors channel processors in each channel adapter and lets you view the average and the maximum usage rate in a specified period. Performance Monitor also displays a graph illustrating changes in channel processor usage within that period.

To view usage statistics about channel processors:

1. Ensure that the Performance Management window is displayed.
2. In the tree, click the Physical tab.
3. In the list above the tree, select the storing period of statistics from longrange and shortrange for display.
 For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges.
 When you view usage statistics about channel processors, the items displayed in the list by selecting longrange and shortrange are the same.
4. In the tree, do one of the following:
 - If you want to view usage statistics about all the channel processors in your storage system, select the Client-Host Interface Processor (CHIP) folder.
 - If you want to view usage statistics about channel processors in a channel adapter, double-click the Client-Host Interface Processor (CHIP) folder and then select the desired channel adapter.
 The list on the right displays usage statistics about the channel processors. The displayed statistics are the average and the maximum usage rates for the period specified in the From and To boxes.

 \textbf{Note:} If you change the date and time in the From and To boxes and then click Apply, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in From and To boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

5. To display a graph illustrating changes in usage rate for channel processors, select the desired channel processors in the list and then click Draw.

 \textbf{Note:} The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.
The list displays the following items:

- When the green checkmark icon is displayed on the left of a channel processor, the graph illustrates changes in usage rate for the channel processor.
- **ID**: This column displays ID numbers for channel processors.
- **Usage**:
 - The **Ave. (Total)** column displays the average usage rate in the specified period.
 - The **Max.** column displays the maximum usage rate in the specified period.

Viewing Usage Statistics on Disk Processors

Performance Monitor monitors disk processors (DKPs) and lets you view the average and the maximum usage rate in a specified period. Performance Monitor also displays a graph illustrating changes in disk processor usage within that period.

To view usage statistics about disk processors:

1. Ensure that the **Performance Management** window is displayed.
2. In the tree, click the **Physical** tab.
3. In the list above the tree, select the storing period of statistics from **longrange** and **shortrange** for display.

 For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges.

 When you view usage statistics about disk processors, the items displayed in the list by selecting **longrange** and **shortrange** are the same.
4. In the tree, double-click the **ACP** folder.
5. Click **DKP** from below the **ACP** folder.

 The list on the right displays usage statistics about disk processors. The displayed statistics are the average and the maximum usage rates for the period specified in the **From** and **To** boxes.
Note: If you change the date and time in the From and To boxes and then click Apply, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in From and To boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

6. If you want to display a graph illustrating changes in usage rate for disk processors, select the desired disk processors in the list and then click Draw.

Note: The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.

<table>
<thead>
<tr>
<th>ID</th>
<th>Usage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ave.(Total)</td>
</tr>
<tr>
<td>DKP90-1B</td>
<td>30</td>
</tr>
<tr>
<td>DKP81-1B</td>
<td>30</td>
</tr>
<tr>
<td>DKP82-1B</td>
<td>30</td>
</tr>
<tr>
<td>DKP83-1B</td>
<td>30</td>
</tr>
<tr>
<td>DKP90-1C</td>
<td>30</td>
</tr>
<tr>
<td>DKP91-1C</td>
<td>30</td>
</tr>
<tr>
<td>DKP92-1C</td>
<td>30</td>
</tr>
<tr>
<td>DKP93-1C</td>
<td>30</td>
</tr>
<tr>
<td>DKP94-1D</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 5-8 Example of Disk Processor Usage Rates Displayed

The list displays the following items:

- When the green checkmark icon ✓ is displayed on the left of a disk processor, the graph illustrates changes in usage rate for the disk processor.
- ID: This column displays ID numbers for disk processors.
- Usage:
 - The Ave. (Total) column displays the average usage rate in the specified period.
 - The Max. column displays the maximum usage rate in the specified period.
Viewing Usage Statistics on Data Recovery and Reconstruction Processors

Performance Monitor tracks data recovery and reconstruction processors (DRRs) and lets you view the average and the maximum usage rate in a specified period. Performance Manager also displays a graph illustrating changes in DRR usage within that period.

To view usage statistics about DRRs:

1. Ensure that the **Performance Management** window is displayed.
2. In the tree, click the **Physical** tab.
3. In the list above the tree, select the storing period of statistics from **longrange** and **shortrange** for display.

 For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges.

 When you view usage statistics about DRRs, the items displayed in the list by selecting **longrange** and **shortrange** are the same.

4. In the tree, double-click the **ACP** folder.
5. Click **DRR** from below the **ACP** folder.

 The list on the right displays usage statistics about DRRs. The displayed statistics are the average and the maximum usage rates for the period specified in the **From** and **To** boxes.

 Note: If you change the date and time in the **From** and **To** boxes and then click **Apply**, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in **From** and **To** boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

6. If you want to display a graph illustrating changes in usage rate for DRRs, select the desired DRRs in the list and then click **Draw**.

 Note: The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.

<table>
<thead>
<tr>
<th>ID</th>
<th>Usage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ave (Total)</td>
</tr>
<tr>
<td>DRR60-1B</td>
<td>40</td>
</tr>
<tr>
<td>DRR81-1B</td>
<td>40</td>
</tr>
<tr>
<td>DRR82-1B</td>
<td>40</td>
</tr>
<tr>
<td>DRR83-1B</td>
<td>40</td>
</tr>
<tr>
<td>DRR60-1C</td>
<td>40</td>
</tr>
<tr>
<td>DRR61-1C</td>
<td>40</td>
</tr>
<tr>
<td>DRR82-1C</td>
<td>40</td>
</tr>
<tr>
<td>DRR83-1C</td>
<td>40</td>
</tr>
<tr>
<td>DRR60-1D</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure 5-9 Example of DRR Usage Rates Displayed in the List
The list displays the following items:

- **⩚**: When the green checkmark icon is displayed on the left of a DRR, the graph illustrates changes in usage rate for the DRR.
- **ID**: This column displays ID numbers for DRRs.
- **Usage**:
 - The **Ave. (Total)** column displays the average usage rate in the specified period.
 - The **Max.** column displays the maximum usage rate in the specified period.

Viewing Write Pending and Cache Memory Usage Statistics

Performance Monitor lets you view write pending rates. A write pending rate indicates the ratio of write-pending data to the cache memory capacity. Performance Monitor displays the average and the maximum write pending rate in a specified period. When you select **shortrange** for storing period of statistics, Performance Monitor also displays the average and the maximum usage statistics about the cache memory in a specified period. In addition, Performance Monitor can display a graph illustrating changes in write pending rate or usage statistics of the cache memory within that period.

To view the write pending rate or usage statistics of the cache memory:

1. Ensure that the **Performance Management** window is displayed.
2. In the tree, click the **Physical** tab.
3. In the list above the tree, select the storing period of statistics from **longrange** and **shortrange** for display.
 For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges.
 The items displayed in the list are a little different depending on the selection of the storing period: **longrange** or **shortrange**. The write pending rates are displayed by both selection, but usage statistics of the cache memory are displayed only when you select **shortrange**.
4. In the tree, select the **Cache** folder.
 The list on the right displays the write pending rates. If you select **shortrange** for the storing period of statistics, the list also displays usage statistics about the cache memory.
 Average and maximum usage rates for the period specified in **From** and **To** are displayed.
 If you change the date and time in **From** and **To** and then click **Apply**, Performance Monitor recalculates the write pending rates and usage statistics about the cache memory, and updates information in the list. To change the date and time in **From** and **To**, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).
5. If you want to display a graph illustrating changes in the write pending rate or in usage statistics about the cache memory, select the row of the write pending rate in the list and then click **Draw**.

The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.

6. When you select **shortrange** for the storing period of statistics, you can select the item to be illustrated in the graph from the list at the upper right on the graph.

Select **Write Pending** to view the write pending rate graph and select **Usage** to view that of the usage statistics for cache memory. The graph will be updated without clicking **Draw**. You can also select the item to be displayed before clicking **Draw**.

![Graph Example](image)

Figure 5-10 Selecting an Item to be Displayed in the Graph (Short-range)

Examples of write pending rate displayed in the lists are shown below:

When selecting longrange for storing period of statistics:

<table>
<thead>
<tr>
<th>CLPR</th>
<th>Write Pending(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ave (Total)</td>
</tr>
<tr>
<td>00 CLPR0</td>
<td>1</td>
</tr>
<tr>
<td>01 CLPR1</td>
<td>4</td>
</tr>
<tr>
<td>02 CLPR2</td>
<td>7</td>
</tr>
<tr>
<td>03 CLPR3</td>
<td>10</td>
</tr>
</tbody>
</table>

When selecting shortrange for storing period of statistics:
The list displays the following items:

- **Green Checkmark**: When the green checkmark icon is displayed on the left of the write pending rate, the graph illustrates changes in the write pending rate and usage statistics about the cache memory.

- **CLPR**: This column indicates numbers and names of cache logical partitions (CLPRs) in the format "CLPR-number:CLPR-name". For details on CLPRs, see the Virtual Partition Manager User's Guide.

- **Usage**: This item is displayed only when you select shortrange for the storing period of statistics.
 - The **Ave. (Total)** column displays the average usage rate of the cache in the specified period.
 - The **Max.** column displays the maximum usage rate of the cache in the specified period.

- **Write Pending**:
 - The **Ave. (Total)** column displays the average write pending rate for the specified period.
 - The **Moment Max.** column displays the maximum write pending rate for the specified period.

Viewing Usage Statistics on Access Paths

The channel adapters (CHAs) and the disk adapters (DKAs) transfer data to the cache switch (CSW) and the shared memory (SM) when I/O requests are issued from hosts to the storage system. In some configurations, DKAs are called array control processors (ACPs). Also, the cache switch transfers data to the cache memory.

Performance Monitor audits these data transfer paths and lets you view the average and the maximum usage rate for the paths in a specified period. Performance Monitor also displays a graph illustrating changes in path usage within that period.

To view usage statistics about paths:

1. Ensure that the **Performance Management** window is displayed.
2. In the tree, click the **Physical** tab.
3. In the list above the tree, select the storing period of statistics from longrange and shortrange for display.
For details on the types of storing period of statistics, see Understanding Statistical Storage Ranges.

When you view usage statistics about paths, the items displayed in the list by selecting longrange and shortrange are the same.

4. In the tree, double-click the Access Path Usage folder.

5. Do one of the following:
 - To check usage statistics about paths between adapters (CHAs and DKAs) and the cache switch, select Adapter-CSW, from below the Access Path Usage folder.
 - To check usage statistics about paths between adapters (CHAs and DKAs) and the shared memory, select Adapter-SM, from below the Access Path Usage folder.
 - To check usage statistics about paths between cache switches and the cache memory, select CSW-Cache, from below the Access Path Usage folder.

The list on the right in Figure 5-12 displays the average and maximum usage rate for the specified paths. The displayed statistics are the average and the maximum usage rates for the period specified in the From and To boxes.

Note: If you change the date and time in the From and To boxes and then click Apply, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in From and To boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

6. If you want to display a graph illustrating changes in usage statistics about paths, select the desired paths in the list and then click Draw.

Note: The range of monitoring and the gathering interval affects the time period represented by a graduation on the horizontal axis.

Paths between adapters and cache switches:

<table>
<thead>
<tr>
<th>Adapter</th>
<th>CSW</th>
<th>Usage (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Max</td>
<td></td>
</tr>
<tr>
<td>CHA-1 P</td>
<td>C3W-1 N</td>
<td>60</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1 P</td>
<td>C3W-1 A</td>
<td>60</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1 Q</td>
<td>C3W-1 N</td>
<td>60</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1 Q</td>
<td>C3W-1 A</td>
<td>60</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1 R</td>
<td>C3W-1 N</td>
<td>60</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1 R</td>
<td>C3W-1 A</td>
<td>60</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1 S</td>
<td>C3W-1 N</td>
<td>60</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1 S</td>
<td>C3W-1 A</td>
<td>60</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

Paths between adapters and shared memories:
Paths between cache switches and cache memory:

<table>
<thead>
<tr>
<th>Adapter</th>
<th>SM</th>
<th>Usage(%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ave.(Total)</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>CHA-1P</td>
<td>Side-A</td>
<td>50</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1P</td>
<td>Side-B</td>
<td>50</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1Q</td>
<td>Side-A</td>
<td>50</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1Q</td>
<td>Side-B</td>
<td>50</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1R</td>
<td>Side-A</td>
<td>50</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1R</td>
<td>Side-B</td>
<td>50</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1S</td>
<td>Side-A</td>
<td>50</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>CHA-1S</td>
<td>Side-B</td>
<td>50</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-12 Examples of Usage Statistics Displayed in the List

• When the green checkmark icon ☑ is displayed on the left of the access path, the graph illustrates changes in usage rate for the access path.
• **Adapter**: This column indicates adapters.
• **CSW**: This column indicates cache switches.
• **SM**: This column indicates shared memories.
• **Cache**: This column indicates the cache memories.
• **Usage**:
 - The **Ave. (Total)** column displays the average usage rate for the specified period.
 - The **Max.** column displays the maximum usage rate for the specified period.

Monitoring Hard Disk Drives

The **LDEV** tab of the **Performance Management** window lets you check workloads on physical hard disk drives (parity groups) or on volumes. The **LDEV** tab displays the **I/O rate** and the **transfer rate**. The I/O rate indicates the number of disk I/Os per second. The transfer rate indicates the size of data transferred to the disk in one second.

In addition, the **LDEV** tab displays the **read hit ratio** and the **write hit ratio**.
• For a read I/O, when the requested data is already in cache, the operation is classified as a read hit.
• For a write I/O, when the requested data is already in cache, the operation is classified as a write hit.

This section describes how to view the statistics about disk access performance. Before taking the following steps, you need to start monitoring in accordance with the procedure described in Starting and Stopping Storage System Monitoring and obtain the usage statistics.

Viewing I/ O Rates for Disks

Performance Monitor monitors hard disk drives and measures I/O rates (that is, the number of disk I/Os per second).

To view I/O rates:
1. Ensure that the Performance Management window is displayed.
2. Click the LDEV tab.
 The tree displays a list of parity groups and external volume groups.
3. Select IOPS from the list on the right side of the window.
4. In the tree, do one of the following:
 - If you want to view the I/O rate for each parity group and external volume group, select the Subsystem folder or a Box folder.
 The list on the right displays the I/O rate for each group.
 - If you want to view the I/O rate for each volume, select the parity group or external volume group that contains the volumes.
 The list on the right displays the I/O rate for each volume in the selected group.

Note: If you select the Subsystem folder, the list displays all parity groups and external volume groups. To narrow the number of groups to be displayed in the list, select a Box folder. For example, if you select the Box 1 folder, the list displays only the parity groups whose IDs start with "1-".

- If you want to view the I/O rate for each volume, select the parity group or external volume group that contains the volumes.
 The list on the right displays the I/O rate for each volume in the selected group.

The displayed statistics are the average and the maximum I/O rates for the period specified in the From and To boxes.
Notes:
The list displays up to a maximum of 4,096 resources at a time. If the number of resources exceeds 4,096, use Previous and Next to display the remaining resources.

If you change the date and time in the From and To boxes and then click Apply, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in From and To boxes, use the arrow buttons and the sliders (for details, see Performance Management Window, Physical Tab).

5. To display a graph to find out how the I/O rate has been changed, take the following steps:
 a. In the list, select the parity group(s), the external volume groups, or the volume(s) that you want.
 b. Use the list at the right side of the list to select the type of information that you want to view in the graph. For details on the information that can be displayed, see Table 4-1.
 c. Click Draw.
 A graph appears below the list. The horizontal axis indicates the time.

Caution: If the graph does not display changes in the I/O rate (for example, if the line in the graph runs vertically), it is recommended that you change the value in the Chart Y Axis Rate list. For example, if the largest value in the list is 200 and the value in Chart Y Axis Rate is 100, you should select a value larger than 200 from Chart Y Axis Rate.

d. To view more detailed information in the graph, use the list to the right of the list to select the type of information that you want. Next, select the Detail check box at the lower right of the list and then click Draw. The detailed graph contents change as described in Table 4-2.

Caution: If more than one parity group or volume is selected in the list, you cannot select the Detail check box to view detailed information.

I/O rate for parity groups and external volume groups (When the Subsystem folder is selected):

<table>
<thead>
<tr>
<th>PG</th>
<th>I/O Rate[OPS]</th>
<th>Read[OPS]</th>
<th>Write[OPS]</th>
<th>Read Ht.%</th>
<th>Write Ht.%</th>
<th>Back Trans (cou.)</th>
<th>Response Time[ms]</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>5.000 00 CLPR3</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5.009 01 CLPR1</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5.010 02 CLPR2</td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>5.011 03 CLPR3</td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>5.012 00 CLPR3</td>
<td></td>
</tr>
<tr>
<td>2-2</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>5.013 01 CLPR1</td>
<td></td>
</tr>
</tbody>
</table>
I/O rate for parity groups or external volume groups (When the Box 1 folder is selected):

<table>
<thead>
<tr>
<th>#</th>
<th>PG</th>
<th>IO Rate(OPS)</th>
<th>Read(OPS)</th>
<th>Write(OPS)</th>
<th>Read Hit(%)</th>
<th>Write Hit(%)</th>
<th>Back Trans (count/sec)</th>
<th>Response Time(s)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6.0</td>
<td>00 CPLR</td>
</tr>
<tr>
<td>1.2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5.002</td>
<td>01 CPLR</td>
</tr>
<tr>
<td>1.3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>5.01C</td>
<td>02 CPLR</td>
</tr>
<tr>
<td>1.4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>5.01I</td>
<td>03 CPLR</td>
</tr>
</tbody>
</table>

I/O rate for volumes:

<table>
<thead>
<tr>
<th>LDEV</th>
<th>Emulation</th>
<th>IO Rate(OPS)</th>
<th>Read(OPS)</th>
<th>Write(OPS)</th>
<th>Read Hit(%)</th>
<th>Write Hit(%)</th>
<th>Back Trans (count/sec)</th>
<th>Response Time(s)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00</td>
<td>OPENVY</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5.000</td>
<td>00 CPLR</td>
</tr>
<tr>
<td>00:00:01</td>
<td>OPENVY</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5.000</td>
<td>00 CPLR</td>
</tr>
<tr>
<td>00:00:02</td>
<td>OPENVY</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5.000</td>
<td>00 CPLR</td>
</tr>
<tr>
<td>00:00:03</td>
<td>OPENVY</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>5.01I</td>
<td>00 CPLR</td>
</tr>
<tr>
<td>00:00:04</td>
<td>OPENVY</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>5.012</td>
<td>00 CPLR</td>
</tr>
<tr>
<td>00:00:05</td>
<td>OPENVY</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>5.01I</td>
<td>00 CPLR</td>
</tr>
<tr>
<td>00:00:06</td>
<td>OPENVY</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>5.01I</td>
<td>00 CPLR</td>
</tr>
</tbody>
</table>

Figure 5-13 I/O Rates for Disks

Notes:

- It is possible that the I/O rate for a parity group or an external volume group is not equal to the sum of the I/O rate for each volume in that group. This is because the Performance Management window omits fractions below the decimal point when displaying the I/O rate for each volume.
- If there is no volume in a parity group, hyphens (-) are displayed in place of performance statistics on a parity group.
- If the CU is not the monitoring target, all items in the row are displayed in italics. If you want to monitor those items, specify the CU as the monitoring target by using the Monitoring Option window.

The list displays the following:

- When the green checkmark icon is displayed on the left of an item, the graph displays workload statistics about the parity group, the external volume group, or the volume.
- **PG**: Indicates the parity group ID or the external volume group ID. If the ID starts with the letter "E", the group is an external volume group. If the ID starts with the letter "V" or "X", the group is a V-VOL group.
- **LDEV**: Indicates the volume ID. If the ID ends with the pound or gate symbol (#), the volume is an external volume. If the ID ends with the symbol "V" or "X", the volume is a virtual volume.
- **Emulation**: Indicates the emulation type.
- **IO Rate**: Indicates the number of I/O requests to the parity group, the external volume group, or the volume per second.
- **Read**: Indicates the number of read requests to the parity group, the external volume group, or the volume per second.
- **Write**: Indicates the number of write requests to the parity group, the external volume group, or the volume per second.
- **Read Hit**: Indicates the read hit ratio.
- **Write Hit**: Indicates the write hit ratio.
- **Back Trans.**: Indicates the number of data transfers per second between the parity group (or the external volume group, or the volume) and the cache memory.
- **Response Time**: This column indicates the time for replying from the parity group, the external volume group, or the volume when I/O accesses are made from the host to them. The unit is milliseconds. The average response time in the period specified at **Monitoring Term** is displayed.
- **CLPR**: This column indicates numbers and names of CLPRs corresponding to each parity group, external volume group, or volume in the format "CLPR-number:CLPR-name". For details on CLPRs, see the Virtual Partition Manager User's Guide.

Viewing Transfer Rates for Disks

Performance Monitor audits hard disk drives and measures transfer rates (that is, the size of data transferred in one second).

To view transfer rates:

1. Ensure that the **Performance Management** window is displayed.
2. Click the **LDEV** tab.
 - The tree displays a list of parity groups and external volume groups.
3. Select **MB/s** from the list on the right side of the window.
4. In the tree, do one of the following:
 - To view the transfer rate for each parity group and external volume group, select the **Subsystem** folder or a **Box** folder.
 - The list on the right displays the transfer rate for each group.
Notes:

- If you select the **Subsystem** folder, the list displays all parity groups and external volume groups. To narrow the number of groups to be displayed in the list, select a **Box** folder. For example, if you select the **Box 1** folder, the list displays only the parity groups whose IDs start with "1-".
- To view the transfer rate for each volume, select the parity group or external volume group that contains the volumes. The list on the right displays the transfer rate for each volume in the selected group.

The displayed statistics are the average and the maximum transfer rates for the period specified in the **From** and **To** boxes.

Notes:

The list displays up to a maximum of 4,096 resources at a time. If the number of resources exceeds 4,096, use **Previous** and **Next** to display the remaining resources.

If you change the date and time in the **From** and **To** boxes and then click **Apply**, Performance Monitor recalculates usage rates and updates information in the list. To change the date and time in **From** and **To** boxes, use the arrow buttons and the sliders (for details, see LDEV Tab of the Performance Monitor Window).

5. If you want to display a graph to find out how the transfer rate has been changed, take the following steps:
 a. In the list, select the parity group(s), the external volume groups, or the volume(s) that you want.
 b. Use the list on the right to select the type of information that you want to view in the graph. For details on the information that can be displayed, see Table 4-1.
 c. Click **Draw**.
 A graph appears below the list. The horizontal axis indicates the time.

 Caution: If the graph does not display changes in the transfer rate (for example, if the line in the graph runs vertically), it is recommended that you change the value in the **Chart Y Axis Rate** list. For example, if the largest value in the list is 200 and the value in **Chart Y Axis Rate** is 100, you should select a value larger than 200 from **Chart Y Axis Rate**.
 d. If you want to view more detailed information in the graph, use the list on the right to select the type of information that you want. Next, select the **Detail** check box at the lower right of the list and then click **Draw**. The detailed graph contents change as described in Table 4-2.
Caution: If more than one parity group or volume is selected in the list, you cannot select the Detail check box to view detailed information.

Transfer rate for parity groups and external volume groups (When the Subsystem folder is selected):

<table>
<thead>
<tr>
<th>No</th>
<th>PG</th>
<th>Trans (MB/s)</th>
<th>Read Hit (%)</th>
<th>Write Hit (%)</th>
<th>Back Trans (count/sec)</th>
<th>Response Time (ms)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1.06</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5.008 00 CLPR0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>1.06</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>5.009 01 CLPR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>1.06</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5.010 02 CLPR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>1.06</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>5.011 03 CLPR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>1.06</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>5.012 00 CLPR0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-2</td>
<td>1.06</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>5.013 01 CLPR1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transfer rate for parity groups or external volume groups (When the Box 1 folder is selected):

<table>
<thead>
<tr>
<th>No</th>
<th>PG</th>
<th>Trans (MB/s)</th>
<th>Read Hit (%)</th>
<th>Write Hit (%)</th>
<th>Back Trans (count/sec)</th>
<th>Response Time (ms)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1.06</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5.006 00 CLPR0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>1.06</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>5.007 01 CLPR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>1.06</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5.008 02 CLPR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>1.06</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>5.009 03 CLPR3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transfer rate for volumes:

<table>
<thead>
<tr>
<th>LDEV</th>
<th>Simulation</th>
<th>Trans (MB/s)</th>
<th>Read Hit (%)</th>
<th>Write Hit (%)</th>
<th>Back Trans (count/sec)</th>
<th>Response Time (ms)</th>
<th>CLPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 01</td>
<td>OPEN-V</td>
<td>1.06</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5.006 00 CLPR0</td>
<td></td>
</tr>
<tr>
<td>00 00 02</td>
<td>OPEN-V</td>
<td>1.06</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5.007 01 CLPR1</td>
<td></td>
</tr>
<tr>
<td>00 00 03</td>
<td>OPEN-V</td>
<td>1.06</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>5.008 02 CLPR2</td>
<td></td>
</tr>
<tr>
<td>01 00 04</td>
<td>OPEN-V</td>
<td>1.06</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>5.009 03 CLPR3</td>
<td></td>
</tr>
<tr>
<td>01 00 05</td>
<td>OPEN-V</td>
<td>1.06</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>5.010 00 CLPR0</td>
<td></td>
</tr>
<tr>
<td>01 00 06</td>
<td>OPEN-V</td>
<td>1.06</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>5.011 01 CLPR1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-14 Transfer Rates for Disks

Notes:
It is possible that the transfer rate for a parity group or an external volume group is not equal to the sum of the transfer rate for each volume in that group. This is because the Performance Management window omits fractions below the decimal point when displaying the transfer rate for each volume.

If there is no volume in a parity group, hyphens (-) are displayed in place of performance statistics on a parity group.

If the CU is not the monitoring target, all items in the row are displayed in italics. If you want to monitor those items, specify the CU as the monitoring target by using the Monitoring Option window.

The list displays the following:
- When the green checkmark icon is displayed on the left of an item, the graph displays workload statistics about the parity group, the external volume group, or the volume.

- **PG**: Indicates the parity group ID or the external volume group ID. If the ID starts with the letter "E", the group is an external volume group.

- **LDEV**: Indicates the volume ID. If the ID ends with the symbol ", the volume is a an external volume.

- **Emulation**: Indicates the emulation type.

- **Trans.**: Indicates the size (in megabytes) of data transferred to the parity group, the external volume group, or the volume per second.

- **Read Hit**: Indicates the read hit ratio.

- **Write Hit**: Indicates the write hit ratio.

- **Back Trans.**: Indicates the number of data transfers per second between the parity group (or the external volume group, or the volume) and the cache memory.

- **Response Time**: This column indicates the time for replying from the parity group, the external volume group, or the volume when I/O accesses are made from the host to them. The unit is milliseconds. The average response time in the period specified at **Monitoring Term** is displayed. This column displays a hyphen (-) if the I/O rate is 0 (zero).

- **CLPR**: This column indicates numbers and names of CLPRs corresponding to each parity group, external volume group, or volume in the format "CLPR-number:CLPR-name". For details on CLPRs, see the Virtual Partition Manager User's Guide.
Monitoring Ports

Performance Monitor monitors ports on the storage system and measures I/O rates (that is, the number of I/Os per second) and transfer rates (that is, the size of data transferred per second). This section describes how to view I/O rates and transfer rates of ports on the storage system. Before taking the following steps, you need to start monitoring in accordance with the procedure described in Starting and Stopping Storage System Monitoring and obtain the usage statistics.

Performance Monitor can obtain statistics about traffics of ports connected to open-system host groups only. The statistics about traffics of ports connected to mainframe host groups cannot be obtained.

Viewing I/O Rates for Ports

Performance Monitor monitors ports on the storage system and measures I/O rates (that is, the number of disk I/Os per second).

To view I/O rates:

1. Ensure that the Performance Management window is displayed.
2. Select the Port-LUN tab.
 - The tree displays a Subsystem folder.
3. Select the Subsystem folder.
 - The Target folder and the Initiator/External folder are displayed.
4. Select IOPS from the list on the right side of the window.
5. In Monitoring Term, do one of the following:
 - To view the I/O rate in real time, you must select the Real Time option, specify the number of recent collections of statistics which should be displayed in the graph, and then click Apply.
 - To view I/O rates for a certain period of time in the last 24 hours, you must select the From option, change the date and time in the From and To boxes, and then click Apply. Use the arrow button and the sliders when you change the date and time in the From and To boxes.

For details on the Real Time option and the From option, see Viewing Port Workload Statistics.

6. In the tree, select the Target folder, or the Initiator/External folder.
 - The list on the right displays I/O rates for the ports on the storage system. If you click the Target folder the tree displays a list of ports on the storage system. If you click a port icon (for example, 🌐 and 🌐), the host groups (🌐) corresponding to that port appear.

Tips:
If you select a port (for example, and) in the tree, the list displays I/O rates for all the host bus adapters connected to the selected port.

If you select a host group () in the tree, the list displays I/O rates for host bus adapters in the host group.

7. To display a graph to find out how the I/O rate has been changed, take the following steps:
 a. In the list, select one or more ports or host bus adapters (WWNs).
 b. Click Draw.

 Caution: If the graph does not display changes in the I/O rate (for example, if the line in the graph runs vertically), it is recommended that you change the value in the Chart Y Axis Rate list. For example, if the largest value in the list is 200 and the value in Chart Y Axis Rate is 100, you should select a value larger than 200 from Chart Y Axis Rate.

I/O rate for ports (When the Subsystem folder is selected):

<table>
<thead>
<tr>
<th>Port</th>
<th>Current(IOPS)</th>
<th>Ave.(IOPS)(Total)</th>
<th>Peak(IOPS)</th>
<th>Response Time(ms)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Prio.</td>
<td>-</td>
<td>14</td>
<td>18</td>
<td>1.995</td>
<td>Prio.</td>
</tr>
<tr>
<td>All Non-Prio.</td>
<td>-</td>
<td>13</td>
<td>18</td>
<td>1.998</td>
<td>Non-Prio.</td>
</tr>
</tbody>
</table>

I/O rate for ports (When the Target folder is selected):

<table>
<thead>
<tr>
<th>Port</th>
<th>Current(IOPS)</th>
<th>Ave.(IOPS)(Total)</th>
<th>Peak(IOPS)</th>
<th>Response Time(ms)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1-A(E0)</td>
<td>-</td>
<td>15</td>
<td>20</td>
<td>2.000</td>
<td>Prio.</td>
</tr>
<tr>
<td>CL3-A(E1)</td>
<td>-</td>
<td>65</td>
<td>70</td>
<td>2.050</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>CL5-A(E2)</td>
<td>-</td>
<td>116</td>
<td>120</td>
<td>2.100</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>CL7-A(E1)</td>
<td>-</td>
<td>126</td>
<td>170</td>
<td>2.150</td>
<td>Prio.</td>
</tr>
<tr>
<td>CL1-B(D0)</td>
<td>-</td>
<td>215</td>
<td>220</td>
<td>2.200</td>
<td>Prio.</td>
</tr>
<tr>
<td>CL3-B(D0)</td>
<td>-</td>
<td>285</td>
<td>270</td>
<td>2.250</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>CL5-B(D0)</td>
<td>-</td>
<td>315</td>
<td>320</td>
<td>2.300</td>
<td>Non-Prio.</td>
</tr>
</tbody>
</table>

I/O rate for ports (When the Initiator/External folder is selected):

<table>
<thead>
<tr>
<th>Port</th>
<th>Current(IOPS)</th>
<th>Ave.(IOPS)(Total)</th>
<th>Peak(IOPS)</th>
<th>Response Time(ms)</th>
<th>Initiator/External</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1-B(D0)</td>
<td>-</td>
<td>415</td>
<td>420</td>
<td>2.400</td>
<td>Initiator</td>
</tr>
<tr>
<td>CL3-E1-E 2nd(D0)</td>
<td>-</td>
<td>465</td>
<td>470</td>
<td>2.450</td>
<td>Initiator</td>
</tr>
<tr>
<td>CL4-E(D4)</td>
<td>-</td>
<td>515</td>
<td>520</td>
<td>2.500</td>
<td>External</td>
</tr>
<tr>
<td>CL7-E1-E 2nd(D3)</td>
<td>-</td>
<td>665</td>
<td>570</td>
<td>2.550</td>
<td>External</td>
</tr>
</tbody>
</table>

I/O rate for host bus adapters connected to a specified port (When a port ((for example, and) is selected):
I/O rates for host bus adapters in a host group
(When a host group (istrator) is selected):

<table>
<thead>
<tr>
<th>WWN</th>
<th>SPM Name</th>
<th>Current(IOPS)</th>
<th>Ave.(IOPS)(Total)</th>
<th>Max.(IOPS)</th>
<th>Response Time(s)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000000001</td>
<td>SPM-1</td>
<td>-</td>
<td>15</td>
<td>20</td>
<td>2.000</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>00000000000002</td>
<td>SPM-2</td>
<td>-</td>
<td>65</td>
<td>70</td>
<td>2.050</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>00000000000003</td>
<td>SPM-3</td>
<td>-</td>
<td>115</td>
<td>120</td>
<td>2.100</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>00000000000004</td>
<td>SPM-4</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>2.150</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>00000000000005</td>
<td>SPM-5</td>
<td>-</td>
<td>215</td>
<td>220</td>
<td>2.200</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>00000000000006</td>
<td>SPM-6</td>
<td>-</td>
<td>285</td>
<td>290</td>
<td>2.250</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>Others</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>20</td>
<td>2.000</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 5-15 I/O Rates for Ports

The list displays the following:

- Green checkmark icon: When the green checkmark icon is displayed on the left of an item, the graph displays changes in workload statistics about the item.
- **Port**: Indicates ports on the storage system.
- **WWN**: Indicates WWNs of the host bus adapters.
- **SPM Name**: Indicates SPM names of the host bus adapters. Server Priority Manager allows you assign an SPM name to each host bus adapter so that you can easily identify each host bus adapters in the Server Priority Manager windows.
- **Nickname**: Indicates the nickname for the host bus adapters. LUN Manager allows you to assign a nickname to each host bus adapter so that you can easily identify each host bus adapter in the LUN Manager windows.
- **Current**: Indicates the current I/O rate.
- **Ave.**: Indicates the average I/O rate for the specified period.
- **Peak**: Indicates the peak I/O rate of the ports for the specified period. This value is shown in the list when you select the **Subsystem** folder in the tree. If you select a port in the list, click **Draw**, and select the **Detail** check box, the detailed graph of the port I/O rate is drawn. The **Peak** value means the top of the **Max.** line in this graph.
- **Max.**: Indicates the maximum I/O rate for the specified period. This value is shown in the list when you select a port icon or host group icon in the tree.
- **Response Time**: This column indicates the time for replying from the port or host bus adapter when I/O accesses are made from the host to them. The unit is milliseconds. The average response time in the period specified at **Monitoring Term** is displayed.
- **Attribute**: Indicates the priority of each port. **Prio.** indicates a prioritized port. **Non-Prio.** indicates a non-prioritized port.
Note: In the list of Port-LUN tab, two types of aliases appear for host bus adapters: SPM name and nickname. If you select a port icon in the tree, SPM names defined by Server Priority Manager appear. If you select a host group icon in the tree, nicknames defined by LUN Manager appear. We recommend that you specify the same name for an SPM name and a nickname for convenience of host bus adapter management.

- Initiator/External: Indicates the port attribute. Initiator indicates an initiator port. External indicates an external port. Both of the ports are not controlled by Server Priority Manager.

Viewing Transfer Rates for Ports

Performance Monitor monitors ports on the storage system and measures transfer rates (that is, the size of data transferred in one second).

To view transfer rates:

1. Ensure that the Performance Management window is displayed.
2. Select the Port-LUN tab.
 - The tree displays a Subsystem folder.
3. Select the Subsystem folder.
 - The Target folder and the Initiator/External folder are displayed.
4. Select MB/s from the list on the right side of the window.
5. In Monitoring Term, do one of the following:
 - To view the transfer rate in real time, you must select the Real Time option, specify the number of recent collections of statistics which should be displayed in the graph, and then click Apply.
 - To view transfer rates for a certain period of time in the last 24 hours, you must select the From option, change the date and time in the From and To boxes, and then click Apply. Use the arrow button and the sliders when you change the date and time in the From and To boxes.

For details on the Real Time option and the From option, see Viewing Port Workload Statistics.

6. In the tree, select the Target folder, or the Initiator/External folder.

The list on the right displays transfer rates for the ports on the storage system. If you click the Target folder, the tree displays a list of ports on the storage system. If you click a port icon (for example, 🎈 and 🎉), the host groups (сети) corresponding to that port appear.

Tips:
- If you select a port (for example, 🌟 and 🌟) in the tree, the list displays transfer rates for all the host bus adapters connected to the selected port.

- If you select a host group 🌟 in the tree, the list displays transfer rates for host bus adapters in the host group.

Note: You cannot view information about host bus adapters if the host group is not registered in LUN Manager.

7. If you want to display a graph to find out how the transfer rate has been changed, take the following steps:

 a. In the list, select one or more ports or host bus adapters (WWNs).

 b. Click Draw.

 Caution: If the graph does not display changes in the transfer rate (for example, if the line in the graph runs vertically), it is recommended that you change the value in the **Chart Y Axis Rate** list. For example, if the largest value in the list is 200 and the value in **Chart Y Axis Rate** is 100, you should select a value larger than 200 from **Chart Y Axis Rate**.

<table>
<thead>
<tr>
<th>Transfer rate for ports (When the Subsystem folder is selected):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
</tr>
<tr>
<td>All Prio.</td>
</tr>
<tr>
<td>All Non-Prio.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfer rate for ports (When the Target folder is selected):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
</tr>
<tr>
<td>CL1-A(E8)</td>
</tr>
<tr>
<td>CL3-A(E4)</td>
</tr>
<tr>
<td>CL5-A(E2)</td>
</tr>
<tr>
<td>CL7-A(E1)</td>
</tr>
<tr>
<td>CL1-E(E0)</td>
</tr>
<tr>
<td>CL2-B(DC)</td>
</tr>
<tr>
<td>CL5-E(DA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O rate for ports (When the Initiator/External folder is selected):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
</tr>
<tr>
<td>CL1-E(D0)</td>
</tr>
<tr>
<td>CL3-E(T1) 2nd (D3)</td>
</tr>
<tr>
<td>CL5-E(D4)</td>
</tr>
<tr>
<td>CL7-E(E2) 2nd (D0)</td>
</tr>
</tbody>
</table>
Transfer rate for host bus adapters connected to a specified port (When a port (for example, and) is selected):

<table>
<thead>
<tr>
<th>WWN</th>
<th>SPM Name</th>
<th>Current(MB/s)</th>
<th>Ave. (MB/s)</th>
<th>Max. (MB/s)</th>
<th>Response Time(ms)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000000000001</td>
<td>SPM-1</td>
<td>-</td>
<td>1.500</td>
<td>2.000</td>
<td>2.000</td>
<td>Non-Prio</td>
</tr>
<tr>
<td>0000000000000002</td>
<td>SPM-2</td>
<td>-</td>
<td>1.548</td>
<td>2.049</td>
<td>2.650</td>
<td>Non-Prio</td>
</tr>
<tr>
<td>0000000000000003</td>
<td>SPM-3</td>
<td>-</td>
<td>1.598</td>
<td>2.098</td>
<td>2.100</td>
<td>Non-Prio</td>
</tr>
<tr>
<td>0000000000000004</td>
<td>SPM-4</td>
<td>-</td>
<td>1.946</td>
<td>2.146</td>
<td>2.150</td>
<td>Non-Prio</td>
</tr>
<tr>
<td>0000000000000005</td>
<td>SPM-5</td>
<td>-</td>
<td>1.995</td>
<td>2.195</td>
<td>2.200</td>
<td>Non-Prio</td>
</tr>
<tr>
<td>00000000000000000</td>
<td>SPM-6</td>
<td>-</td>
<td>1.744</td>
<td>2.244</td>
<td>2.250</td>
<td>Non-Prio</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>-</td>
<td>1.500</td>
<td>2.000</td>
<td>2.000</td>
<td></td>
</tr>
</tbody>
</table>

Transfer rates for host bus adapters in a host group (is selected):

<table>
<thead>
<tr>
<th>WWN</th>
<th>Nickname</th>
<th>Current(MB/s)</th>
<th>Ave. (MB/s)</th>
<th>Max. (MB/s)</th>
<th>Response Time(ms)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000000000001</td>
<td>WWN-1</td>
<td>-</td>
<td>1.500</td>
<td>2.000</td>
<td>2.000</td>
<td>Non-Prio</td>
</tr>
<tr>
<td>0000000000000003</td>
<td>WWN-2</td>
<td>-</td>
<td>1.540</td>
<td>2.040</td>
<td>2.050</td>
<td>Non-Prio</td>
</tr>
</tbody>
</table>

Figure 5-16 Transfer Rates for Ports

The list displays the following:

- When the green checkmark icon is displayed on the left of an item, the graph displays changes in workload statistics about the item.
- Port: Indicates ports on the storage system.
- WWN: Indicates WWNs of the host bus adapters.
- SPM Name: Indicates SPM names of the host bus adapters. Server Priority Manager allows you to assign an SPM name to each host bus adapter so that you can easily identify each host bus adapter in the Server Priority Manager windows.
- Nickname: Indicates the nickname for the host bus adapters. LUN Manager allows you to assign a nickname to each host bus adapter so that you can easily identify each host bus adapter in the LUN Manager windows.
- Current: Indicates the current transfer rate.
- Ave.: Indicates the average transfer rate for the specified period.
- Peak: Indicates the peak transfer rate of the ports for the specified period. This value is shown in the list when you select the Subsystem folder in the tree.

If you select a port in the list, click Draw, and select the Detail check box, the detailed graph of the port transfer rate is drawn. The Peak value means the top of the Max. line in this graph.

- Max.: Indicates the maximum transfer rate for the specified period. This value is shown in the list when you select a port icon or host group icon in the tree.
- **Response Time:** This column indicates the time for replying from the port or host bus adapter when I/O accesses are made from the host to them. The unit is milliseconds. The average response time in the period specified at Monitoring Term is displayed. This column displays a hyphen (-) if the I/O rate is 0 (zero).

- **Attribute:** Indicates the priority of each port. **Prio.** indicates a prioritized port. **Non-Prio.** indicates a non-prioritized port.

Note: In the list of Port-LUN tab, two types of aliases appear for host bus adapters: SPM name and nickname. If you select a port icon in the tree, SPM names defined by Server Priority Manager appear. If you select a host group icon in the tree, nicknames defined by LUN Manager appear. We recommend that you specify the same name for an SPM name and a nickname for convenience of host bus adapter management.

- **Initiator/External:** Indicates the port attribute. **Initiator** indicates an initiator port. **External** indicates an external port. Both of the ports are not controlled by Server Priority Manager.

Viewing Details about the I/O and Transfer Rates

To view detailed information about the I/O rate or the transfer rate for a port:

1. From the list at the right side of the window, select the type of statistics to be displayed.
 - To view I/O rates, select **IOPS** (I/Os per second) from the list.
 - To view transfer rates, select **MB/s** (megabytes per second) from the list.
2. Select the **Subsystem** folder in the tree.
3. Select a port from the list.
4. Click **Draw**.
 - The graph that is not in detail is displayed.
5. Select the **Detail** check box
 - The graph contents change as described in Figure 4-10.
Monitoring LU Paths

Performance Monitor monitors LU paths and measures I/O rates (that is, the number of I/Os per second) and transfer rates (that is, the size of data transferred per second). This section describes how to view I/O rates and transfer rates of LU paths on the storage system. Before taking the following steps, you need to start monitoring in accordance with the procedure described in Starting and Stopping Storage System Monitoring and obtain the usage statistics.

The traffic statistics reported for an LU is aggregated across all LU paths defined for an LU.

- I/O rate is the sum of I/Os across all LU paths defined for an LU.
- Transfer rate is the total transfer rate across all LU paths defined for an LU.
- Response time is the average response time across all LU paths defined for an LU.

Viewing LU Paths I/O Rates

Performance Monitor monitors LU paths and measures I/O rates (that is, the number of disk I/Os per second).

To view I/O rates:
1. Ensure that the Performance Management window is displayed.
2. Select the Port-LUN tab. The tree displays a list of ports on the storage system.
3. Select IOPS from the list on the right side of the window.
4. In Monitoring Term, do one of the following:
 - To view the I/O rate in real time, you must select the Real Time option, specify the number of recent collections of statistics which should be displayed in the graph, and then click Apply.
 - To view I/O rates for a certain period of time in the last 24 hours, you must select the From option, change the date and time in the From and To boxes, and then click Apply. Use the arrow button and the sliders when you change the date and time in the From and To boxes.

For details on the Real Time option and the From option, see Viewing Port Workload Statistics.

5. In the tree, double-click a port (for example, or) and then select a host group ().
 The LUN icon () appears.
6. Select LUN. The list on the right displays a list of LU paths and I/O rates.
7. If you want to display a graph to find out how the I/O rate has been changed, take the following steps:
 a. In the list, select one or more LUNs.
 b. Click Draw.

 Note: If the graph does not display changes in the I/O rate (for example, if the line in the graph runs vertically), it is recommended that you change the value in the Chart Y Axis Rate list. For example, if the largest value in the list is 200 and the value in Chart Y Axis Rate is 100, you should select a value larger than 200 from Chart Y Axis Rate.

8. If you want to view more detailed information in the graph, select the Detail check box at the lower right of the list. The graph contents change as described in Table 4-3.

 Note: If more than one row is selected in the list, you cannot select the Detail check box.

<table>
<thead>
<tr>
<th>LUN</th>
<th>LDEV</th>
<th>Emulation</th>
<th>Paths</th>
<th>Current(IOPS)</th>
<th>Ave.(IOPS)(Total)</th>
<th>Max.(IOPS)</th>
<th>Response Time(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00 00 00</td>
<td>OPEN-V</td>
<td>2</td>
<td>15</td>
<td>20</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>00 00 01</td>
<td>OPEN-V</td>
<td>-</td>
<td>65</td>
<td>70</td>
<td>2 050</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>00 00 02</td>
<td>OPEN-V</td>
<td>2</td>
<td>115</td>
<td>120</td>
<td>2 100</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-17 I/O Rates for LU Paths

Note: If the CU is not the monitoring target, all items in the row are displayed in italics. If you want to monitor those items, specify the CU as the monitoring target by using the Monitoring Option window.

The list displays the following:
- **:** When the green checkbox icon is displayed on the left of an item, the graph displays changes in workload statistics about the item.
- **LUN:** Indicates LUNs (logical unit numbers).
- **LDEV:** Indicates IDs of volumes, in the following format: LDKC:CU:LDEV. An ID ending in # indicates the volume is an external volume. An ID ending in V or X indicates the volume is a virtual volume.
- **Emulation:** Indicates emulation types.
- **Paths:** Indicates the number of LU paths (i.e., paths to volumes).
- **Current:** Indicates the current I/O rate.
- **Ave.:** Indicates the average I/O rate for the specified period.
- **Max.:** Indicates the maximum I/O rate for the specified period.
- **Response Time**: This column indicates the time for replying from the LU paths when I/O accesses are made from the host to the LU paths. The unit is milliseconds. The average response time in the period specified at Monitoring Term is displayed.

Viewing LU Paths Transfer Rates

Performance Monitor monitors LU paths and measures transfer rates (that is, the size of data transferred in one second).

To view transfer rates:

1. Ensure that the **Performance Management** window is displayed.
2. Select the **Port-LUN** tab.
 - The tree displays a list of ports on the storage system.
3. Select **MB/s** from the list on the right side of the window.
4. In Monitoring Term, do one of the following:
 - To view the transfer rate in real time, you must select the **Real Time** option, specify the number of recent collections of statistics which should be displayed in the graph, and then click **Apply**.
 - To view transfer rates for a certain period of time in the last 24 hours, you must select the **From** option, change the date and time in the **From** and **To** boxes, and then click **Apply**. Use the arrow button and the sliders when you change the date and time in the **From** and **To** boxes.

 For details on the **Real Time** option and the **From** option, see Port-LUN Tab of the Performance Monitor Window.

5. In the tree, double-click a port (for example, 🍎 or 🍑) and then select a host group (👨‍гадет).
 - The **LUN** icon (برشلونه) appears.
6. Select **LUN**.
 - The list on the right displays a list of LU paths and transfer rates.
7. If you want to display a graph to find out how the transfer rate has been changed, take the following steps:
 a. In the list, select one or more LUNs.
 b. Click **Draw**.

Note: If the graph does not display changes in the transfer rate (for example, if the line in the graph runs vertically), it is recommended that you change the value in the **Chart Y Axis Rate** list. For example, if the largest value in the list is 200 and the value in **Chart Y Axis Rate** is 100, you should select a value larger than 200 from **Chart Y Axis Rate**.
8. If you want to view more detailed information in the graph, select the **Detail** check box at the lower right of the list. The graph contents change as described in Table 4-3.

Note: If more than one row is selected in the list, you cannot select the **Detail** check box.

<table>
<thead>
<tr>
<th></th>
<th>LUN</th>
<th>LDEV</th>
<th>Emulation</th>
<th>Paths</th>
<th>Current(MB/s)</th>
<th>Ave.(MB/s)(Total)</th>
<th>Max.(MB/s)</th>
<th>Response Time(mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00:00:00</td>
<td>OPEN-V</td>
<td>7</td>
<td>-</td>
<td>1.590</td>
<td>2.090</td>
<td>2.090</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>00:00:01</td>
<td>OPEN-V</td>
<td>7</td>
<td>-</td>
<td>1.549</td>
<td>2.040</td>
<td>2.050</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>00:00:02</td>
<td>OPEN-V</td>
<td>7</td>
<td>-</td>
<td>1.588</td>
<td>2.088</td>
<td>2.100</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-18 Transfer Rates for LU Paths

Note: If the CU is not the monitoring target, all items in the row are displayed in italics. If you want to monitor those items, specify the CU as the monitoring target by using the Monitoring Option window.

The list displays the following:

- When the green checkmark icon is displayed on the left of an item, the graph displays changes in workload statistics about the item.
- **LUN:** Indicates LUNs (logical unit numbers).
- **LDEV:** Indicates IDs of volumes, in the following format: LDKC:CU:LDEV. An ID ending in # indicates the volume is an external volume. An ID ending in V or X indicates the volume is a virtual volume.
- **Emulation:** Indicates emulation types.
- **Paths:** Indicates the number of LU paths (i.e. paths to volumes).
- **Current:** Indicates the current transfer rate.
- **Ave.:** Indicates the average transfer rate for the specified period.
- **Max.:** Indicates the maximum transfer rate for the specified period.
- **Response Time:** This column indicates the time for replying from the LU paths when I/O accesses are made from the host to the LU paths. The unit is milliseconds. The average response time in the period specified at **Monitoring Term** is displayed.

This column displays a hyphen (-) if the I/O rate is 0 (zero).
Monitoring Paths between Host Bus Adapters and Ports

If Server Priority Manager is enabled, Performance Monitor can be used to monitor paths between host bus adapters (HBAs) in host servers and ports on the storage system. HBAs are contained in host servers and serve as ports for connecting the host servers to the storage system. This section describes how to view I/O rates and transfer rates between host bus HBAs and ports.

Before taking the steps described in the following sections, you need to do the following:

1. Perform a Server Priority Manager operation (see Monitoring All Traffic between HBAs and Ports and Setting Priority for Host Bus Adapters).
2. Start the monitoring by using Performance Monitor in accordance with the procedure described in Starting and Stopping Storage System Monitoring and obtain the traffic data between host bus HBAs and ports.

Viewing HBA Information

Viewing I/O Rates between HBAs

Performance Monitor monitors traffic between HBAs in the hosts and ports on the storage system, and measures I/O rates (that is, the number of disk I/Os per second).

To view I/O rates:

1. Ensure that the Performance Management window is displayed.
2. Click the WWN tab.
 The tree displays a list of SPM groups (). Below that list, an item named Not Grouped.
 - To display host bus adapters () in the SPM group, double-click an SPM group.
 - To display host bus adapters () that do not belong to any SPM group, double-click Not Grouped.
3. Select IOPS from the list on the right side of the window.
4. In Monitoring Term, do one of the following:
 - To view the I/O rate in real time, you must select the Real Time option, specify the number of recent collections of statistics which should be displayed in the graph, and then click Apply.
 - To view I/O rates for a certain period of time in the last 24 hours, you must select the From option, change the date and time in the From and To boxes, and then click Apply. Use the arrow button and the sliders when you change the date and time in the From and To boxes.

For details on the Real Time option and the From option, see WWN Tab of the Performance Monitor Window.
5. In the tree, do one of the following:
 - To view the I/O rate for host bus adapters in an SPM group, select the SPM group.
 The list on the right displays the I/O rate.
 - To view the I/O rate for host bus adapters that do not belong to any SPM group, select Not Grouped.
 The list on the right displays the I/O rate.

 Tips:
 - If you select the Subsystem folder in the tree, the list displays the I/O rate at each SPM group.
 - If you select a host bus adapter (ро) in the tree, the list displays the I/O rate at each port connected to the selected host bus adapter.

6. If you want to display a graph to find out how the I/O rate has been changed, take the following steps:
 a. In the list, select one or more SPM groups, WWNs, or ports.
 b. Click **Draw**.

 Caution: If the graph does not display changes in the I/O rate (for example, if the line in the graph runs vertically), try changing the value in the Chart Y Axis Rate list. For example, if the largest value in the list is 200 and the value in Chart Y Axis Rate is 100, you should select a value larger than 200 from Chart Y Axis Rate.

 Note: If the WWN of a host bus adapter (HBA) is displayed in red in the tree, the host bus adapter is connected to two or more ports, but the traffic between the HBA and some of the ports are not monitored by Performance Monitor. When many-to-many connections are established between HBAs and ports, you should make sure that all the traffic between HBAs and ports is monitored. For details on the measures when a WWN is displayed in red, see Monitoring All Traffic between HBAs and Ports.

I/O rate at host bus adapters
(Displayed when an SPM group or Not Grouped is selected):

<table>
<thead>
<tr>
<th>WWN</th>
<th>SPM Name</th>
<th>Current(IOPS)</th>
<th>Ave (IOPS)(Total)</th>
<th>Max (IOPS)</th>
<th>Response Time(ms)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000000000001</td>
<td>SPM-1</td>
<td>-</td>
<td>65</td>
<td>70</td>
<td>2.050</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>0000000000000009</td>
<td>SPM-8</td>
<td>-</td>
<td>465</td>
<td>470</td>
<td>2.450</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>0000000000000011</td>
<td>SPM-17</td>
<td>-</td>
<td>065</td>
<td>070</td>
<td>2.050</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>0000000000000019</td>
<td>SPM-25</td>
<td>-</td>
<td>1365</td>
<td>1270</td>
<td>3.250</td>
<td>Non-Prio.</td>
</tr>
</tbody>
</table>
I/O rate at each SPM group
(Displayed when the Subsystem folder is selected):

<table>
<thead>
<tr>
<th>Group</th>
<th>Current(IOPS)</th>
<th>Ave.(IOPS)(Total)</th>
<th>Max. (IOPS)</th>
<th>Response Time(ms)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>group-1</td>
<td>-</td>
<td>65</td>
<td>70</td>
<td>2.050</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>group-2</td>
<td>-</td>
<td>115</td>
<td>120</td>
<td>2.100</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>group-3</td>
<td>-</td>
<td>165</td>
<td>170</td>
<td>2.150</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>group-4</td>
<td>-</td>
<td>215</td>
<td>220</td>
<td>2.200</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td><Not Grouped></td>
<td>-</td>
<td>15</td>
<td>20</td>
<td>2.000</td>
<td>-</td>
</tr>
</tbody>
</table>

I/O rate at each port connected to a specified host bus adapter
(Displayed when a host bus adapter is selected):

<table>
<thead>
<tr>
<th>Port</th>
<th>Current(IOPS)</th>
<th>Ave.(IOPS)(Total)</th>
<th>Max. (IOPS)</th>
<th>Response Time(ms)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1-A</td>
<td>-</td>
<td>15</td>
<td>20</td>
<td>2.000</td>
<td>Prio.</td>
</tr>
<tr>
<td>CL1-B</td>
<td>-</td>
<td>1615</td>
<td>1620</td>
<td>3.600</td>
<td>Non-Prio.</td>
</tr>
</tbody>
</table>

Figure 5-19 I/O Rates for Host Bus Adapters (WWN Tab)

The list displays the following:

- When the green checkmark icon ✅ is displayed on the left of an item, the graph displays changes in workload statistics about the item.
- **Group**: Indicates SPM groups.
- **WWN**: Indicates WWNs of the host bus adapters.
- **SPM Name**: Indicates SPM names of host bus adapters. Server Priority Manager allows you assign an SPM name to each host bus adapter so that you can easily identify each host bus adapters in the Server Priority Manager windows.
- **Port**: Indicates ports on the storage system.
- **Current**: Indicates the current I/O rate.
- **Ave.**: Indicates the average I/O rate for the specified period.
- **Max.**: Indicates the maximum I/O rate for the specified period.
- **Response Time**: This column indicates the time for replying from the host bus adapter, SPM group, or port when I/O accesses are made from the host to them. The unit is milliseconds. The average response time in the period specified at **Monitoring Term** is displayed.
- **Attribute**: Indicates the priority of each host bus adapter (HBA). **Prio.** indicates a high-priority HBA (a prioritized WWN). **Non-Prio.** indicates a low-priority HBA (a non-prioritized WWN).
Viewing Transfer Rates between HBAs

Performance Monitor monitors traffic between HBAs in the hosts and ports on the storage system, and measures transfer rates (that is, the size of data transferred in one second).

To view transfer rates:
1. Ensure that the Performance Management window is displayed.
2. Select the WWN tab.
 The tree displays a list of SPM groups. Below SPM groups, an item named Not Grouped is displayed.
 - To display host bus adapters in the SPM group, double-click an SPM group.
 - To display host bus adapters that do not belong to any SPM group, double-click Not Grouped.
3. Select MB/s from the list on the right side of the window.
4. In Monitoring Term, do one of the following:
 - To view the transfer rate in real time, you must select the Real Time option, specify the number of recent collections of statistics which should be displayed in the graph, and then click Apply.
 - To view transfer rates for a certain period of time in the last 24 hours, you must select the From option, change the date and time in the From and To boxes, and then click Apply. Use the arrow button and the sliders when you change the date and time in the From and To boxes.

 For details on the Real Time option and the From option, see WWN Tab of the Performance Monitor Window.
5. In the tree, do one of the following:
 - To view the transfer rate for host bus adapters in an SPM group, select the SPM group.
 The list on the right displays the transfer rate.
 - To view the transfer rate for host bus adapters that do not belong to any SPM group, select Not Grouped.
 The list on the right displays the transfer rate.

Tips:
 - If you select the Subsystem folder in the tree, the list displays the transfer rate at each SPM group.
 - If you select a host bus adapter in the tree, the list displays the transfer rate at each port connected to the selected host bus adapter.
6. If you want to display a graph to find out how the transfer rate has been changed, take the following steps:
 a. In the list, select one or more SPM groups, WWNs, or ports.
b. Click **Draw**.

Notes:

- If the graph does not display changes in the transfer rate (for example, if the line in the graph runs vertically), it is recommended that you change the value in the **Chart Y Axis Rate** list. For example, if the largest value in the list is 200 and the value in **Chart Y Axis Rate** is 100, you should select a value larger than 200 from **Chart Y Axis Rate**.

- If the WWN of a host bus adapter (HBA) is displayed in red in the tree, the host bus adapter is connected to two or more ports, but the traffic between the HBA and some of the ports are not monitored by Performance Monitor. When many-to-many connections are established between HBAs and ports, you should make sure that all the traffic between HBAs and ports is monitored. For details on the measures when a WWN is displayed in red, see Monitoring All Traffic between HBAs and Ports.

Transfer rate at host bus adapters

(Displayed when an SPM group or Not Grouped is selected):

<table>
<thead>
<tr>
<th>WWN</th>
<th>SPM Name</th>
<th>Current(MB/s)</th>
<th>Ave.(MB/s)</th>
<th>Max.(MB/s)</th>
<th>Response Time(ns)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000000000001</td>
<td>SPM-1</td>
<td></td>
<td>1.649</td>
<td>2.049</td>
<td>2.060</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>0000000000000009</td>
<td>SPM-9</td>
<td></td>
<td>1.939</td>
<td>2.439</td>
<td>2.450</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>0000000000000011</td>
<td>SPM-17</td>
<td></td>
<td>2.330</td>
<td>2.830</td>
<td>2.850</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>0000000000000019</td>
<td>SPM-25</td>
<td></td>
<td>2.721</td>
<td>3.221</td>
<td>3.250</td>
<td>Non-Prio.</td>
</tr>
</tbody>
</table>

Transfer rate at each SPM group

(Displayed when the Subsystem folder is selected):

<table>
<thead>
<tr>
<th>Group</th>
<th>Current(MB/s)</th>
<th>Ave.(MB/s)</th>
<th>Max.(MB/s)</th>
<th>Response Time(ns)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>group-1</td>
<td></td>
<td>1.548</td>
<td>2.049</td>
<td>2.050</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>group-2</td>
<td></td>
<td>1.586</td>
<td>2.086</td>
<td>2.100</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>group-3</td>
<td></td>
<td>1.546</td>
<td>2.146</td>
<td>2.150</td>
<td>Non-Prio.</td>
</tr>
<tr>
<td>group-4</td>
<td></td>
<td>1.085</td>
<td>2.185</td>
<td>2.200</td>
<td>Non-Prio.</td>
</tr>
</tbody>
</table>

Transfer rate at each port connected to a specified host bus adapter

(Displayed when a host bus adapter is selected):

<table>
<thead>
<tr>
<th>Port</th>
<th>Current(MB/s)</th>
<th>Ave.(MB/s)</th>
<th>Max.(MB/s)</th>
<th>Response Time(ns)</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1-A</td>
<td></td>
<td>1.500</td>
<td>2.000</td>
<td>2.000</td>
<td>Prio.</td>
</tr>
<tr>
<td>CL1-B</td>
<td></td>
<td>3.063</td>
<td>3.563</td>
<td>3.600</td>
<td>Non-Prio.</td>
</tr>
</tbody>
</table>

Figure 5-20 Transfer Rates for Host Bus Adapters (WWN Tab)

The list displays the following:

- ▶️ When the green checkmark icon ▶️ is displayed on the left of an item, the graph displays changes in workload statistics about the item.

- **Group:** Indicates SPM groups.
- **WWN**: Indicates WWNs of host bus adapters.
- **SPM Name**: Indicates SPM names of host bus adapters. Server Priority Manager allows you assign an *SPM name* to each host bus adapter so that you can easily identify each host bus adapters in the *Server Priority Manager* windows.
- **Port**: Indicates ports on the storage system.
- **Current**: Indicates the current transfer rate.
- **Ave.**: Indicates the average transfer rate for the specified period.
- **Max.**: Indicates the maximum transfer rate for the specified period.
- **Response Time**: This column indicates the time for replying from the host bus adapter, SPM group, or port when I/O accesses are made from the host to them. The unit is milliseconds. The average response time in the period specified at *Monitoring Term* is displayed. This column displays a hyphen (-) if the I/O rate is 0 (zero).
- **Attribute**: Indicates the priority of each host bus adapter (HBA). *Prio.* indicates a high-priority HBA (a prioritized WWN). *Non-Prio.* indicates a low-priority HBA (a non-prioritized WWN).
Server Priority Manager Operation

This chapter explains the following server priority manager operations:

- Overview of Server Priority Manager Operations
- Port Tab Operations
- WWN Tab Operations
Overview of Server Priority Manager Operations

Procedures for using Server Priority Manager depend on connection between host bus adapters and storage system ports.

If one-to-one connections are established between host bus adapters and ports, you specify the priority of I/O operations, upper limit value, and threshold value on each port. Because one port connects to one HBA, you can define the server priority by the port.

However, if many-to-many connections are established between host bus adapters and ports, you cannot define the server priority by the port, because one port can connect to multiple host bus adapters, and also multiple ports can connect to one host bus adapter. Therefore, in the many-to-many connection environment, you specify the priority of I/O operations and upper limit value on each host bus adapter. In this case, you specify one threshold value for the entire storage system.

If one-to-one connections are established between host bus adapters and ports, you use the Port tab of the Server Priority Manager window. If many-to-many connections are established between host bus adapters and ports, you use the WWN tab of the Server Priority Manager window. This section explains the operation procedures in each tab.

⚠️ **Note:** Host bus adapters (HBAs) are adapters contained in hosts and serve as host ports for connecting the hosts and the storage system.
If One-to-One Connections Link HBAs and Ports

Figure 6-1 shows an example of a network in which each host bus adapter is connected to only one port on the storage system (Henceforth, this network is referred to as network A). Host bus adapters and the storage system ports are directly connected and are not connected via hubs and switches.

If one-to-one connections are established between HBAs and ports, take the following major steps:

1. Set priority to ports on the storage system using the Port tab of the Server Priority Manager window.

 In network A, the ports 1A and 1C are connected to high-priority production servers. The port 2A is connected to a low-priority development server. Therefore, the ports 1A and 1C should be given high priority, and the port 2A should be given low priority.

 Figure 6-2 shows a portion of the Server Priority Manager window where the abbreviation Prio. indicates that the associated port is given high priority, and the abbreviation Non-Prio. indicates that the port is given low priority.

 Note: Throughout this manual, the term prioritized port is used to refer to a high-priority port. The term non-prioritized port is used to refer to a low-priority port.
Figure 6-2 Priority Specified in the Server Priority Manager Window

2. Monitor traffic at ports. You must obtain statistics about traffic at each port on the storage system.

There are two types of traffic statistics: the I/O rate and the transfer rate. The I/O rate is the number of I/Os per second. The transfer rate is the size of data transferred between a host and the storage system. When you view traffic statistics in the window, you select either the I/O rate or the transfer rate. The Port-LUN tab of the Performance Management window lets you view a line graph illustrating changes in traffic.

Figure 6-3 is a graph illustrating changes in the I/O rate for the three ports (1A, 1C, and 2A). According to the graph, the I/O rate for 1A and 1C was approximately 400 IO/s at first. The I/O rate for 2A was approximately 100 IO/s at first. However, as the I/O rate for 2A gradually increased from 100 IO/s to 200 IO/s, the I/O rate for 1A and 1C decreased from 400 IO/s to 200 IO/s. This fact indicates that the high-priority production servers have suffered lowered performance. If you were the network administrator, you probably would like to maintain the I/O rate for prioritized ports (1A and 1C) at 400 IO/s. To maintain the I/O rate at 400 IO/s, you must set an upper limit to the I/O rate for the port 2A.

For detailed information about monitoring traffic, see Setting Priority for Ports on the Storage System and Analyzing Traffic Statistics.
3. Set an upper limit to traffic at the non-prioritized port. To prevent decline in I/O rates at prioritized ports, you set upper limit values to the I/O rate for non-prioritized ports.

When you set an upper limit for the first time, it is recommended that the upper limit be approximately 90 percent of the peak traffic. In network A, the peak I/O rate for the non-prioritized port (2A) is 200 IO/s. So, the recommended upper limit for 2A is 180 IO/s.

For details on how to set an upper limit, see Setting Priority for Ports on the Storage System.

4. Check the result of applying upper limit values. After applying upper limit values, you must measure traffic at ports. You must view traffic statistics for prioritized ports 1A and 1C to check whether the host performance is improved to a desirable level.

In network A, the desirable I/O rate for ports 1A and 1C is 400 IO/s. If the I/O rate reaches 400 IO/s, production server performance has reached to a desirable level. If production server performance is not improved to a desirable level, you can change the upper limit to a smaller value and then apply the new upper limit to the storage system. In network A, if the upper limit is set to 180 IO/s but the I/O rate for 1A and 1C is still below 400 IO/s, the administrator needs to change the upper limit until the I/O rate reaches 400 IO/s.

5. If necessary, apply a threshold. If you want to use threshold control, set threshold values in the Port tab in the Server Priority Manager window. You can set threshold values in either of the following ways:
 - Set one threshold to each prioritized port
 In network A, if you set a threshold of 200 IO/s to the port 1A and set a threshold of 100 IO/s to the port 1C, the upper limit on the non-prioritized port (2A) is disabled when either of the following conditions is satisfied:
 - the I/O rate for the port 1A is 200 IO/s or lower
 - the I/O rate for the port 1C is 100 IO/s or lower
 - Set only one threshold to the entire storage system
 In network A, if you set a threshold of 500 IO/s to the storage system, the upper limit on the non-prioritized port (2A) is disabled when the sum of the I/O rates for all prioritized ports (1A and 1C) goes below 500 IO/s.

For details on how to set a threshold, see Upper-Limit Control.
If Many-to-Many Connections Link HBAs and Ports

Figure 6-4 gives an example of a network in which a production server and a development server are connected to the storage system (Henceforth, this network is referred to as network B). The host bus adapter (wwn01) in the production server is connected to four ports (1A, 1C, 2A and 2C). The host bus adapters (wwn02 and wwn03) in the development server are also connected to the four ports.

![Diagram of network B](image)

Figure 6-4 Network B (Many-to-Many Connections are Established between HBAs and Ports)

If many-to-many connections are established between HBAs and ports, take the following major steps:

1. Find WWNs of host bus adapters. Before using Server Priority Manager, you must find the WWN (Worldwide Name) of each host bus adapter in host servers. WWNs are 16-digit hexadecimal numbers used to identify host bus adapters. For details on how to find WWNs, see the LUN Manager User's Guide.

2. Ensure that all host bus adapters connected to ports in the storage system are monitored. Use the WWN tab of the Server Priority Manager window to define which port is connected to which host bus adapter. Place host bus adapters connected to each port below the Monitor icons.

In network B, each of the four ports is connected to three host bus adapters (wwn01, wwn02, and wwn03). Place the host bus adapter icons of wwn01, wwn02, and wwn03 below the Monitor icons for all the four port icons.
The resulting definitions on the window are as follows:

Figure 6-5 Specifying Host Bus Adapters to be Monitored

For more detailed instruction, see Setting Priority for Ports on the Storage System.

Server Priority Manager is unable to monitor and control the performance of hosts whose host bus adapters are placed below the Non-Monitor icon.

3. Set priority to host bus adapters using the WWN tab of the Server Priority Manager window.

In network B, the production server is given high priority and the development server is given low priority. If your network is configured as in Figure 6-4, you must give high priority to wwn01 and also give low priority to wwn02 and wwn03.

To give priority to the three host bus adapters, take the following steps:

a. In the WWN tab, select one of the four ports that the HBAs are connected to (i.e. ports 1A, 1C, 2A, and 2C).

b. Set Prio. to wwn01. Also, set Non-Prio. to wwn02 and wwn03.

Figure 6-6 Priority Specified in the Server Priority Manager Window
Note: Throughout this manual, the term prioritized WWN to refers to a high-priority host bus adapter (for example, wwn01). The term non-prioritized port refers to a low-priority host bus adapter (for example, wwn02 and wwn03).

4. Monitor traffic between host bus adapter and ports. You must obtain statistics about traffic between host bus adapter and ports.

There are two types of traffic statistics: the I/O rate and the transfer rate. The I/O rate is the number of I/Os per second. The transfer rate is the size of data transferred between a host and the storage system. When you view traffic statistics in the window, you select either the I/O rate or the transfer rate.

If your network is configured as network B, you must do the following:
- Measure traffic between the port 1A and the three host bus adapters (wwn01, wwn02 and wwn03).
- Measure traffic between the port 1C and the three host bus adapters (wwn01, wwn02 and wwn03).
- Measure traffic between the port 2A and the three host bus adapters (wwn01, wwn02 and wwn03).
- Measure traffic between the port 2C and the three host bus adapters (wwn01, wwn02 and wwn03).

Figure 6-7 illustrates a graph that describes the I/O rate at the paths between each port and the host bus adapters. According to the graph, the I/O rate at the path between 1A and the prioritized WWN (wwn01) was approximately 400 I/O/s at first. The I/O rate at the path between 1A and the non-prioritized WWNs (wwn02 and wwn03) was approximately 100 I/O/s at first. However, as the I/O rate for non-prioritized WWNs (wwn02 and wwn03) gradually increased from 100 I/O/s to 200 I/O/s, the I/O rate for the prioritized WWN (wwn01) decreased from 400 I/O/s to 200 I/O/s. This indicates that the high-priority production server has degraded. If you were the network administrator, you probably would like to maintain the I/O rate for the prioritized WWN (wwn01) at 400 I/O/s.

For more information about monitoring traffic, see Setting Priority for Host Bus Adapters and Analyzing Traffic Statistics.
5. Set an upper limit to traffic between ports and the non-prioritized WWN to prevent decline in I/O rates at prioritized WWNs.

When you set an upper limit for the first time, the upper limit should be approximately 90 percent of the peak traffic level.

In network B, the peak I/O rate at the paths between port 1A and the non-prioritized WWNs (wwn02 and wwn03) is 200 IO/s. The peak I/O rate at the paths between port 1C and the non-prioritized WWNs is also 200 IO/s. The peak I/O rate at the paths between port 2A and the non-prioritized WWNs is also 200 IO/s. The peak I/O rate at the paths between port 2C and the non-prioritized WWNs is also 200 IO/s. So, the recommended upper limit for the non-prioritized WWNs is 720 IO/s (= 200 × 4 × 0.90).

If your network is configured as in Figure 6-4, you must do the following in this order:

a. In the WWN tab, select one of the four ports that the HBAs are connected to (i.e. ports 1A, 1C, 2A, and 2C).

b. Set an upper limit to the non-prioritized WWNs (wwn02 and wwn03).

Figure 6-8 is the result of setting the upper limit of 720 IO/s to the paths between 1A and the non-prioritized WWNs. For details on how to set an upper limit, see Setting Priority for Ports on the Storage System.
6. Check the result of applying upper limit values. After applying upper limit values, you must measure traffic at ports. View traffic statistics for the prioritized WWN to check whether the host performance is improved to a desirable level.

In network B, the desirable I/O rate for the prioritized WWN is 400 IO/s. If the I/O rate reaches 400 IO/s, production server performance has reached to a desirable level. If production server performance is not improved to a desirable level, you can change the upper limit to a smaller value and then apply the new upper limit to the storage system. In network B, if the upper limit is set to 720 IO/s but the I/O rate for wwn01 is still below 400 IO/s, the administrator needs to change the upper limit until the I/O rate reaches 400 IO/s.

If an upper limit of the non-prioritized WWN is set to zero or nearly zero, I/O performance might be lowered. If I/O performance is lowered, the host cannot be connected to the storage system in some cases.

7. If necessary, apply a threshold. If you want to use threshold control, set a threshold in the WWN tab in the Server Priority Manager window.

In the WWN tab, you can specify only one threshold for the entire storage system, regardless of the number of prioritized WWNs. For example, if there are three prioritized WWNs in the network and the threshold is 100 IO/s, the upper limit on the non-prioritized WWNs is disabled when the sum of the I/O rates for all prioritized WWNs goes below 100 IO/s.

For details on how to set a threshold, see Setting a Threshold.

Caution: If you enter zero (0) in a cell to disable the upper limit, the cell displays a hyphen (-) and the threshold for the prioritized port becomes ineffective. If the thresholds of all the prioritized ports are ineffective, threshold control will not be performed but upper limit control will be performed. If you set thresholds for multiple prioritized ports and the I/O rate or transfer rate becomes below the threshold at one of the prioritized ports, threshold control takes effect and the upper limits of the non-prioritized ports are disabled. The following table shows the relationship between the thresholds and the upper limits.
Table 6-1 Relationship between the Thresholds of the Prioritized WWN and the Upper Limits of the Non-prioritized WWN

<table>
<thead>
<tr>
<th>Threshold Settings</th>
<th>A Number Other Than Zero Is Set to The Upper Limit of The Non-prioritized WWN</th>
<th>Zero Is Set to The Upper Limit of The Non-prioritized WWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold Is Set to The Prioritized WWN</td>
<td>When thresholds are set to multiple prioritized WWNs, depending on the transfer rate, the following controls are executed. If I/O rate or transfer rate exceeds the threshold in any prioritized WWN, upper limits of all the non-prioritized WWNs take effect. If I/O rate or transfer rate goes below the threshold in any prioritized WWN, upper limits of all the non-prioritized WWNs do not take effect.</td>
<td>The threshold control of the prioritized WWN is not executed.</td>
</tr>
<tr>
<td>Threshold Is Not Set to The Prioritized WWN</td>
<td>The specified upper limit always takes effect.</td>
<td></td>
</tr>
</tbody>
</table>

Starting Server Priority Manager

To start Server Priority Manager, take the following steps.

To start Server Priority Manager:

1. Ensure that the Storage Navigator main window is in **Modify** mode (i.e., with the background color of the pen tip icon showing light yellow). If the background color is gray, the window is in **View** mode and you must change it to **Modify** mode by taking the following steps:
 a. Verify whether the background color of the lock icon is blue. If the background color is red, you will not be able to switch from **View** mode to **Modify** mode. Wait for a while and click the button. When the background color turns blue, you can go to the next step.
 b. Select the (pen tip) icon.
 A prompt asks whether you want to change the mode.
 c. Select **OK** to close the message.
 The background color of the icon changes to light yellow. The mode changes to **Modify** mode. The background color of the lock icon becomes red.

2. Ensure that the **WWN** tab or the **Port-LUN** tab is active in the **Performance Management** window.

3. Ensure that the **Real Time** option is cleared.
 You cannot start Server Priority Manager in real-time mode.
4. Click **SPM**.

The **Server Priority Manager** window is displayed.

- Use the **Port** tab if one-to-one connection is established between host bus adapters and storage system ports. For details on operations in the **Port** tab, see Port Tab Operations.

- Use the **WWN** tab if many-to-many connection is established between host bus adapters and storage system ports. For details on operations in the **WWN** tab, see WWN Tab Operations.
Port Tab Operations

If one-to-one connections are established between host bus adapters (HBAs) and storage system ports, use the Port tab in the Server Priority Manager window to do the following:

- Analyze traffic statistics
- Measure traffic between host bus adapters and storage system ports
- Set priority to ports on the storage system
- Set an upper limit to traffic at each non-prioritized port
- Set a threshold to the storage system or to each prioritized port, if necessary

If one-to-one connections are established between host bus adapters and ports, you should specify the priority of I/O operations on each port. You can specify the upper limit values on the non-prioritized ports, and if necessary, you can also specify the threshold values on the prioritized ports. Moreover, you can use one threshold value applied for the entire storage system.

For details on the system configuration of one-to-one connections between host bus adapters and ports, see If One-to-One Connections Link HBAs and Ports. This section explains operation procedures you can perform for ports and the entire storage system.

Analyzing Traffic Statistics

The traffic statistics reveal the number of I/Os that have been made via ports. The traffic statistics also reveal the amount of data that have been transferred via ports. You must analyze the traffic statistics to determine upper limit values that should be applied to I/O rates or transfer rates for non-prioritized ports.

The following is the procedure for using the Server Priority Manager window to analyze traffic statistics. You can also use the Performance Management window to analyze traffic statistics. Performance Monitor can display a line graph that indicates changes in traffic (For details, see Viewing I/O Rates for Ports and Viewing Transfer Rates for Ports).

To analyze traffic statistics:
1. Start Server Priority Manager.
 The Server Priority Manager window is displayed.
2. Select the Port tab.
3. Select All from the list at the top right corner of the window.
4. Do one of the following:
– To analyze I/O rates, select **IOPS** from the list at the upper left corner of the list.
– To analyze transfer rates, select **MB/s** from the list at the upper left corner of the list.

The list displays traffic statistics (i.e. the average and peak I/O rates or transfer rates) of the ports.

5. Analyze the information in the list and then determine upper limit values that should be applied to non-prioritized ports. If necessary, determine threshold values that should be applied to prioritized ports. For details on the upper limit values and threshold values, see If One-to-One Connections Link HBAs and Ports.

Setting Priority for Ports on the Storage System

If one-to-one connection is established between HBAs and ports, you need to measure traffic between high-priority HBAs and prioritized ports. You also need to measure traffic between low-priority HBAs and non-prioritized ports.

Prioritized ports are ports on which the processing has high priority and *non-prioritized ports* are ports on which the processing has low priority. Specify a port that connects to a high-priority host bus adapter as a prioritized port. Specify a port that connects to a low-priority host bus adapter as a non-prioritized port.

To set priority to ports on the storage system:

1. Start Server Priority Manager.
 The **Server Priority Manager** window is displayed.
2. Ensure that the Port tab is displayed.
3. Select **All** from the list at the top right corner of the window.
4. Right-click a high-priority port and then select **Non-Prio ->> Prio** from the pop-up menu. If there is more than one high-priority port, repeat this operation.
 The **Attribute** column displays **Prio**.
5. Right-click a low-priority port and then select **Prio ->> Non-Prio** from the pop-up menu. If there is more than one low-priority port, repeat this operation.
 The **Attribute** column displays **Non-Prio**.

 You must set upper limit values for the **Non-prio**. specified ports. For detail about the setting of upper limit values, see Setting Upper-Limit Values to Traffic at Non-prioritized Ports.
6. Click **Apply**.
 The settings on the window are applied to the storage system.
After priority has been set, you can implement the procedure for measuring traffic (I/O rates and transfer rates) (see Starting and Stopping Storage System Monitoring)

Setting Upper-Limit Values to Traffic at Non-prioritized Ports

After you analyze traffic statistics, you must set upper limit values to I/O rates or transfer rates for non-prioritized ports. Upper limit values for I/O rates are used to suppress the number of I/Os from the low priority host servers and thus provide better performance for high-priority host servers. Upper limit values for transfer rates are used to suppress the amount of data that should be transferred between the storage system and the low priority ports, and thus provide better performance for high-priority host servers.

To limit the I/O rate or transfer rate of a non-prioritized port:
1. Start Server Priority Manager. The **Server Priority Manager** window is displayed.
2. Select the **Port** tab.
3. Do one of the following:
 - To limit the I/O rate for the non-prioritized port, select **IOPS** from the list at the upper left corner of the list.
 - To limit the transfer rate for the non-prioritized port, select **MB/s** from the list at the upper left corner of the list.
4. Locate the non-prioritized port in the list.

Notes:
The **Attribute** column of the list indicates whether ports are prioritized or non-prioritized.

If you cannot find any non-prioritized port in the list, check the list at the top right corner of the window. If the list displays **Prioritize**, select **All** or **Non-Prioritize** from the list.

5. Do one of the following:
 - To limit the I/O rate for the non-prioritized port, double-click the desired cell in the **IOPS** column in **Upper**. Next, enter the upper limit value in the cell.
 - To limit the transfer rate for the non-prioritized port, double-click the desired cell in the **MB/s** column in **Upper**. Next, enter the upper limit value in the cell.

In the list, either of **IOPS** or **MB/s** column is activated depending on the rate selected at step 3 above. You can use either of them to specify the upper limit value for one port. You can specify different types of rates (**IOPS** or **MB/s**) for the upper limit values of different non-prioritized ports.

The upper limit value that you entered is displayed in blue.
6. Click **Apply**. The settings in the window are applied to the storage system. The upper limit value that you entered turns black.

If an upper limit of the non-prioritized WWN is set to zero or nearly zero, I/O performance might be lowered. If I/O performance is lowered, the host cannot be connected to the storage system in some cases.

Setting a Threshold

If threshold control is used, upper limit control is automatically disabled when traffic between production servers and the storage system is reduced to a specified level. For details, see Upper-Limit Control and If One-to-One Connections Link HBAs and Ports.

If one-to-one connections are established between HBAs and ports, you can set the threshold value by the following two ways:

- Set a threshold value for each prioritized port
- Set one threshold value for the entire storage system

The procedures for these operations are explained below.

To set threshold values to traffic at prioritized ports:

1. Start Server Priority Manager. The **Server Priority Manager** window is displayed.
2. Select the Port tab.
3. To set a threshold value for each prioritized port, select the type of rates for the threshold value from the list at the upper left corner of the list.
 - To use the I/O rates for the threshold value, select **IOPS**.
 - To use the transfer rates for the threshold value, select **MB/s**.

 Note: If you want to set one threshold value for the entire storage system, this step is unnecessary.

4. Do one of the following:
 - To set a threshold to each prioritized port, locate the desired prioritized port, which is indicated by **Prio.** in the **Attribute** column. Next, double-click the cell in the **IOPS** or **MB/s** column in **Threshold**, and then enter the threshold value. In the list, either of **IOPS** or **MB/s** column is activated depending on the rate selected at step 3 above. Repeat this operation to set the thresholds for all the prioritized ports. You can use different types of rates (**IOPS** or **MB/s**) for thresholds of different prioritized ports.
Caution: If you enter zero (0) in a cell to disable the upper limit, the cell displays a hyphen (-) and the threshold for the prioritized port becomes ineffective. If the thresholds of all the prioritized ports are ineffective, threshold control will not be performed but upper limit control will be performed. If you set thresholds for multiple prioritized ports and the I/O rate or transfer rate becomes below the threshold at one of the prioritized port, threshold control works in the entire storage system and the upper limits of the non-prioritized ports are disabled. The following table shows the relationship between the thresholds and the upper limits.

<table>
<thead>
<tr>
<th>Thresholds Settings</th>
<th>A Number Other Than Zero Is Set to The Upper Limit of The Non-prioritized Port</th>
<th>Zero Is Set to The Upper Limit of The Non-prioritized Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold Is Set to The Prioritized port</td>
<td>When thresholds are set to multiple prioritized ports, depending on the transfer rate, following controls are executed. If I/O rate or transfer rate exceeds the threshold in any prioritized port, upper limits of all the non-prioritized ports take effect. If I/O rate or transfer rate goes below the threshold in any prioritized port, upper limits of all the non-prioritized ports do not take effect.</td>
<td>The threshold control of the prioritized port is not executed.</td>
</tr>
<tr>
<td>Threshold Is Not Set to The Prioritized port</td>
<td>The specified upper limit always takes effect.</td>
<td></td>
</tr>
</tbody>
</table>

- To set one threshold to the entire storage system, select the **All Thresholds** check box. Next, select **IOPS** or **MB/s** from the list of right side in **All Thresholds** and enter the threshold value in the text box. Even if the types of rates for upper limit values and the threshold are different, the threshold control can work for all the non-prioritized ports.

5. Click **Apply**. The settings in the window are applied to the storage system.

WWN Tab Operations

If many-to-many connections are established between host bus adapters (HBAs) and storage system ports, you use the **WWN** tab in the **Server Priority Manager** window to do the following:

- Make all the traffics between host bus adapters and ports monitored
- Analyze traffic statistics
- Measure traffic between host bus adapters and storage system ports
• Set priority to host bus adapters
• Set an upper limit on traffic at non-prioritized WWNs
• Set a threshold, if necessary

If many-to-many connections are established between host bus adapters and ports, you should specify the priority of I/O operations on each host bus adapter. You can specify the upper limit values on the non-prioritized WWNs. If necessary, you can set one threshold value applied for the entire storage system. When many-to-many connections are established between host bus adapters and ports, you cannot set individual thresholds for prioritized WWNs.

For the system configuration of many-to-many connections between host bus adapters and ports, see If Many-to-Many Connections Link HBAs and Ports.

For details on the system configuration of many-to-many connections between host bus adapters and ports, see If Many-to-Many Connections Link HBAs and Ports. This section explains operation procedures you can perform for host bus adapters and the entire storage system.

Monitoring All Traffic between HBAs and Ports

When many-to-many connections are established between host bus adapters (HBAs) and ports, you should make sure that all the traffic between HBAs and ports is monitored.

To make all the traffics between host bus adapters and ports monitored:

1. Start Server Priority Manager.
 The **Server Priority Manager** window is displayed.
2. Ensure that the **WWN** tab is displayed.
 The two trees are displayed in the left side of the **WWN** tab. The upper-left tree lists ports in the storage system.
3. Select **All** from the list at the top right corner of the window.
4. In the upper-left tree, double-click a port.
5. Double-click **Non-Monitor** below the specified port.
 If there are any host bus adapters whose traffics with the specified port are not monitored, those host bus adapters are displayed below **Non-Monitor**.
6. Right-click **Monitor** and then select **Add WWN** from the pop-up menu.
 The **Add WWN** window is displayed. This window lets you add a WWN of a host bus adapter to **Monitor**.
7. In the **Add WWN** window, specify the WWN and the SPM name.
Expand the **WWN** list to show the WWNs of the host bus adapters that are connected to the port but are not monitored. These host bus adapters are the same as that displayed in step 5. From that list, select a WWN and specify the SPM name. You can specify up to 16 characters for an SPM name.

Note: Hitachi Data Systems recommends that you specify the same names for the SPM names and the nicknames of the host bus adapters for convenience of host bus adapter management. **Nicknames** are aliases of host bus adapters defined by LUN Manager. In the **Port-LUN** tab of Performance Monitor, not only SPM names but also nicknames are displayed as the aliases of host bus adapters (WWNs) in the list. Therefore, if you specify both the same aliases, the management of the host bus adapters is easier.

8. Click **OK**. The selected WWN (of the host bus adapter) is moved from **Non-Monitor** to **Monitor**.

Note: If the specified host bus adapter is also connected to other ports, after clicking **OK**, a message appears asking whether to change the settings of that host bus adapter for other ports, too. Make the same setting for all the ports.

9. Repeat step 6 to 8 to move all the host bus adapters displayed below **Non-Monitor** to below **Monitor**.

Note: If you disconnect a host that has been connected via a cable to your storage system or change the port to the another port of the host, the WWN for the host will remain in the WWN list of the WWN tab. If you want to delete the WWN from the WWN list, you can delete the WWN by using LUN Manager. For detail information of the deleting old WWNs from the WWN list, see the **LUN Manager User’s Guide**.

10. Click **Apply** in the **Server Priority Manager** window. The settings on the window are applied to the storage system.

Note: If you are using Windows, you can drag and drop the desired WWNs from **Non-Monitor** to **Monitor**. When you drop a WWN to **Monitor**, the **Add WWN** window is displayed in which you can specify the SPM name only.
If you add a port or host bus adapter to the storage system after the settings above, the traffics about connections to the newly added port or host bus adapter will not be monitored. In this case, follow the procedure above again to make all the traffics between host bus adapters and ports monitored.

Up to 32 host bus adapters (WWNs) can be monitored for one port. If more than 32 host bus adapters are connected to one port, the traffics about some host bus adapters will be obliged to be excluded from the monitoring target. Consider the intended use of each host and move the host bus adapters which you think not necessary to be monitored to **Non-Monitor** by the following steps.

To exclude traffic between a host bus adapter and a port from the monitoring target:

1. Start Server Priority Manager and ensure that the **WWN** tab is displayed.
2. Select **All** from the list at the top right corner of the window.
3. In the upper-left tree, double-click a port to which more than 32 host bus adapters are connected.
4. Double-click **Monitor** below the specified port.
5. Right-click the WWN of a host bus adapter you want to exclude from the monitoring target and then select **Delete WWN** from the pop-up menu.

 If you are using Windows, you can drag and drop the desired WWNs from **Monitor** to **Non-Monitor**.
Notes:
If the selected host bus adapter is connected to multiple ports, when you select the host bus adapter and select the **Delete WWN** pop-up menu, a message will appear that asks you whether to move the host bus adapter from **Monitor** to **Non-Monitor** below all other ports, too.

If the selected host bus adapter is contained in an SPM group, a message will appear that tell you to delete the host bus adapter from the SPM group on ahead. You cannot move a host bus adapter which is contained in an SPM group from **Monitor** to **Non-Monitor**. For details on how to delete a host bus adapter from an SPM group, see Deleting an HBA from an SPM Group.

6. Click **OK** for the confirmation message that asks you whether to delete the host bus adapter.
 The deleted host bus adapter (WWN) is moved from **Monitor** to **Non-Monitor**.

7. Click **Apply** in the **Server Priority Manager** window.
 The settings on the window are applied to the storage system.

Analyzing Traffic Statistics

The traffic statistics reveal the number of I/Os that have been made via ports from HBAs. They also reveal the amount of data that have been transferred between ports and HBAs. You must analyze the traffic statistics to determine upper limit values that should be applied to I/O rates or transfer rates for low-priority HBAs.

The following is the procedure for using the **Server Priority Manager** window to analyze traffic statistics. You can also use the **Performance Management** window to analyze traffic statistics. Performance Monitor can display a line graph that indicates changes in traffic (For details, see Viewing I/O Rates for Disks and Viewing Transfer Rates for Disks).

To analyze traffic statistics:
1. Start Server Priority Manager.
 The **Server Priority Manager** window is displayed.
2. Select the WWN tab.
3. Select **All** from the list at the top right corner of the window.
4. Do one of the following:
 - To analyze I/O rates, select **IOPS** from the list at the upper left corner.
 - To analyze transfer rates, select **MB/s** from the list at the upper left corner of the list.
5. Below the **Subsystem** folder in the upper-left tree, click the icon of the port whose traffic statistics you want to collect.

The list displays traffic statistics (I/O rates or transfer rates) about the host bus adapters that connect to the selected port.

The following two types of traffic are shown. The traffic has attributes including the average and maximum values.

- Traffic between the host bus adapter and the selected port (shown in **Per Port**)
- Sum of the traffic between the host bus adapter and all the ports connected to the host bus adapter (shown in **WWN Total**)

Notes:

The traffic statistics only about the host bus adapters below **Monitor** appear in the list.

The **WWN Total** traffic statistics will also be displayed in the list when you click an icon in the lower-left tree. If you click the **Subsystem** folder in the lower-left tree, the sum of the traffic of the host bus adapters registered on each SPM group is displayed. For details on SPM groups, see Grouping Host Bus Adapters.

6. Analyze the information in the list and then determine upper limit values that should be applied to non-prioritized WWNs. If necessary, determine threshold values that should be applied to prioritized WWNs. For details, see If Many-to-Many Connections Link HBAs and Ports.

Setting Priority for Host Bus Adapters

If many-to-many connection is established between host bus adapters (HBAs) and ports, you need to define the priority of WWNs, measure traffic between each HBA and the port that the HBA is connected to, and analyze the traffic.

The host bus adapters (HBAs) are divided into two types: **Prioritized WWNs** and **non-prioritized** WWNs. Prioritized WWNs are the host bus adapters that are used for the high-priority processing, and **non-prioritized** WWNs are the host bus adapters that are used for the low-priority processing. Specify a host bus adapter existed in a server, on which the high-priority processing is performed, as a prioritized WWNs. Specify a host bus adapter existed in a server, on which the low-priority processing is performed, as a non-prioritized WWNs.

To set priority to host bus adapters:

1. Start Server Priority Manager.
 - The **Server Priority Manager** window is displayed.
2. Select the **WWN** tab.
3. Select **All** from the list at the top right corner of the window.
4. In the upper-left tree, double-click a port.

5. Double-click **Monitor**, which is displayed below the specified port.

6. Check to see if all the WWNs of the host bus adapters to be controlled by using Server Priority Manager appear below **Monitor**.

 If some of the WWNs are missing, use the procedure in Monitoring All Traffic between HBAs and Ports to move all WWNs to below **Monitor**.

7. Click **Monitor** to display the information of the host bus adapters that are monitored in the list on the right of the tree.

8. Right-click a host bus adapter (WWN) in the list and then select **Non-Prio ->> Prio** from the pop-up menu.

 The **Attribute** column of the selected WWN in the list displays **Prio**. If you want to specify more than one prioritized WWN, repeat this operation.

 Note: You cannot change the priority of a WWN which is contained in an SPM group. For details on how to change the attribute of a WWN contained in an SPM group, see Switching Priority of an SPM Group.

9. Right-click a host bus adapter (WWN) in the list and then select **Prio ->> Non-Prio** from the pop-up menu.

 The **Attribute** column of the selected WWN in the list displays **Non-Prio**. If you want to specify more than one non-prioritized WWN, repeat this operation.

 Note: You cannot change the priority of a WWN which is contained in an SPM group. For details on how to change the attribute of a WWN contained in an SPM group, see Switching Priority of an SPM Group.

 You must set upper limit values for the **Non-prio** specified ports. For details, see Setting Upper-Limit Values for Non-Prioritized WWNs.

10. Repeat steps 4 to 9 for ports (except for the port selected in step 9).

 If one host bus adapter is connected to multiple ports and you specify the priority of the host bus adapter for one port, the specified priority will be also applied to the host bus adapter settings for other connected ports automatically.

11. Click **Apply** in the **Server Priority Manager** window.

 The settings on the window are applied to the storage system.

 Follow the instructions in Starting and Stopping Storage System Monitoring to measure traffic (i.e., I/O rates and transfer rates).
Setting Upper-Limit Values for Non-Prioritized WWNs

After you analyze traffic statistics about prioritized WWNs and non-prioritized WWNs, you must set upper limit values to I/O rates or transfer rates for non-prioritized WWNs. Upper limit values for I/O rates are used to suppress the number of I/Os from the low priority host servers and thus provide better performance for high-priority host servers. Upper limit values for transfer rates are used to suppress the amount of data that should be transferred between the storage system and the low priority ports, thus providing better performance for high-priority host servers.

Tip: To set the same upper limit value to more than one non-prioritized WWN, use an SPM group. For details on SPM groups, see Grouping Host Bus Adapters.

To limit the I/O rate or transfer rate of a non-prioritized WWN:

1. Start Server Priority Manager.
 The Server Priority Manager window is displayed.
2. Ensure that the WWN tab is displayed.
3. Do one of the following:
 – To limit the I/O rate of the non-prioritized WWN, select IOPS from the list at the upper left corner.
 – To limit the transfer rate of the non-prioritized WWN, select MB/s from the list at the upper left corner.
4. In the upper-left tree, click the icon of the port whose traffic you want to limit below the Subsystem folder.
 The information about the host bus adapters which connect to the selected port is displayed in the list.
5. Locate the non-prioritized WWN in the list.

Notes:
The Attribute column of the list indicates whether WWNs are prioritized or non-prioritized. The Attribute column of a non-prioritized WWN displays Non-Prio.
If you cannot find any non-prioritized WWN in the list, check the list at the top right corner of the window. If the list displays Prioritize, select All or Non-Prioritize.

6. Do one of the following:
 – To limit the I/O rate of the non-prioritized WWN, double-click the desired cell in the IOPS column in Upper. Next, enter the upper limit value in the cell.
To limit the transfer rate of the non-prioritized WWN, double-click the desired cell in the **MB/s** column in **Upper**. Next, enter the upper limit value in the cell.

In the list, either of the **IOPS** cells or **MB/s** cells are activated depending on the rate you specified in step 3. You can specify the limit value by using either of the I/O rate or transfer rate for each host bus adapter. The upper limit value that you entered is displayed in blue. It is allowed that you specify upper limit values by using the I/O rate for some host bus adapters and specify them by using the transfer rate for the other host bus adapters.

Notes:
You cannot specify or change the upper limit value of a host bus adapter which is contained in an SPM group. The upper limit value of such a host bus adapter is defined by the SPM group settings. For details on how to specify an upper limit value for an SPM group, see Setting an Upper-Limit Value to HBAs in an SPM Group.

If one host bus adapter is connected to multiple ports and you specify an upper limit value of the host bus adapter for one port, the specified upper limit value will be applied to the host bus adapter settings for other connected ports automatically.

7. Click **Apply**.
 The settings in the window are applied to the storage system. The upper limit value that you entered turns black.

Setting a Threshold

If threshold control is used, upper limit control is automatically disabled when traffic between production servers and the storage system is reduced to a specified level. For details, see Upper-Limit Control and If Many-to-Many Connections Link HBAs and Ports.

If many-to-many connections are established between host bus adapters and storage system ports, you can set one threshold value for the entire storage system. In this environment, you cannot set individual threshold values for each prioritized WWN.

To set a threshold value:
1. Start Server Priority Manager.
 The **Server Priority Manager** window is displayed.
2. Select the **WWN** tab.
3. Select the **All Thresholds** check box.
4. Select IOPS or MB/s from the All Thresholds list, and do one of the following:
 - To specify the threshold value by using the I/O rate, select IOPS from the list below the check box.
 - To specify the threshold value by using the transfer rate, select MB/s from the list below the check box.

Even if the types of rates differ between the upper limit values and the threshold value, the threshold control is effective for all the non-prioritized WWNs.

5. Enter the threshold in the text box of All Thresholds.
6. Click Apply.
 The settings in the window are applied to the storage system.

Changing the SPM Name of a Host Bus Adapter

The Server Priority Manager window allows you to assign an SPM name to a host bus adapter (HBA). Although you can identify HBAs by WWNs (Worldwide Names), you will be able to identify HBAs more easily if you assign SPM names. WWNs are 16-digit hexadecimal numbers and cannot be changed. However, SPM names should not necessarily be 16-digit hexadecimal numbers and can be changed.

The following is the procedure for changing an already assigned SPM name. For details on how to assign an SPM name, see Monitoring All Traffic between HBAs and Ports.

To change an SPM name:
1. Start Server Priority Manager.
 The Server Priority Manager window is displayed.
2. Ensure that the WWN tab is displayed.
3. In the upper-left tree, select a host bus adapter () from below Monitor and then right-click the selection.
4. From the pop-up menu, select Change WWN and SPM Name.
 The Change WWN and SPM Name window is displayed.
5. Enter a new SPM name in the SPM Name box and then select OK. You can use up to 16 characters for an SPM name.
6. In the Server Priority Manager window, click Apply.
 The settings in the window are applied to the storage system.
Replacing a Host Bus Adapter

If a host bus adapter fails, you will need to replace the adapter with a new one. After you finish replacement, you will need to delete the old host bus adapter from the **Server Priority Manager** window and then register the new host bus adapter.

When you add a new host bus adapter rather than replacing an old one, the WWN of the added host bus adapter is automatically displayed below **Non-Monitor** for the connected port in the list.

Follow the procedure below to remove the old adapter and register a new adapter quickly and easily.

To register a new host bus adapter after replacement:

1. Start Server Priority Manager.
 The **Server Priority Manager** window is displayed.
2. Select the WWN tab.
3. In the upper-left tree, select the old host bus adapter (🪐) from below **Monitor** and then right-click the selection.
4. From the pop-up menu, select **Change WWN and SPM Name**.
 The **Change WWN and SPM Name** window is displayed.
5. Enter the WWN of the new host bus adapter in the **WWN** combo box.
 You can select the WWN of the newly connected host bus adapter in the **WWN** combo box. If you are using Windows, you can drag the WWN of the new host bus adapter displayed below **Non-Monitor** and drop it to **Monitor**.
6. If necessary, enter a new SPM name in the **SPM Name** box. You can use up to 16 characters for an SPM name.
7. Select **OK** to close the **Change WWN and SPM Name** window.
8. In the **Server Priority Manager** window, click **Apply**.
 The settings in the window are applied to the storage system.
Grouping Host Bus Adapters

Server Priority Manager allows you to create an *SPM group* to contain multiple host bus adapters. All the host bus adapters (HBAs) in one SPM group must be of the same priority. Prioritized WWNs (i.e. high-priority HBAs) and non-prioritized WWNs (i.e. low-priority HBAs) cannot be mixed in the same group.

You can use an SPM group to switch priority of multiple HBAs from *prioritized* to *non-prioritized*, or vice versa. You can also use an SPM group to set the same upper limit value to all the HBAs in the group.

Containing Multiple HBAs in an SPM Group

A host bus adapter can be contained in only one SPM group. To create an SPM group and contain multiple host bus adapters in the group, take the following steps:

To contain multiple HBAs in an SPM group:
1. Start Server Priority Manager.
 - The *Server Priority Manager* window is displayed.
2. Select the *WWN* tab.
3. In the lower-left tree, select and right-click the Subsystem folder.
4. From the pop-up menu, select *Add New SPM Group*.
5. In the *Add New SPM Group* window, enter the name of the SPM group and then select *OK*.
 - An SPM group is created. An SPM group icon (_flight) is added to the lower-left tree.
6. Select an HBA (flight) from the upper-left tree and select an SPM group from the lower-left tree. Next, click *Add WWN*.
 - Repeat this operation until all the desired HBAs are added to the SPM group.

Notes:

Select a host bus adapter from below *Monitor*. You cannot add HBAs from below *Non-Monitor* to SPM groups.

When you select a host bus adapter which is already contained in some SPM group from the upper-left tree, the *Add WWN* button is not activated. Select a host bus adapter which is not contained in any SPM groups.

Windows users can add a host bus adapter to an SPM group by dragging the host bus adapter to the SPM group.

7. Click *Apply*.
The settings in the window are applied to the storage system.

![Add New SPM Group Window](image)

Figure 6-11 Add New SPM Group Window

Deleting an HBA from an SPM Group

To delete a host bus adapter from the SPM group, take the following steps.

1. Start Server Priority Manager.
 The Server Priority Manager window is displayed.
2. Select the WWN tab.
3. In the lower-left tree, double-click the SPM group (✱) that contains the host bus adapter to be deleted.
4. Below the SPM icon, right-click the icon the host bus adapter (✱) you want to delete.
5. Select Delete WWN from the pop-up menu.
 The selected host bus adapter icon is deleted from the tree.
6. Click Apply.
 The settings on the window are applied to the storage system.

Switching Priority of an SPM Group

All the host bus adapters (HBAs) in one SPM group must be of the same priority. Prioritized WWNs (i.e. high-priority HBAs) and non-prioritized WWNs (i.e. low-priority HBAs) cannot be mixed in one SPM group.

You can use an SPM group to switch priority of multiple HBAs from prioritized to non-prioritized, or vice versa.

To switch priority:

1. Start Server Priority Manager.
 The Server Priority Manager window is displayed.
2. Select the WWN tab.
3. In the lower-left tree, select and right-click an SPM group (✱).
4. Do one of the following:
 - To switch priority from prioritized to non-prioritized, select Prio -> Non-Prio from the pop-up menu.
To switch priority from non-prioritized to prioritized, select Non-Prio >> Prio from the pop-up menu.

5. Click Apply.
The settings in the window are applied to the storage system.

Setting an Upper-Limit Value to HBAs in an SPM Group

If all the host bus adapters in an SPM group are non-prioritized WWNs (i.e. low-priority HBAs), you can set an upper limit value to HBA performance (i.e. I/O rate or transfer rate). You can assign one upper limit value for one SPM group.

For example, suppose that the upper limit value 100 IOPS is assigned to an SPM group consisting of four host bus adapters. If the sum of the I/O rate of the four HBAs reaches 100 IOPS, Server Priority Manager controls the system so that the sum of the I/O rates will not exceed 100 IOPS.

To set an upper limit value to HBAs in an SPM group:

1. Start Server Priority Manager.
 The Server Priority Manager window is displayed.
2. Select the WWN tab.
3. In the lower-left tree, select and right-click the Subsystem folder or an SPM group (.addNode).
4. If you selected the Subsystem folder, take the following steps:
 a. Select IOPS or MB/s from the list at the upper-left corner of the list. Select IOPS if you want to assign an upper limit to the I/O rate. Select MB/s if you want to assign an upper limit to the transfer rate.
 b. To assign an upper limit to the I/O rate, enter the upper limit value in the IOPS column of the list.
 To assign an upper limit to the transfer rate, enter the upper limit value in the MB/s column of the list.
 Tips: If you cannot see the IOPS or MB/s column, scroll the list to the left. The column is located at the right side of the list.
 If you selected an SPM group (parentNode), take the following steps:
 a. Right-click the selected SPM group and then select Change Upper Limit from the pop-up menu.
 The Change Upper Limit window is displayed.
 b. To assign an upper limit to the I/O rate, enter the upper limit value and then select IOPS from the list. Next, select OK.
 To assign an upper limit to the transfer rate, enter the upper limit value and then select MB/s from the list. Next, select OK.
5. In the **Server Priority Manager** window, click **Apply**.
 The settings in the window are applied to the storage system.

![Change Upper Limit Window](image)

Figure 6-12 **Change Upper Limit Window**

Note: To confirm an upper limit value specified for each SPM group, select the **Subsystem** folder in the lower-left tree of the **WWN** tab. The SPM groups are displayed in the list and you can confirm each upper limit value.

Renaming an SPM Group

To rename an SPM group, take the following steps.

1. Start Server Priority Manager.
 The **Server Priority Manager** window is displayed.

2. Select the WWN tab.

3. In the lower-left tree, select and right-click an SPM group ().

4. Select **Rename SPM Group** from the pop-up menu.
 The **Rename SPM Group** window is displayed.

5. Enter the new name and select **OK**.

6. In the **Server Priority Manager** window, click **Apply**.
 The settings in the window are applied to the storage system.

![Rename SPM Group Window](image)

Figure 6-13 **Rename SPM Group Window**

Deleting an SPM Group

If you want to delete an SPM group, take the following steps:

To delete an SPM group:
1. Start Server Priority Manager.
 The **Server Priority Manager** window is displayed.
2. Select the WWN tab.
3. In the lower-left tree, select and right-click an SPM group (ɤ).
4. Select **Delete SPM Group** from the pop-up menu.
5. In the **Server Priority Manager** window, click **Apply**.
 The settings in the window are applied to the storage system.
This chapter explains using the Export Tool.

- Files to be Exported
- Preparing for Using the Export Tool
- Using the Export Tool
- Command Reference
Files to be Exported

The Export Tool allows you to save monitoring data appearing in the Performance Management window into files. The Export Tool also allows you to save monitoring data about remote copy operations into files. The Export Tool usually compresses monitoring data in compressed (ZIP) files. To use a text editor or spreadsheet software to view or edit the monitoring data, you usually need to decompress the ZIP files to extract CSV files. However, if you want the Export Tool to save monitoring data in CSV files instead of ZIP files, you can force the Export Tool to do so.

Table 7-1 shows the correspondence between the Performance Monitor windows and the monitoring data that can be saved by the Export Tool. For details on the ZIP files and CSV files that are saved, refer to the tables indicated in the See column.

Table 7-1 Performance Management Windows and Monitoring Data Saved by the Export Tool

<table>
<thead>
<tr>
<th>Window</th>
<th>Monitoring Data</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical tab in the Performance Management Window</td>
<td>Statistics about resource usage and write pending rates</td>
<td>Table 7-2</td>
</tr>
<tr>
<td>LDEV tab in the Performance Management window</td>
<td>Statistics about parity groups, external volume groups, or V-VOL groups</td>
<td>Table 7-3</td>
</tr>
<tr>
<td></td>
<td>Statistics about volumes in parity groups, in external volume groups, or in V-VOL groups</td>
<td>Table 7-4</td>
</tr>
<tr>
<td>Port-LUN tab in the Performance Management window</td>
<td>Statistics about ports</td>
<td>Table 7-5</td>
</tr>
<tr>
<td></td>
<td>Statistics about host bus adapters connected to ports</td>
<td>Table 7-6</td>
</tr>
<tr>
<td></td>
<td>Statistics about volumes(LUs)</td>
<td>Table 7-7</td>
</tr>
<tr>
<td>WWN tab in the Performance Management window</td>
<td>Statistics about SPM groups</td>
<td>Table 7-8</td>
</tr>
<tr>
<td></td>
<td>Statistics about host bus adapters belonging to SPM groups</td>
<td>Table 7-9</td>
</tr>
<tr>
<td>TC Monitor window and TCz Monitor window</td>
<td>Statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS (in the whole volume)</td>
<td>Table 7-10</td>
</tr>
<tr>
<td></td>
<td>Statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS (for each volume (LU))</td>
<td>Table 7-11</td>
</tr>
<tr>
<td></td>
<td>Statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS (at volumes controlled by a particular CU)</td>
<td>Table 7-12</td>
</tr>
<tr>
<td></td>
<td>Statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS (At CLPR)</td>
<td>Table 7-13</td>
</tr>
<tr>
<td>UR Monitor window and URz Monitor window</td>
<td>Statistics about remote copy operations by Universal Replicator and Universal Replicator for IBM z/OS (in the whole volume)</td>
<td>Table 7-14</td>
</tr>
<tr>
<td></td>
<td>Statistics about remote copy operations by Universal Replicator and Universal Replicator for IBM z/OS (at journal groups)</td>
<td>Table 7-15</td>
</tr>
<tr>
<td>Window</td>
<td>Monitoring Data</td>
<td>See</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Statistics about remote copy operations by Universal Replicator and Universal Replicator for IBM z/OS (for each volume (LU))</td>
<td>Table 7-16</td>
</tr>
<tr>
<td></td>
<td>Statistics about remote copy operations by Universal Replicator and Universal Replicator for IBM z/OS (at volumes controlled by a particular CU)</td>
<td>Table 7-17</td>
</tr>
</tbody>
</table>

Table 7-2 Files with Statistics about Resource Usage and Write Pending Rates

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhyPG_dat.ZIP</td>
<td>PHY_Long_PG.csv</td>
<td>Usage rates for parity groups in long range</td>
</tr>
<tr>
<td></td>
<td>PHY_Short_PG.csv</td>
<td>Usage rates for parity groups in short range</td>
</tr>
<tr>
<td>PhyLDEV_dat.ZIP</td>
<td>PHY_Long_LDEV_x-y.csv</td>
<td>Usage rates for volumes in a parity group in long range</td>
</tr>
<tr>
<td></td>
<td>PHY_Short_LDEV_x-y.csv</td>
<td>Usage rates for volumes in a parity group in short range</td>
</tr>
<tr>
<td></td>
<td>PHY_Short_LDEV_SI_x-y.csv</td>
<td>Usage rates for ShadowImage volumes in a parity group in short range</td>
</tr>
<tr>
<td>PhyExG_dat.ZIP</td>
<td>PHY_ExG_Response.csv</td>
<td>Average response time (milliseconds) for external volume groups</td>
</tr>
<tr>
<td></td>
<td>PHY_ExG_Trans.csv</td>
<td>Amount of transferred data for external volume groups (KB/sec)</td>
</tr>
<tr>
<td>PhyExLDEV_dat.ZIP</td>
<td>PHY_ExLDEV_Response_x-y.csv</td>
<td>Average response time (milliseconds) for volumes in an external volume group</td>
</tr>
<tr>
<td></td>
<td>PHY_ExLDEV_Trans_x-y.csv</td>
<td>Amount of data transferred for volumes in an external volume group (KB/sec)</td>
</tr>
<tr>
<td>PhyProc_dat.ZIP</td>
<td>PHY_Long_CHP.csv</td>
<td>Usage rates for channel processors in long range</td>
</tr>
<tr>
<td></td>
<td>PHY_Short_CHP.csv</td>
<td>Usage rates for channel processors in short range</td>
</tr>
<tr>
<td></td>
<td>PHY_Long_DKP.csv</td>
<td>Usage rates for disk processors in long range</td>
</tr>
<tr>
<td></td>
<td>PHY_Short_DKP.csv</td>
<td>Usage rates for disk processors in short range</td>
</tr>
<tr>
<td></td>
<td>PHY_Long_DRR.csv</td>
<td>Usage rates for DRRs (data recovery and reconstruction processors) in long range</td>
</tr>
<tr>
<td></td>
<td>PHY_Short_DRR.csv</td>
<td>Usage rates for DRRs (data recovery and reconstruction processors) in short range</td>
</tr>
<tr>
<td>PhyCSW_dat.ZIP</td>
<td>PHY_Long_MPA_CSW.csv</td>
<td>Usage rates for access paths between channel adapters and cache memories in long range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usage rates for access paths between disk adapters and cache memories in long range</td>
</tr>
</tbody>
</table>
Table 7-3 Files with Statistics about Parity Groups, External Volume Groups or V-VOL Groups

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG_dat.ZIP</td>
<td>PG_IOPS.csv</td>
<td>The number of read and write operations per second</td>
</tr>
<tr>
<td></td>
<td>PG_TransRate.csv</td>
<td>The size of data transferred per second (KB/sec)</td>
</tr>
<tr>
<td></td>
<td>PG_Read_IOPS.csv</td>
<td>The number of read operations per second</td>
</tr>
<tr>
<td></td>
<td>PG_Seq_Read_IOPS.csv</td>
<td>The number of sequential read operations per second</td>
</tr>
<tr>
<td></td>
<td>PG_Rnd_Read_IOPS.csv</td>
<td>The number of random read operations per second</td>
</tr>
<tr>
<td></td>
<td>PG_CFW_Read_IOPS.csv</td>
<td>The number of read operations in "cache-fast-write" mode per second</td>
</tr>
<tr>
<td></td>
<td>PG_Write_IOPS.csv</td>
<td>The number of write operations per second</td>
</tr>
<tr>
<td></td>
<td>PG_Seq_Write_IOPS.csv</td>
<td>The number of sequential write operations per second</td>
</tr>
<tr>
<td></td>
<td>PG_Rnd_Write_IOPS.csv</td>
<td>The number of random write operations per second</td>
</tr>
</tbody>
</table>
Table 7-4 Files with Statistics about Volumes in Parity / External Volume Groups, or in V-VOL Groups

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDEV_IOPS.ZIP</td>
<td>LDEV_IOPS_x-y.csv</td>
<td>The number of read and write operations per second</td>
</tr>
<tr>
<td>LDEV_TransRate.ZIP</td>
<td>LDEV_TransRate_x-y.csv</td>
<td>The size of data transferred per second (KB/sec)</td>
</tr>
<tr>
<td>LDEV_Read_IOPS.ZIP</td>
<td>LDEV_Read_IOPS_x-y.csv</td>
<td>The number of read operations per second</td>
</tr>
<tr>
<td>LDEV_Seq_Read_IOPS.ZIP</td>
<td>LDEV_Seq_Read_IOPS_x-y.csv</td>
<td>The number of sequential read operations per second</td>
</tr>
<tr>
<td>LDEV_Rnd_Read_IOPS.ZIP</td>
<td>LDEV_Rnd_Read_IOPS_x-y.csv</td>
<td>The number of random read operations per second</td>
</tr>
<tr>
<td>LDEV_CFW_Read_IOPS.ZIP</td>
<td>LDEV_CFW_Read_IOPS_x-y.csv</td>
<td>The number of read operations in "cache-fast-write" mode per second</td>
</tr>
<tr>
<td>LDEV_Write_IOPS.ZIP</td>
<td>LDEV_Write_IOPS_x-y.csv</td>
<td>The number of write operations per second</td>
</tr>
</tbody>
</table>

Note: 1 microsecond is one-millionth of 1 second.
<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDEV_Seq_Write_IOPS.ZIP</td>
<td>LDEV_Seq_Write_IOPS_x-y.csv</td>
<td>The number of sequential write operations per second</td>
</tr>
<tr>
<td>LDEV_Rnd_Write_IOPS.ZIP</td>
<td>LDEV_Rnd_Write_IOPS_x-y.csv</td>
<td>The number of random write operations per second</td>
</tr>
<tr>
<td>LDEV_CFW_Write_IOPS.ZIP</td>
<td>LDEV_CFW_Write_IOPS_x-y.csv</td>
<td>The number of write operations in "cache-fast-write" mode per second</td>
</tr>
<tr>
<td>LDEV_Read_Hit.ZIP</td>
<td>LDEV_Read_Hit_x-y.csv</td>
<td>The read hit ratio</td>
</tr>
<tr>
<td>LDEV_Seq_Read_Hit.ZIP</td>
<td>LDEV_Seq_Read_Hit_x-y.csv</td>
<td>The read hit ratio in sequential access mode</td>
</tr>
<tr>
<td>LDEV_Rnd_Read_Hit.ZIP</td>
<td>LDEV_Rnd_Read_Hit_x-y.csv</td>
<td>The read hit ratio in random access mode</td>
</tr>
<tr>
<td>LDEV_CFW_Read_Hit.ZIP</td>
<td>LDEV_CFW_Read_Hit_x-y.csv</td>
<td>The read hit ratio in "cache-fast-write" mode</td>
</tr>
<tr>
<td>LDEV_Write_Hit.ZIP</td>
<td>LDEV_Write_Hit_x-y.csv</td>
<td>The write hit ratio</td>
</tr>
<tr>
<td>LDEV_Seq_Write_Hit.ZIP</td>
<td>LDEV_Seq_Write_Hit_x-y.csv</td>
<td>The write hit ratio in sequential access mode</td>
</tr>
<tr>
<td>LDEV_Rnd_Write_Hit.ZIP</td>
<td>LDEV_Rnd_Write_Hit_x-y.csv</td>
<td>The write hit ratio in random access mode</td>
</tr>
<tr>
<td>LDEV_CFW_Write_Hit.ZIP</td>
<td>LDEV_CFW_Write_Hit_x-y.csv</td>
<td>The write hit ratio in "cache-fast-write" mode</td>
</tr>
<tr>
<td>LDEV_BackTrans.ZIP</td>
<td>LDEV_BackTrans_x-y.csv</td>
<td>The number of data transfer operations between cache memories and hard disk drives (i.e., volumes) per second</td>
</tr>
<tr>
<td>LDEV_C2D_Trans.ZIP</td>
<td>LDEV_C2D_Trans_x-y.csv</td>
<td>The number of data transfer operations from cache memories and hard disk drives (i.e., volumes)</td>
</tr>
<tr>
<td>LDEV_D2CS_Trans.ZIP</td>
<td>LDEV_D2CS_Trans_x-y.csv</td>
<td>The number of data transfer operations from hard disk drives (i.e., volumes) to cache memories in sequential access mode</td>
</tr>
<tr>
<td>LDEV_D2CR_Trans.ZIP</td>
<td>LDEV_D2CR_Trans_x-y.csv</td>
<td>The number of data transfer operations from hard disk drives (i.e., volumes) to cache memories in random access mode</td>
</tr>
<tr>
<td>LDEV_Response.ZIP</td>
<td>LDEV_Response_x-y.csv</td>
<td>The average response time (microseconds) at volumes</td>
</tr>
</tbody>
</table>

Notes:
- 1 microsecond is one-millionth of 1 second.
- The letters "x-y" in CSV filenames indicate a parity group. For example, if the filename is LDEV_IOPS_1-2.csv, the file contains the I/O rate for each volume in the parity group 1-2.
Table 7-5 Files with Statistics about Ports

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port_dat.ZIP</td>
<td>Port_IOPS.csv</td>
<td>The number of read and write operations per second at ports</td>
</tr>
<tr>
<td></td>
<td>Port_KBPS.csv</td>
<td>The size of data transferred per second at ports (KB/sec)</td>
</tr>
<tr>
<td></td>
<td>Port_Response.csv</td>
<td>The average response time (microseconds) at ports</td>
</tr>
<tr>
<td></td>
<td>Port_Initiator_IOPS.csv</td>
<td>The number of read and write operations per second at Initiator/External ports</td>
</tr>
<tr>
<td></td>
<td>Port_Initiator_KBPS.csv</td>
<td>The size of data transferred per second at Initiator/External ports (KB/sec)</td>
</tr>
<tr>
<td></td>
<td>Port_Initiator_Response.csv</td>
<td>The average response time (microseconds) at Initiator/External ports</td>
</tr>
</tbody>
</table>

Note: * 1 microsecond is one-millionth of 1 second.

Table 7-6 Files with Statistics about Host Bus Adapters Connected to Ports

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>PortWWN_dat.ZIP</td>
<td>PortWWN_xx_IOPS.csv</td>
<td>The I/O rate (that is, the number of read and write operations per second) for HBAs that are connected to a port</td>
</tr>
<tr>
<td></td>
<td>PortWWN_xx_KBPS.csv</td>
<td>The size of data transferred per second (KB/sec) between a port and the HBAs connected to that port</td>
</tr>
<tr>
<td></td>
<td>PortWWN_xx_Response.csv</td>
<td>The average response time (microseconds) between a port and the HBAs connected to that port</td>
</tr>
</tbody>
</table>

Notes:
- 1 microsecond is one-millionth of 1 second.
- The letters "xx" in CSV filenames indicate a port name. For example, if the filename is PortWWN_1A_IOPS.csv, the file contains the I/O rate for each host bus adapter connected to the CL1-A port.
- If files are exported to a Windows computer, CSV filenames may end with numbers (for example, PortWWN_1A_IOPS-1.csv and PortWWN_1a_IOPS-2.csv).
Table 7-7 Files with Statistics about Volumes (LUs)

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU_dat.ZIP</td>
<td>LU_IOPS.csv</td>
<td>The number of read and write operations per second</td>
</tr>
<tr>
<td></td>
<td>LU_TransRate.csv</td>
<td>The size of data transferred per second (KB/sec)</td>
</tr>
<tr>
<td></td>
<td>LU_Seq_Read_IOPS.csv</td>
<td>The number of sequential read operations per second</td>
</tr>
<tr>
<td></td>
<td>LU_Rnd_Read_IOPS.csv</td>
<td>The number of random read operations per second</td>
</tr>
<tr>
<td></td>
<td>LU_Seq_Write_IOPS.csv</td>
<td>The number of sequential write operations per second</td>
</tr>
<tr>
<td></td>
<td>LU_Rnd_Write_IOPS.csv</td>
<td>The number of random write operations per second</td>
</tr>
<tr>
<td></td>
<td>LU_Seq_Read_Hit.csv</td>
<td>The read hit ratio in sequential access mode</td>
</tr>
<tr>
<td></td>
<td>LU_Rnd_Read_Hit.csv</td>
<td>The read hit ratio in random access mode</td>
</tr>
<tr>
<td></td>
<td>LU_Seq_Write_Hit.csv</td>
<td>The write hit ratio in sequential access mode</td>
</tr>
<tr>
<td></td>
<td>LU_Rnd_Write_Hit.csv</td>
<td>The write hit ratio in random access mode</td>
</tr>
<tr>
<td></td>
<td>LU_C2D_Trans.csv</td>
<td>The number of data transfer operations from cache memories and hard disk drives (i.e., LUs)</td>
</tr>
<tr>
<td></td>
<td>LU_D2CS_Trans.csv</td>
<td>The number of data transfer operations from hard disk drives (i.e., LUs) to cache memories in sequential access mode</td>
</tr>
<tr>
<td></td>
<td>LU_D2CR_Trans.csv</td>
<td>The number of data transfer operations from hard disk drives (i.e., LUs) to cache memories in random access mode</td>
</tr>
<tr>
<td></td>
<td>LU_Response.csv</td>
<td>The average response time (microseconds) at volumes (LUs)</td>
</tr>
</tbody>
</table>

Note: 1 microsecond is one-millionth of 1 second.

Table 7-8 Files with Statistics about SPM Groups

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPCG_dat.ZIP</td>
<td>PPCG_IOPS.csv</td>
<td>The number of read and write operations per second</td>
</tr>
<tr>
<td></td>
<td>PPCG_KBPS.csv</td>
<td>The size of data transferred per second (KB/sec)</td>
</tr>
<tr>
<td></td>
<td>PPCG_Response.csv</td>
<td>The average response time (microseconds) at SPM groups</td>
</tr>
</tbody>
</table>

Note: 1 microsecond is one-millionth of 1 second.
Table 7-9 Files with Statistics about Host Bus Adapters Belonging to SPM Groups

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPCGWWN_dat.ZIP</td>
<td>PPCGWWN_xx_IOPS.csv</td>
<td>The I/O rate (that is, the number of read and write operations per second) for HBAs belonging to an SPM group</td>
</tr>
<tr>
<td></td>
<td>PPCGWWN_xx_KBPS.csv</td>
<td>The transfer rate (KB/sec) for HBAs belonging to an SPM group</td>
</tr>
<tr>
<td></td>
<td>PPCGWWN_xx_Response.csv</td>
<td>The average response time (microseconds) for HBAs belonging to an SPM group</td>
</tr>
<tr>
<td></td>
<td>PPCGWWN_NotGrouped_</td>
<td>The I/O rate (that is, the number of read and write operations per second) for HBAs that do not belong to any SPM group</td>
</tr>
<tr>
<td></td>
<td>IOPS.csv</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPCGWWN_NotGrouped_</td>
<td>The transfer rate (KB/sec) for HBAs that do not belong to any SPM group</td>
</tr>
<tr>
<td></td>
<td>KBPS.csv</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPCGWWN_NotGrouped_</td>
<td>The average response time (microseconds), for HBAs that do not belong to any SPM group</td>
</tr>
<tr>
<td></td>
<td>Response.csv</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 1 microsecond is one-millionth of 1 second.
- The letters "xx" in CSV filenames indicate the name of an SPM group.
- If files are exported to a Windows computer, CSV filenames may end with numbers (for example, PPCGWWN_mygroup_IOPS-1.csv and PPCGWWN_MyGroup_IOPS-2.csv).
Table 7-10 Files with Statistics about Remote Copy Operations by TC and TC for IBM z/OS (In the Whole Volumes)

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>RemoteCopy_dat.ZIP</td>
<td>RemoteCopy.csv</td>
<td>The following data in the whole volumes are saved:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The usage rate for sidefile cache</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total number of remote I/Os (read and write operations). The total number of remote write I/Os.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of errors that occur during remote I/O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of initial copy remote I/Os. The average transfer rate (KB/sec) for initial copy remote I/Os.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The average response time (milliseconds) for initial copy. The number of update copy remote I/Os. The average transfer rate (KB/sec) for update copy remote I/Os.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The average response time (milliseconds) for update copy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of restore copy remote I/Os</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of hits of restore copy remote I/Os</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of asynchronous update copy remote I/Os</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of asynchronous recordsets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The average transfer rate (KB/sec) for asynchronous update copy remote I/Os</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The average response time (milliseconds) for asynchronous update copy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of scheduled recordsets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of recordsets that do not arrive during the schedule</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of remaining recordsets when the schedule is completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of job activations of consistency manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The percentage of completion of copy operations (i.e., number of synchronized pairs / total number of pairs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of tracks that have not yet been copied by the initial copy or resync copy operation</td>
</tr>
</tbody>
</table>

Note: 1 millisecond is one-thousandth of 1 second.

Table 7-11 Files with Statistics about Remote Copy Operations by TC and TC for IBM z/OS (for each Volume (LU))

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCLU_dat.ZIP</td>
<td>RCLU_All_RIO.csv</td>
<td>The total number of remote I/Os (read and write operations)</td>
</tr>
<tr>
<td>ZIP File</td>
<td>CSV File</td>
<td>Data Saved in the File</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>RCLU_All_Read.csv</td>
<td>The total number of remote read I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_All_Write.csv</td>
<td>The total number of remote write I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_RIO_Error.csv</td>
<td>The number of errors that occur during remote I/O</td>
<td></td>
</tr>
<tr>
<td>RCLU_Initial_Copy_RIO.csv</td>
<td>The number of initial copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Initial_Copy_Hit.csv</td>
<td>The number of hits of initial copy remote I/O</td>
<td></td>
</tr>
<tr>
<td>RCLU_Initial_Copy_Transfer.csv</td>
<td>The average transfer rate (KB/sec) for initial copy remote I/O</td>
<td></td>
</tr>
<tr>
<td>RCLU_Initial_Copy_Response.csv</td>
<td>The average response time (milliseconds) for the initial copy of each volume (LU)</td>
<td></td>
</tr>
<tr>
<td>RCLU_Migration_Copy_RIO.csv</td>
<td>The number of migration copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Migration_Copy_Hit.csv</td>
<td>The number of hits of migration copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Update_Copy_RIO.csv</td>
<td>The number of update copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Update_Copy_Hit.csv</td>
<td>The number of hits of update copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Update_Copy_Transfer.csv</td>
<td>The average transfer rate (KB/sec) for update copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Update_Copy_Response.csv</td>
<td>The average response time (milliseconds) for the update copy of each volume (LU)</td>
<td></td>
</tr>
<tr>
<td>RCLU_Restore_Copy_RIO.csv</td>
<td>The number of restore copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Restore_Copy_Hit.csv</td>
<td>The number of hits of restore copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Asynchronous_RIO.csv</td>
<td>The number of asynchronous update copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Recordset.csv</td>
<td>The number of asynchronous recordsets</td>
<td></td>
</tr>
<tr>
<td>RCLU_Asynchronous_Copy_Transfer.csv</td>
<td>The average transfer rate (KB/sec) for asynchronous update copy remote I/Os</td>
<td></td>
</tr>
<tr>
<td>RCLU_Asynchronous_Copy_Response.csv</td>
<td>The average response time (milliseconds) for the asynchronous update copy of each volume (LU)</td>
<td></td>
</tr>
<tr>
<td>RCLU_Scheduling_Recordset.csv</td>
<td>The number of scheduled recordsets</td>
<td></td>
</tr>
<tr>
<td>RCLU_Scheduling_Miss_Recordset.csv</td>
<td>The number of recordsets that do not arrive during the schedule</td>
<td></td>
</tr>
<tr>
<td>RCLU_Remained_Recordset.csv</td>
<td>The number of remaining recordsets when the schedule is completed</td>
<td></td>
</tr>
<tr>
<td>RCLU_Scheduling_Attempt.csv</td>
<td>The number of job activations of consistency manager</td>
<td></td>
</tr>
<tr>
<td>RCLU_Pair_Synchronized.csv</td>
<td>The percentage of completion of copy operations (i.e., number of synchronized pairs / total number of pairs)</td>
<td></td>
</tr>
<tr>
<td>RCLU_Out_of_Tracks.csv</td>
<td>The number of tracks that have not yet been copied by the initial copy or resync copy operation</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1 millisecond is one-thousandth of 1 second.
Table 7-12 Files with Statistics about Remote Copy Operations by TC and TC for IBM z/OS (At Volumes Controlled by a Particular CU)

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCLDEV_All_RIO.ZIP</td>
<td>RCLDEV_All_RIO_xx.csv</td>
<td>The total number of remote I/Os (read and write operations)</td>
</tr>
<tr>
<td>RCLDEV_All_Read.ZIP</td>
<td>RCLDEV_All_Read_xx.csv</td>
<td>The total number of remote read I/Os</td>
</tr>
<tr>
<td>RCLDEV_All_Write.ZIP</td>
<td>RCLDEV_All_Write_xx.csv</td>
<td>The total number of remote write I/Os</td>
</tr>
<tr>
<td>RCLDEV_RIO_Error.ZIP</td>
<td>RCLDEV_RIO_Error_xx.csv</td>
<td>The number of errors that occur during remote I/O</td>
</tr>
<tr>
<td>RCLDEV_Initial_Copy_RIO.ZIP</td>
<td>RCLDEV_Initial_Copy_RIO_xx.csv</td>
<td>The number of initial copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Initial_Copy_Hit.ZIP</td>
<td>RCLDEV_Initial_Copy_Hit_xx.csv</td>
<td>The number of hits of initial copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Initial_Copy_Transfer.ZIP</td>
<td>RCLDEV_Initial_Copy_Transfer_xx.csv</td>
<td>The average transfer rate (KB/sec) for initial copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Initial_Copy_Respond.ZIP</td>
<td>RCLDEV_Initial_Copy_Respond_xx.csv</td>
<td>The average response time (milliseconds) for initial copy at volumes</td>
</tr>
<tr>
<td>RCLDEV_Migration_Copy_RIO.ZIP</td>
<td>RCLDEV_Migration_Copy_RIO_xx.csv</td>
<td>The number of migration copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Migration_Copy_Hit.ZIP</td>
<td>RCLDEV_Migration_Copy_Hit_xx.csv</td>
<td>The number of hits of migration copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Update_Copy_RIO.ZIP</td>
<td>RCLDEV_Update_Copy_RIO_xx.csv</td>
<td>The number of update copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Update_Copy_Hit.ZIP</td>
<td>RCLDEV_Update_Copy_Hit_xx.csv</td>
<td>The number of hits of update copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Update_Copy_Transfer.ZIP</td>
<td>RCLDEV_Update_Copy_Transfer_xx.csv</td>
<td>The average transfer rate (KB/sec) for update copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Update_Copy_Respond.ZIP</td>
<td>RCLDEV_Update_Copy_Respond_xx.csv</td>
<td>The average response time (milliseconds) for the update copy at volumes</td>
</tr>
<tr>
<td>RCLDEV_Restore_Copy_RIO.ZIP</td>
<td>RCLDEV_Restore_Copy_RIO_xx.csv</td>
<td>The number of restore copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Restore_Copy_Hit.ZIP</td>
<td>RCLDEV_Restore_Copy_Hit_xx.csv</td>
<td>The number of hits of restore copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Asynchronous_RIO.ZIP</td>
<td>RCLDEV_Asynchronous_RIO_xx.csv</td>
<td>The number of asynchronous update copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Recordset.ZIP</td>
<td>RCLDEV_Recordset_xx.csv</td>
<td>The number of asynchronous recordsets</td>
</tr>
<tr>
<td>RCLDEV_Asynchronous_Copy_Transfer.ZIP</td>
<td>RCLDEV_Asynchronous_Copy_Transfer_xx.csv</td>
<td>The average transfer rate (KB/sec) for asynchronous update copy remote I/Os</td>
</tr>
<tr>
<td>RCLDEV_Asynchronous_Copy_Respond.ZIP</td>
<td>RCLDEV_Asynchronous_Copy_Respond_xx.csv</td>
<td>The average response time (milliseconds) for the asynchronous update copy at volumes</td>
</tr>
<tr>
<td>RCLDEV_Scheduling_Recordset.ZIP</td>
<td>RCLDEV_Scheduling_Recordset_xx.csv</td>
<td>The number of scheduled recordsets</td>
</tr>
<tr>
<td>RCLDEV_Scheduling_Miss_Recordset.ZIP</td>
<td>RCLDEV_Scheduling_Miss_Recordset_xx.csv</td>
<td>The number of recordsets that do not arrive during the schedule</td>
</tr>
<tr>
<td>RCLDEV_Remained_Recordset.ZIP</td>
<td>RCLDEV_Remained_Recordset_xx.csv</td>
<td>The number of remaining recordsets when the schedule is completed</td>
</tr>
<tr>
<td>RCLDEV_Scheduling_Attempt.ZIP</td>
<td>RCLDEV_Scheduling_Attempt_xx.csv</td>
<td>The number of job activations of consistency manager</td>
</tr>
</tbody>
</table>
Table 7-13 Files with Statistics about Remote Copy Operations by TC and TC for IBM z/OS (At CLPR)

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCLDEV_Pair_Synchronized.ZIP</td>
<td>RCLDEV_Pair_Synchronized_xx.csv</td>
<td>The percentage of completion of copy operations (i.e., number of synchronized pairs / total number of pairs)</td>
</tr>
<tr>
<td>RCLDEV_Out_of_Tracks.ZIP</td>
<td>RCLDEV_Out_of_Tracks_xx.csv</td>
<td>The number of tracks that have not yet been copied by the initial copy or Resync copy operation</td>
</tr>
</tbody>
</table>

Note:
- 1 millisecond is one-thousandth of 1 second.
- The letters "xx" in CSV filenames indicate a CU image number. For example, if the filename is RCLDEV_All_RIO_10.csv, the file contains the total number of remote I/Os of the volumes controlled by the CU whose image number is 10.

Table 7-14 Files with Statistics about Remote Copy Operations by UR and UR for IBM z/OS (In the Whole Volumes)

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniversalReplicator.ZIP</td>
<td>UniversalReplicator.csv</td>
<td>The following data in the whole volumes are saved:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of write I/Os per second.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of data that are written per second (KB/sec)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The initial copy hit rate (percent)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The average transfer rate (KB/sec) for initial copy operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of asynchronous remote I/Os per second at the primary storage system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of journals at the primary storage system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The average transfer rate (KB/sec) for journals in the primary storage system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The remote I/O average response time (milliseconds) on the primary storage system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of asynchronous remote I/Os per second at the secondary storage system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of journals at the secondary storage system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The average transfer rate (KB/sec) for journals in the secondary storage system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The remote I/O average response time (milliseconds) on the secondary storage system</td>
</tr>
</tbody>
</table>

Note: 1 millisecond is one-thousandth of 1 second.
Table 7-15 Files with Statistics about Remote Copy Operations by UR and UR for IBM z/OS (At Journal Groups)

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>URJNL_dat.ZIP</td>
<td>URJNL_Write_Record.csv</td>
<td>The number of write I/Os per second</td>
</tr>
<tr>
<td></td>
<td>URJNL_Write_Transfer.csv</td>
<td>The amount of data that are written per second (KB/sec)</td>
</tr>
<tr>
<td></td>
<td>URJNL_Init_Cpy_Hit.csv</td>
<td>The initial copy hit rate (percent)</td>
</tr>
<tr>
<td></td>
<td>URJNL_Init_Cpy_Transfer.csv</td>
<td>The average transfer rate (KB/sec) for initial copy operations</td>
</tr>
<tr>
<td></td>
<td>URJNL_M-JNL_Asychronous_RIO.csv</td>
<td>The number of asynchronous remote I/Os per second at the primary storage system</td>
</tr>
<tr>
<td></td>
<td>URJNL_M-JNL_Asychronous_Journal.csv</td>
<td>The number of journals at the primary storage system</td>
</tr>
<tr>
<td></td>
<td>URJNL_M-JNL_Asychronous_Copy_Transfer.csv</td>
<td>The average transfer rate (KB/sec) for journals in the primary storage system</td>
</tr>
<tr>
<td></td>
<td>URJNL_M-JNL_Asychronous_Copy_Response.csv</td>
<td>The remote I/O average response time (milliseconds) on the primary storage system</td>
</tr>
<tr>
<td></td>
<td>URJNL_R-JNL_Asychronous_RIO.csv</td>
<td>The number of asynchronous remote I/Os per second at the secondary storage system</td>
</tr>
<tr>
<td></td>
<td>URJNL_R-JNL_Asychronous_Journal.csv</td>
<td>The number of journals at the secondary storage system</td>
</tr>
<tr>
<td></td>
<td>URJNL_R-JNL_Asychronous_Copy_Transfer.csv</td>
<td>The average transfer rate (KB/sec) for journals in the secondary storage system</td>
</tr>
<tr>
<td></td>
<td>URJNL_R-JNL_Asychronous_Copy_Response.csv</td>
<td>The remote I/O average response time (milliseconds) on the secondary storage system</td>
</tr>
<tr>
<td></td>
<td>URJNL_M-JNL_Data_Used_Rate.csv</td>
<td>Data usage rate (percent) for master journals</td>
</tr>
<tr>
<td></td>
<td>URJNL_M-JNL_Meta_Data_Used_Rate.csv</td>
<td>Metadata usage rate (percent) for master journals</td>
</tr>
<tr>
<td></td>
<td>URJNL_R-JNL_Data_Used_Rate.csv</td>
<td>Data usage rate (percent) for restore journals</td>
</tr>
<tr>
<td></td>
<td>URJNL_R-JNL_Meta_Data_Used_Rate.csv</td>
<td>Metadata usage rate (percent) for restore journals</td>
</tr>
</tbody>
</table>

Note: 1 millisecond is one-thousandth of 1 second.
Table 7-16 Files with Statistics about Remote Copy Operations by UR and UR for IBM z/OS (For Each Volume (LU))

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>URLU.dat.ZIP</td>
<td>URLU_Read_Record.csv</td>
<td>The number of read I/Os per second</td>
</tr>
<tr>
<td></td>
<td>URLU_Read_Hit.csv</td>
<td>The number of read hit records per second</td>
</tr>
<tr>
<td></td>
<td>URLU_Write_Record.csv</td>
<td>The number of write I/Os per second</td>
</tr>
<tr>
<td></td>
<td>URLU_Write_Hit.csv</td>
<td>The number of write hit records per second</td>
</tr>
<tr>
<td></td>
<td>URLU_Read_Transfer.csv</td>
<td>The amount of data that are read per second (KB/sec)</td>
</tr>
<tr>
<td></td>
<td>URLU_Write_Transfer.csv</td>
<td>The amount of data that are written per second (KB/sec)</td>
</tr>
<tr>
<td></td>
<td>URLU_Initial_Copy_Hit.csv</td>
<td>The initial copy hit rate (percent)</td>
</tr>
<tr>
<td></td>
<td>URLU_Initial_Copy_Transfer.csv</td>
<td>The average transfer rate (KB/sec) for initial copy operations</td>
</tr>
</tbody>
</table>

Table 7-17 Files with Statistics about Remote Copy Operations by UR and UR for IBM z/OS (At Volumes Controlled by a Particular CU)

<table>
<thead>
<tr>
<th>ZIP File</th>
<th>CSV File</th>
<th>Data Saved in the File</th>
</tr>
</thead>
<tbody>
<tr>
<td>URLDEV_Read_Record.ZIP</td>
<td>URLDEV_Read_Record_xx.csv</td>
<td>The number of read I/Os per second</td>
</tr>
<tr>
<td>URLDEV_Read_Hit.ZIP</td>
<td>URLDEV_Read_Hit_xx.csv</td>
<td>The number of read hit records per second</td>
</tr>
<tr>
<td>URLDEV_Write_Record.ZIP</td>
<td>URLDEV_Write_Record_xx.csv</td>
<td>The number of write I/Os per second</td>
</tr>
<tr>
<td>URLDEV_Write_Hit.ZIP</td>
<td>URLDEV_Write_Hit_xx.csv</td>
<td>The number of write hit records per second</td>
</tr>
<tr>
<td>URLDEV_Read_Transfer.ZIP</td>
<td>URLDEV_Read_Transfer_xx.csv</td>
<td>The amount of data that are read per second (KB/sec)</td>
</tr>
<tr>
<td>URLDEV_Write_Transfer.ZIP</td>
<td>URLDEV_Write_Transfer_xx.csv</td>
<td>The amount of data that are written per second (KB/sec)</td>
</tr>
<tr>
<td>URLDEV_Initial_Copy_Hit.ZIP</td>
<td>URLDEV_Initial_Copy_Hit_xx.csv</td>
<td>The initial copy hit rate (percent)</td>
</tr>
<tr>
<td>URLDEV_Initial_Copy_Transfer.ZIP</td>
<td>URLDEV_Initial_Copy_Transfer_xx.csv</td>
<td>The average transfer rate (KB/sec) for initial copy operations</td>
</tr>
</tbody>
</table>

Note: The letters "xx" in CSV filenames indicate a CU image number. For example, if the filename is URLDEV_Read_Record_10.csv, the file contains the number of read I/Os (per second) of the volumes controlled by the CU whose image number is 10.
Preparation for Using the Export Tool

This section explains how to prepare for using the Export Tool.

Requirements for Using the Export Tool

The following components are required to use the Export Tool:

- **a Windows computer or a UNIX computer**
 The Export Tool runs on Windows computers and UNIX computers that can run Storage Navigator. If your Windows or UNIX computer is unable to run Storage Navigator, your computer is unable to run the Export Tool. For detailed information about computers that can run Storage Navigator, see the *Storage Navigator User’s Guide*.

- **Java Runtime Environment (JRE)**
 To be able to use the Export Tool, you must install Java Runtime Environment on your Windows or UNIX computer. If your computer runs Storage Navigator, JRE is already installed on your computer and you can install the Export Tool. If your computer does not run Storage Navigator but contains an appropriate version of JRE, you can install the Export Tool on your computer.

 The JRE version required for running the Export Tool is the same as the JRE version required for running Storage Navigator. For detailed information about the JRE version required for running Storage Navigator, see the *Storage Navigator User’s Guide*.

- **A user ID exclusively for use with the Export Tool**
 If you want to use the Export Tool, you must create a user ID that will be used exclusively with the Export Tool. When you create the user ID, note the following:

 - **Permissions of USP V/VM programs**
 If you use the Export Tool only to save the monitoring data into files, do not assign any permission to the user ID for use with the Export Tool. If a user ID having permission is used with the Export Tool, the storage system configuration might be changed in an unfavorable way by an unidentified user.

 If you use the Export Tool not only to save monitoring data but also to start or stop monitoring and to change the gathering interval by the `set` subcommand, the user ID needs to have at least one of permissions for Performance Monitor, TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS.

 - **User types**
 You can specify any user type for the user ID for use with the Export Tool.

 If you specify "storage administrator" for the user ID, all the monitoring data described from Table 7-2 to Table 7-17 can be saved into files.
If you specify "storage partition administrator" for the user ID, the monitoring data that can be saved and the functions of the Export Tool are limited. For details, see Using the Export Tool.

For detailed information about how to create a user ID, see the Storage Navigator User’s Guide.

- **The Export Tool program**
 The Export Tool is contained in CD-ROM Disc 2, which is named Host PP. For detailed information about how to install the Export Tool on a Windows computer, see Installing the Export Tool on a Windows Computer. For detailed information about how to install the Export Tool on a UNIX computer, see Installing the Export Tool on a UNIX Computer.

Installing the Export Tool on a Windows Computer

To install the Export Tool on a Windows computer:

1. Create a directory on your Windows computer. In later steps, you will install the Export Tool on the new directory.
2. Insert the Export Tool installation media into the CD-ROM drive.
3. Locate the self-extracting file `export.EXE` in the directory `\program\monitor\win_nt` in your CD-ROM disc, and then copy `export.EXE` to the new directory that you created earlier.
4. Double-click `export.EXE` on your computer. The Export Tool is installed. Also, a new directory named `export` is created.

Notes:

The `export` directory contains a couple of files, which include `runUnix.bat`. It is recommended that you delete `runUnix.bat` because this file is no longer needed.

The Export Tool program is a Java class file and is located in the `export\lib` directory.
Installing the Export Tool on a UNIX Computer

To install the Export Tool on a UNIX computer:

1. Create a directory on your UNIX computer. In later steps, you will install the Export Tool on the new directory.

2. Mount the Export Tool installation media.

3. Do one of the following:
 - If you are using Solaris, locate the archive file `export.tar` in the directory `/program/monitor/solaris` in your CD-ROM disc, and then copy `export.tar` to the new directory that you created earlier.
 - If you are using HP-UX, locate the archive file `export.tar` in the directory `/program/monitor/HP-UX` in your CD-ROM disc, and then copy `export.tar` to the new directory that you created earlier.

4. Decompress `export.tar` on your computer. The Export Tool is installed. Also, a new directory named `export` is created.

Notes:
The `export` directory contains a couple of files, which include `runWin.bat`. It is recommended that you delete `runWin.bat` because this file is no longer needed.

The Export Tool program is a Java class file and is located in the `export/lib` directory.
Using the Export Tool

To be able to export monitoring data, you must prepare a command file and a batch file. This section explains how to prepare a command file and a batch file, and then explains how to run the Export Tool.

- Preparing a command file
- Preparing a batch file
- Running the Export Tool

Preparing a Command File

To be able to run the Export Tool, you must write scripts for exporting monitoring data. When writing scripts, you need to write several subcommands in a command file. When you run the Export Tool, the subcommands in the command file execute sequentially and then the monitoring data are saved in files.

Figure 7-1 gives an example of a command file:

```
svip 158.214.135.57 ; Specifies IP address of SVP
login expusr passwd ; Logs user into SVP
show ; Outputs storing period to standard output
group PhyPG Long ; Specifies type of data to be exported and type of storing period
        group RemoteCopy ; Specifies type of data to be exported
        short-range 200610010850:200610010910 ; Specifies term of data to be exported for data stored in short range
        long-range 200609301430:200610011430 ; Specifies term of data to be exported for data stored in long range
        outpath out ; Specifies directory in which files will be saved
        option compress ; Specifies whether to compress files
        apply ; Executes processing for saving monitoring data in files
```

Figure 7-1 Example of a Command File

In the above scripts, the semicolon (;) indicates the beginning of a comment. Characters from a semicolon to the end of the line are regarded as a comment.

The scripts in this command file are explained as follows:

- `svpip 158.214.135.57`
 This script specifies that you are logging into the SVP whose IP address is 158.214.135.57. You must log into the SVP when using the Export Tool.
 The `svpip` subcommand specifies the IP address of the SVP. You must include the `svpip` subcommand in your command file. For detailed information about the `svpip` subcommand, see `svpip` Subcommand.

- `login expusr passwd`
This script specifies that you use the user ID **expusr** and the password **passwd** to log into the SVP.

The `login` subcommand logs the specified user into the SVP. You must include the `login` subcommand in your command file. For detailed information about the `login` subcommand, see login Subcommand.

Caution: When you write the `login` subcommand in your command file, you must specify a user ID that should be used exclusively for running the Export Tool. See Requirements for Using the Export Tool for reference.

- **show**

 The `show` subcommand checks the SVP to find the period of monitoring data stored in the SVP and the data collection interval (that is called "gathering interval" in Performance Monitor), and then outputs them to the standard output (for example, the command prompt) and the log file.

 Performance Monitor collects statistics by the two types of storing periods: **in short range** and **in long range**. The `show` subcommand displays the storing periods and the gathering intervals for these two types of monitoring data.

 The following is an example of information that the `show` subcommand outputs:

<table>
<thead>
<tr>
<th>Short Range</th>
<th>From: 2006/10/01 01:00 - To: 2006/10/01 15:00</th>
<th>Interval: 1min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Range</td>
<td>From: 2006/09/01 00:00 - To: 2006/10/01 15:00</td>
<td>Interval: 15min.</td>
</tr>
</tbody>
</table>

 Short Range indicates the storing period and gathering interval of the monitoring data stored in short range. **Long Range** indicates those of the monitoring data stored in long range. In the above example, the monitoring data in short range is stored every 1 minute in the term of 1:00-15:00 on Oct. 1, 2006. Also, the monitoring data in long range is stored every 15 minutes in the term of Sep. 1, 2006, 0:00 through Oct. 1, 2006, 15:00. When you run the Export Tool, you can export monitoring data within these periods into files.

 All the monitoring items are stored in short range, but a part of monitoring items is stored in both the short range and long range. For details on monitoring items that can be stored in long range, see long-range Subcommand.

 The use of the `show` subcommand is not mandatory, but it is recommended that you include the `show` subcommand in your command file. If an error occurs when you run the Export Tool, you might be able to find the error cause by checking the log file for information issued by the `show` subcommand. For detailed information about the `show` subcommand, see `show` Subcommand.

- **group PhyPG Long** and **group RemoteCopy**
The `group` subcommand specifies the type of data that you want to export. Specify a operand following `group` to define the type of data to be exported. Basically, monitoring data stored in short range is exported. But you can direct to export monitoring data stored in long range when you specify some of the operands.

The script `group PhyPG Long` in Figure 7-1 specifies to export usage statistics about parity groups in long range. Also, the script `group RemoteCopy` specifies to export statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS in short range. You can describe multiple lines of the `group` subcommand to export multiple monitoring items at the same time.

For detailed information about the `group` subcommand, see `group Subcommand`.

- **short-range** 200610010850:200610010910 and **long-range** 200609301430:200610011430

The `short-range` and `long-range` subcommands specify the term of monitoring data to be exported. Use these subcommands when you want to narrow the export-target term within the stored data. You can specify both the `short-range` and `long-range` subcommands at the same time. The difference between these subcommands is as follows:

- **The short-range subcommand** is valid for monitoring data in short range. You can use this subcommand to narrow the export-target term for all the monitoring items you can specify by the `group` subcommand.

 Specify a term within "Short Range From XXX To XXX" which is output by the `show` subcommand.

- **The long-range subcommand** is valid for monitoring data in long range. You can use this subcommand only when you specify the PhyPG, PhyLDEV, PhyProc, or PhyCSW operand with the Long option in the `group` subcommand. (The items that can be saved by these operands are the monitoring data displayed in the Physical tab of the Performance Management window with selecting long-range.)

 Specify a term within "Long Range From XXX To XXX" which is output by the `show` subcommand.

In Figure 7-1, the script `short-range` 200610010850:200610010910 specifies the term 8:50-9:10 on Oct. 1, 2006. This script is applied to the `group RemoteCopy` subcommand in this example. When you run the Export Tool, it will export the statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS in the term specified by the `short-range` subcommand.

Also, in Figure 7-1, the script `long-range` 200609301430:200610011430 specifies the term from Sep. 30, 2006, 14:30 to Oct. 1, 2006, 14:30. This script is applied to the `group PhyPG Long` subcommand in this example. When you run the Export Tool, it will export the usage statistics about parity groups in the term specified by the `long-range` subcommand.
If you run the Export Tool without specifying the short-range or long-range subcommand, the monitoring data in the whole storing period (data in the period displayed by the show subcommand) will be exported.

- For detailed information about the short-range subcommand, see short-range Subcommand.
- For detailed information about the long-range subcommand, see long-range Subcommand.

- **outpath out**

 This script specifies that files should be saved in the directory named out in the current directory.

 The outpath subcommand specifies the directory in which files should be saved. For detailed information about the outpath subcommand, see outpath Subcommand.

- **option compress**

 This script specifies that the Export Tool should compress monitoring data in ZIP files.

 The option subcommand specifies whether to save files in ZIP format or in CSV format. For detailed information about the option subcommand, see option Subcommand.

- **apply**

 The apply subcommand saves monitoring data in files. For detailed information about the apply command, see apply Subcommand.

When you install the Export Tool, the file `command.txt` will be stored in the export directory. The `command.txt` file contains sample scripts for your command file. It is recommended that you customize scripts in command.txt according to your needs. For detailed information about subcommand syntax, see Command Reference.

Preparing a Batch File

To run the Export Tool, you need a batch file. The Export Tool starts and saves monitoring data in files when you execute the batch file.

The installation directory for the Export Tool (that is, the export directory) contains two batch files: `runWin.bat` and `runUnix.bat`. If your computer runs Windows, use `runWin.bat`. If your computer runs UNIX, use `runUnix.bat`.

Figure 7-2 illustrates scripts in runWin.bat and runUnix.bat. These batch files include a command line that executes a Java command. When you execute your batch file, the Java command executes subcommands specified in your command file and then saves monitoring data in files.

Batch file for Windows computers (runWin.bat)
Using the Export Tool

Batch file for UNIX computers (runUnix.bat)

```
#! /bin/sh
Java -classpath ".:/lib/JSanExport.jar;:/lib/JSanRmiServerSx.jar" -Xmx536870912 -Dhttp.proxyHost=Jupiter -Dhttp.proxyPort=8080 -Dmd.command=command.txt -Dmd.logpath=log sanproject.getmondat.RJMdMain 
```

Figure 7-2 Scripts in Batch Files

In the above scripts, the "#" symbol indicates the end of a command line.

If the computer running the Export Tool communicates directly with the SVP, you usually do not need to change scripts in runWin.bat and runUnix.bat. However, you might need to edit the Java command script in your text editor in some occasions, for example:

- if the name of your command file is not command.txt
- if you moved your command file to a different directory
- if you do not want to save log files in the "log" directory
- if you want to name log files as you like

If the computer that runs the Export Tool communicates with the SVP via a proxy host, you need to edit the Java command script in your text editor. When editing the Java command script, you need to specify the host name (or the IP address) and the port number of the proxy host. For example, if the host name is Jupiter and the port number is 8080, the resulting command script as shown in Figure 7-3:

Batch file for Windows computers (runWin.bat)

```
Java -classpath ".:/lib/JSanExport.jar;:/lib/JSanRmiServerSx.jar" -Dhttp.proxyHost=Jupiter -Dhttp.proxyPort=8080 -Xmx536870912 -Dmd.command=command.txt -Dmd.logpath=log sanproject.getmondat.RJMdMain 
```

Batch file for UNIX computers (runUnix.bat)

```
#! /bin/sh
Java -classpath ".:/lib/JSanExport.jar;:/lib/JSanRmiServerSx.jar" -Dhttp.proxyHost=Jupiter -Dhttp.proxyPort=8080 -Xmx536870912 -Dmd.command=command.txt -Dmd.logpath=log sanproject.getmondat.RJMdMain 
```

Figure 7-3 Scripts in Batch Files (When Specifying the Host Name of a Proxy Host)

In the above scripts, the "#" symbol indicates the end of a command line.

If the IP address of the proxy host is 158.211.122.124 and the port number is 8080, the resulting command script is as follows:

Batch file for Windows computers (runWin.bat)

```
Java -classpath ".:/lib/JSanExport.jar;:/lib/JSanRmiServerSx.jar" -Dhttp.proxyHost=158.211.122.124 
```

Batch file for UNIX computers (runUnix.bat)

```
#! /bin/sh
Java -classpath ".:/lib/JSanExport.jar;:/lib/JSanRmiServerSx.jar" -Dhttp.proxyHost=158.211.122.124 
```
Using the Export Tool

Running the Export Tool

To run the Export Tool and save monitoring data in files, you need to execute your batch file. To execute your batch file, you need to enter the name of the batch file at the command prompt and then press the <Enter> key. If you are using a Windows computer, you can double-click the batch file to execute the batch file.

```
c:\\WINDOWS> cd c:\export
Go to the directory containing runWin.bat

c:\export> runWin.bat
Execute runWin.bat
```

When the Export Tool starts exporting monitoring data, dots (...) are issued to the standard output (for example, the command prompt). The dots increment as export processing continues. If an internal error occurs, the exclamation mark (!) is issued to the standard output and the Export Tool attempts to restart exporting data. If the export processing restarts, dots reappear and increment until export processing finishes.

Figure 7-4 Scripts in Batch Files (When Specifying the IP Address of a Proxy Host)

In the above scripts, the "#<" symbol indicates the end of a command line.

For detailed information about syntax of the Java command, see Java Command for Exporting Data In Files.

Figure 7-5 Example of Executing a Batch File (on a Windows Computer)
When the Export Tool finishes successfully, monitoring data are usually compressed in ZIP-format archive files. If you want to obtain CSV files, you need to decompress ZIP files and extract CSV files out of the ZIP files. If the operating system on your computer does not include a feature for decompressing ZIP files, you need to obtain software for decompressing files.

For a complete list of files to be saved by the Export Tool, see Using the Export Tool.

When an internal error occurs during export processing, the exclamation mark (!) appears to signal the error. If this happens, the Export Tool will make up to three more attempts at processing.

If export processing does not finish through three retries or if an internal error occurs other than those in Table 7-18, the Export Tool does not retry the processing. In this case, you need to quit the command prompt and then run the Export Tool again.

You can change the maximum number of retries by using the retry subcommand. For detailed information about the retry subcommand, see retry Subcommand.

Table 7-18 Errors for Which Export Tool Retries Processing

<table>
<thead>
<tr>
<th>Error Message ID</th>
<th>Cause of Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 4001</td>
<td>An error occurred during SVP processing.</td>
</tr>
<tr>
<td>0001 5400</td>
<td>Since the SVP is busy, the monitoring data cannot be obtained.</td>
</tr>
<tr>
<td>0001 5508</td>
<td>An administrator is changing a system environment file.</td>
</tr>
<tr>
<td>0002 2016</td>
<td>Array is refreshing, or the settings by the user are registered.</td>
</tr>
<tr>
<td>0002 5510</td>
<td>The storage system is in internal process, or some other user is changing configuration.</td>
</tr>
<tr>
<td>Error Message ID</td>
<td>Cause of Error</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>0002 6502</td>
<td>Now processing.</td>
</tr>
<tr>
<td>0002 9000</td>
<td>Another user has lock.</td>
</tr>
<tr>
<td>0003 2016</td>
<td>A service engineer is accessing the storage system in Modify mode.</td>
</tr>
<tr>
<td>0003 2033</td>
<td>The SVP is not ready yet, or an internal processing is being executed.</td>
</tr>
<tr>
<td>0003 3006</td>
<td>An error occurred during SVP processing.</td>
</tr>
<tr>
<td>0405 8003</td>
<td>The storage system status is invalid.</td>
</tr>
<tr>
<td>5205 2003</td>
<td>An internal process is being executed, or maintenance is in progress.</td>
</tr>
<tr>
<td>5205 2033</td>
<td>The SVP is now updating the statistics data.</td>
</tr>
<tr>
<td>5305 2033</td>
<td>The SVP is now updating the statistics data.</td>
</tr>
<tr>
<td>5305 8002</td>
<td>The storage system status is invalid.</td>
</tr>
</tbody>
</table>

If you specify the `nocompress` operand for the `option` subcommand, the Export Tool saves files in CSV format instead of ZIP format (For detailed information, see option Subcommand). When files are saved in CSV format instead of ZIP format, the file saving process could take longer and the resulting files could be larger.

Files saved by the Export Tool are often very large. The total file size for all the files can be as large as approximately 2 GB. For this reason, the exporting process might take a lot of time. If you want to export statistics spanning a long period of time, it is recommended that you run the Export Tool multiple times for different periods, rather than run only once to export the entire time span as a single large file. For example, if you want to export statistics spanning 24 hours, run the tool eight times to export statistics in three hour increments.
Table 7-19 Estimate of Time Required for Exporting Files

<table>
<thead>
<tr>
<th>Operand for the Group Subcommand</th>
<th>Estimated Time</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>5 minutes</td>
<td>This estimate assumes that the Export Tool should save statistics about 128 ports within a 24-hour period.</td>
</tr>
<tr>
<td>PortWWN</td>
<td>5 minutes</td>
<td>This estimate assumes that the Export Tool should save statistics about 128 ports within a 24-hour period.</td>
</tr>
<tr>
<td>PPCG</td>
<td>5 minutes</td>
<td>This estimate assumes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>There are eight SPM groups, and eight WWNs are registered on each SPM group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>There is a WWN that is not registered on any SPM group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Export Tool should save statistics about SPM groups and WWNs described above within a 24-hour period.</td>
</tr>
<tr>
<td>LDEV</td>
<td>60 minutes</td>
<td>This estimate assumes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Export Tool should save statistics about 8,192 volumes within a 24-hour period.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Export Tool is used eight times. Each time the Export Tool is used, the tool obtains statistics within a 3-hour period.</td>
</tr>
<tr>
<td>LU</td>
<td>60 minutes</td>
<td>This estimate assumes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Export Tool should save statistics about 12,288 LUs within a 24-hour period.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Export Tool is used eight times. Each time the Export Tool is used, the tool obtains statistics within a 3-hour period.</td>
</tr>
</tbody>
</table>

Whenever the Export Tool runs, the Export Tool creates a new log file on your computer. Therefore, if you run the Export Tool repeatedly, the size of free space on your computer will be reduced. To secure free space on your computer, you are strongly recommended to delete log files regularly. For information about the directory containing log files, see Java Command for Exporting Data In Files.

For information about how to solve errors with the Export Tool, see Overview of Export Tool.

The Export Tool returns a termination code when the Export Tool finishes.
Table 7-20 Termination Codes Returned by the Export Tool

<table>
<thead>
<tr>
<th>Termination Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The Export Tool finished successfully.</td>
</tr>
<tr>
<td>1</td>
<td>An error occurred when the <code>set</code> subcommand (see set subcommand) executed, because an attempt to switch to Modify mode failed. Some other user might have been logged on in Modify mode.</td>
</tr>
<tr>
<td>2</td>
<td>An error occurred due to some reason unrelated to system option modes (i.e., View mode and Modify mode)</td>
</tr>
<tr>
<td>3</td>
<td>An error occurred due to more than one reason. One of the reasons is that an attempt to switch to Modify mode failed when the <code>set</code> subcommand (see set subcommand) executed. Some other user might have been logged on in Modify mode.</td>
</tr>
<tr>
<td>4</td>
<td>The user ID has none of permissions for Performance Monitor, TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS.</td>
</tr>
</tbody>
</table>

If you want to use a reference to a termination code in your batch file, do the following:

- To use such a reference in a Windows batch file, write `%errorlevel%` in the batch file.
- To use such a reference in a UNIX Bourne shell script, write `%?` in the shell script.
- To use such a reference in a UNIX C shell script, write `%status` in the shell script.

A reference to a termination code is used in the following example of a Windows batch file. If this batch file executes and the Export Tool returns the termination code 1 or 3, the command prompt displays a message that indicates the `set` subcommand fails.

```java
Java -classpath "/lib/JSanExport.jar;/lib/JSanRmiServerSx.jar" -Xmx536870912 -Dmd.command=command.txt -Dmd.logpath=log sanproject.getmondat.RJMdMain
if %errorlevel%==1 echo THE SET SUBCOMMAND FAILED
if %errorlevel%==3 echo THE SET SUBCOMMAND FAILED
pause
```

Figure 7-7 Example of a Batch File Including References to Termination Codes

Note: The "→" symbol indicates the end of a command line.
Command Reference

This section provides the syntax of the subcommands that you can write in your command file and the Java command that should be used in your batch file. Table 7-21 lists the subcommands explained in this section. The Java command is explained in Java Command for Exporting Data In Files.

Table 7-21 Subcommand List

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Function</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>svpip</td>
<td>Specifies the IP address of the SVP to be logged in.</td>
<td>svpip Subcommand</td>
</tr>
<tr>
<td>retry</td>
<td>Makes settings on retries of export processing.</td>
<td>retry Subcommand</td>
</tr>
<tr>
<td>login</td>
<td>Logs the specified user into the SVP.</td>
<td>login Subcommand</td>
</tr>
<tr>
<td>show</td>
<td>Checks the SVP to find the period of monitoring data stored in the SVP and the data collection interval (that is called “gathering interval”), and then outputs them to the standard output and the log file.</td>
<td>show Subcommand</td>
</tr>
<tr>
<td>group</td>
<td>Specifies the type of data that you want to export.</td>
<td>group Subcommand</td>
</tr>
<tr>
<td>short-range</td>
<td>Specifies the term of monitoring data to be exported for short-range monitoring data.</td>
<td>short-range Subcommand</td>
</tr>
<tr>
<td>long-range</td>
<td>Specifies the term of monitoring data to be exported for long-range monitoring data.</td>
<td>long-range Subcommand</td>
</tr>
<tr>
<td>outpath</td>
<td>Specifies the directory in which files should be saved.</td>
<td>outpath Subcommand</td>
</tr>
<tr>
<td>option</td>
<td>Specifies whether to save files in ZIP format or in CSV format.</td>
<td>option Subcommand</td>
</tr>
<tr>
<td>apply</td>
<td>Saves monitoring data in files.</td>
<td>apply Subcommand</td>
</tr>
<tr>
<td>set</td>
<td>Starts or ends monitoring the storage system, and also specifies the gathering interval in short range monitoring.</td>
<td>set subcommand</td>
</tr>
<tr>
<td>help</td>
<td>Displays the online help for subcommands.</td>
<td>set subcommand</td>
</tr>
</tbody>
</table>
Command Syntax

This section explains the syntax of subcommands that you can write in your command file. This section also explains the syntax of the Java command that should be used in your batch file.

- **Conventions used in this section**

 This section uses the following symbols and typefaces to explain syntax:

 - \(\triangle \)
 - Indicates a space.
 - **bold**
 - Indicates characters that you must type as they are.
 - *italics*
 - Indicates a type of an operand. You do not need to type characters in italics as they are.
 - []
 - Indicates one or more operands that can be omitted.
 - If two or more operands are enclosed by these square brackets and are delimited by vertical bars (\|), you can select one of the operands.
 - \{ \}
 - Indicates that you must select one operand from the operands enclosed by the braces. Two or more operands are enclosed by the braces and are delimited by vertical bars (|).

... Indicates that a previously used operand can be repeated.

Table 7-22 Syntax Descriptions

<table>
<thead>
<tr>
<th>Syntax</th>
<th>The Syntax Indicates that You Can Write the Following Script</th>
</tr>
</thead>
<tbody>
<tr>
<td>connect(\triangle ip-address)</td>
<td>connect 123.01.22.33</td>
</tr>
</tbody>
</table>
| destination\(\triangle [directory]\) | destination
destination c:\temp |
| compress\(\triangle [yes|no]\) | compress
compress yes
compress no |
| answer\(\triangle \{yes|no\}\) | answer yes
answer no |
| ports\(\triangle [name][\triangle...]\) | ports
ports port-1
ports port-1 port-2 |
• **Notes on writing script in the command file**
 When you write a script in your command file, be aware of the following:
 – Ensure that only one subcommand is used in one line.
 – Empty lines in any command file will be ignored.
 – Use a semicolon (;) if you want to insert a comment in your command file. If you enter a semicolon in one line, the remaining characters in that line will be regarded as a comment.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>svpip 158.214.135.57</td>
<td>; IP address of SVP</td>
</tr>
<tr>
<td>login expusr "passwd"</td>
<td>; Log onto SVP</td>
</tr>
</tbody>
</table>

Figure 7-8 Examples of Comments

• **Viewing the Online Help for subcommands**
 You can display the online Help to view the syntax of subcommands when you are working at the command prompt. To be able to view the online Help, you must use the **help** subcommand of the Export Tool. For detailed information about how to use the **help** subcommand, see **help Subcommand**.
svpip Subcommand

Syntax

svpip ip-address | host-name

Description

The svpip subcommand specifies the IP address or the host name of the SVP.

Operands

ip-address

Specifies the IP address of the SVP. If the SVP is managed with IPv6 (Internet Protocol Version 6), you must specify the ip-address operand to match the format of IPv6. If the Export Tool runs on Windows XP, the interface identifier (for example, "%5") must be added to the end of the specified IP address.

host-name

Specifies the host name of the SVP.

If the host name includes any character that is neither an alphanumeric nor a period, the host name must be enclosed by double quotation marks (".

Example

The following example specifies the IP address of the SVP as 158.214.127.170.

svpip 158.214.127.170
retry Subcommand

Syntax

```
retry \[time=\text{m}] \[count=\text{n}]
```

Description

The `retry` subcommand makes settings on retries of export processing.

When an internal error occurs during export processing, the Export Tool stops processing and then retries export processing. By default, the Export Tool can retry processing up to three times, but you can change the maximum number of retries by using the `retry` subcommand.

By default, the interval between one retry and the next retry is two minutes. You can change the interval by using the `retry` subcommand.

The `retry` subcommand must execute before the `login` subcommand executes.

Operands

- `\text{time} = \text{m}`
 Specifies the interval between retries in minutes.
 \text{m} is a value within the range of 1 to 59.
 If this operand is omitted, the interval between retries is two minutes.

- `\text{count} = \text{n}`
 Specifies the maximum number of retries.
 If \text{n} is 0, the number of retries is unlimited.
 If this operand is omitted, the maximum number of retries is 3.

Example

If the following command file is used, the interval between retries is five minutes and the maximum number of retries is 10.

```
svpip 158.214.135.57
retry time=5 count=10
login expusr passwd
show
group Port
short-range 200604010850:200604010910
outpath out
option compress
apply
```
login Subcommand

Syntax

```
login userid password
```

Description

The `login` subcommand uses a user ID and a password to log the specified user in the SVP.

The `svpip` subcommand must execute before the `login` subcommand executes.

The `login` subcommand fails if monitoring data does not exist in the SVP.

Operands

`userid`

Specifies the user ID for the SVP.

If the user ID includes any non-alphanumeric character, the user ID must be enclosed by double quotation marks (").

Be sure to specify a user ID that should be used exclusively with the Export Tool. For detailed information, see Requirements for Using the Export Tool.

`password`

Specifies the password of the user.

If the password includes any non-alphanumeric character, the password ID must be enclosed by double quotation marks (").

Example

This example logs the user `expusr` into the SVP whose IP address is `158.214.127.170`. The password is `pswd`.

```
svpip 158.214.127.170
login expuser pswd
```
show Subcommand

Syntax

show

Description

The show subcommand outputs the following information to the standard output (for example, to the command prompt):
- the period during which monitoring data was collected onto the SVP (storing period)
- the interval at which the monitoring data was collected (gathering interval).

Performance Monitor collects statistics by the two types of storing periods: in short range and in long range. In short-range monitoring, the monitoring data between 8 hours and 15 days is stored in the SVP, and in long-range monitoring, the monitoring data up to three months is stored in the SVP. For details on the two storing periods, see Understanding Statistical Storage Ranges.

The show subcommand displays the storing period and the gathering interval for these two types of monitoring data: in short range and in long range. For example, the show subcommand outputs the following information:

<table>
<thead>
<tr>
<th>Short Range</th>
<th>From: 2006/10/01 01:00 - To: 2006/10/01 15:00</th>
<th>Interval: 1min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Range</td>
<td>From: 2006/09/01 00:00 - To: 2006/10/01 15:00</td>
<td>Interval: 15min.</td>
</tr>
</tbody>
</table>

Short Range indicates the storing period and gathering interval of the monitoring data stored in short range. Long Range indicates those of the monitoring data stored in long range. When you run the Export Tool, you can export the monitoring data within these periods into files. If you use the short-range or long-range subcommand additionally, you can narrow the term of data to be exported (see short-range Subcommand or long-range Subcommand).

From indicates the starting time for collecting monitoring data. To indicates the ending time for collecting monitoring data.

Interval indicates the interval at which the monitoring data was collected (gathering interval). For example, Interval 15min. indicates that monitoring data was collected at 15-minute intervals.

Storing periods output by the show subcommand is the same as the information displayed in the Monitoring Term area of the Performance Management window.
The `show` subcommand outputs the period from May 2, 2006, 03:12 to May 3, 2006, 03:12.

Figure 7-9 Information output by the show subcommand

The `login` command must execute before the `show` subcommand executes.
group Subcommand

Syntax

group △{PhyPG △[Short | Long] △[[parity-group-id]:[parity-group-id]][△...]]
PhyLDEV △[Short | Long] △[[parity-group-id]:[parity-group-id]][△...]]
PhyExG △[[exg-id]:[exg-id]][△...]]
PhyExLDEV △[[exg-id]:[exg-id]][△...]]
PhyProc △[Short | Long]
PhyCSW △[Short | Long]
PG △[[parity-group-id|V-VOL-group-id][exg-id]]:
PhyLDEV △[[parity-group-id|V-VOL-group-id][exg-id]]:
PhyProc △[Short | Long]
PhyCSW △[Short | Long]
Port △[[port-name]:[port-name]][△...]]
PortWWN △[[port-name]:[port-name]][△...]]
LU △[[port-name.host-group-id]:[port-name.host-group-id]][△...]]
PPCG △[[SPM-group-name]:[SPM-group-name]][△...]]
PPCGWWN △[[SPM-group-name]:[SPM-group-name]][△...]]
RemoteCopy △
RCLU △[[port-name.host-group-id]:[port-name.host-group-id]][△...]]
RCLDEV △[[CU-id]:[CU-id]][△...]]
RCCLPR △
UniversalReplicator △
URJNL △[[JNL-group-id]:[JNL-group-id]][△...]]
URLU △[[port-name.host-group-id]:[port-name.host-group-id]][△...]]
URLDEV △[[CU-id]:[CU-id]][△...]]

Description

The `group` subcommand specifies the type of monitoring data that you want to export. This command uses an operand (such as `PhyPG` and `PhyLDEV` above) to specify a type of monitoring data.

Table 7-23 shows the monitoring data that can be saved into files by each operand, and the saved ZIP files. For details on the monitoring data saved in these files, refer to the tables indicated in the `See` column.

Table 7-23 Operands of the group Subcommand and Saved Monitoring Data

<table>
<thead>
<tr>
<th>Operand</th>
<th>Window of Performance Monitor</th>
<th>Monitoring Data Saved in the File</th>
<th>Saved ZIP File</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhyPG</td>
<td>Physical tab in the Performance Management</td>
<td>Usage statistics about parity groups</td>
<td>PhyPG_dat.ZIP (*1)</td>
<td>Table 7-2</td>
</tr>
<tr>
<td>PhyLDEV</td>
<td></td>
<td>Usage statistics about volumes</td>
<td>PhyLDEV_dat.ZIP (*1)</td>
<td></td>
</tr>
<tr>
<td>Operand</td>
<td>Window of Performance Monitor</td>
<td>Monitoring Data Saved in the File</td>
<td>Saved ZIP File</td>
<td>See</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>PhyExG</td>
<td>window</td>
<td>Usage conditions about external volume groups</td>
<td>PhyExG_dat.ZIP</td>
<td></td>
</tr>
<tr>
<td>PhyExLDEV</td>
<td></td>
<td>Usage conditions about external volumes</td>
<td>PhyExLDEV_dat.ZIP</td>
<td></td>
</tr>
<tr>
<td>PhyProc</td>
<td></td>
<td>Usage statistics about channel processors, disk processors, and data recovery and reconstruction processors</td>
<td>PhyProc_dat.ZIP (*1)</td>
<td></td>
</tr>
<tr>
<td>PhyCSW</td>
<td></td>
<td>Usage statistics about access paths, write pending rate, and cache</td>
<td>PhyCSW_dat.ZIP (*1)</td>
<td></td>
</tr>
<tr>
<td>PG</td>
<td>LDEV tab in the Performance Management window</td>
<td>Statistics about parity groups, external volume groups, or V-VOL groups</td>
<td>PG_dat.ZIP</td>
<td>Table 7-3</td>
</tr>
<tr>
<td>LDEV</td>
<td>window</td>
<td>Statistics about volumes in parity groups, in external volume groups, or in V-VOL groups</td>
<td>LDEV_XXXXX.ZIP (*2)</td>
<td>Table 7-4</td>
</tr>
<tr>
<td>Port</td>
<td>Port-LUN tab in the Performance Management window</td>
<td>Statistics about ports</td>
<td>Port_dat.ZIP</td>
<td>Table 7-5</td>
</tr>
<tr>
<td>PortWWN</td>
<td>window</td>
<td>Statistics about host bus adapters connected to ports</td>
<td>PortWWN_dat.ZIP</td>
<td>Table 7-6</td>
</tr>
<tr>
<td>LU</td>
<td></td>
<td>Statistics about LUs</td>
<td>LU_dat.ZIP</td>
<td>Table 7-7</td>
</tr>
<tr>
<td>PPCG</td>
<td>WWN tab in the Performance Management window</td>
<td>Statistics about SPM groups</td>
<td>PPCG_dat.ZIP</td>
<td>Table 7-8</td>
</tr>
<tr>
<td>PPCGWWN</td>
<td>window</td>
<td>Statistics about host bus adapters belonging to SPM groups</td>
<td>PPCGWWN_dat.ZIP</td>
<td>Table 7-9</td>
</tr>
<tr>
<td>RemoteCopy</td>
<td>TC Monitor window and TCz Monitor window</td>
<td>Statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS (in complete volumes)</td>
<td>RemoteCopy_dat.ZIP</td>
<td>Table 7-10</td>
</tr>
<tr>
<td>RCLU</td>
<td></td>
<td>Statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS (for each volume (LU))</td>
<td>RCLU_dat.ZIP</td>
<td>Table 7-11</td>
</tr>
<tr>
<td>RCLDEV</td>
<td></td>
<td>Statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS (for volumes controlled by a particular CU)</td>
<td>RCLDEV_XXXXX.ZIP (*3)</td>
<td>Table 7-12</td>
</tr>
<tr>
<td>RCCLPR</td>
<td></td>
<td>Statistics about remote copy operations by TrueCopy and TrueCopy for IBM z/OS (at CLPR)</td>
<td>RCCLPR_dat.ZIP</td>
<td>Table 7-13</td>
</tr>
<tr>
<td>Operand</td>
<td>Window of Performance Monitor</td>
<td>Monitoring Data Saved in the File</td>
<td>Saved ZIP File</td>
<td>See</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>UniversalReplicator</td>
<td>UR Monitor window and URz Monitor window</td>
<td>Statistics about remote copy operations by Universal Replicator and Universal Replicator for IBM z/OS (for entire volumes)</td>
<td>UniversalReplicator.ZIP</td>
<td>Table 7-14</td>
</tr>
<tr>
<td>URJNL</td>
<td></td>
<td>Statistics about remote copy operations by Universal Replicator and Universal Replicator for IBM z/OS (for journal groups)</td>
<td>URJNL.dat.ZIP</td>
<td>Table 7-15</td>
</tr>
<tr>
<td>URLU</td>
<td></td>
<td>Statistics about remote copy operations by Universal Replicator and Universal Replicator for IBM z/OS (for each volume (LU))</td>
<td>URLU.dat.ZIP</td>
<td>Table 7-16</td>
</tr>
<tr>
<td>URLDEV</td>
<td></td>
<td>Statistics about remote copy operations by Universal Replicator and Universal Replicator for IBM z/OS (for volumes controlled by a particular CU)</td>
<td>URLDEV_XXXXX.ZIP (+4)</td>
<td>Table 7-17</td>
</tr>
</tbody>
</table>

Notes:

*1: When you specify the Phyg, PhylDEV, Phyproc, or Phycsw operand, you can select the storing period of the monitoring data to be exported from short range or long range. When you specify other operands, the monitoring data in short range is exported.

*2: A ZIP file whose name begins with LDEV_.

*3: A ZIP file whose name begins with RCLDEV_.

*4: A ZIP file whose name begins with URLDEV_.

You can use the **group** subcommand more than one time in a command file. For example, you can write the following script:

```plaintext
group PortWWN CL1-A:CL1-B
group PPCG spmg01:spmg02
group RemoteCopy
```

If an operand is used more than one time in a command file, the last operand takes effect. In the example below, the first **group** subcommand does not take effect, but the second **group** subcommand takes effect:

```plaintext
group PortWWN CL1-A:CL1-B
group PortWWN CL2-A:CL2-B
```
Operands

PhyPG△[Short|Long]△[(parity-group-id):(parity-group-id)][△...]

Use this operand when you want to export statistics about parity group usage rates, which are displayed in the **Physical** tab of the **Performance Management** window. When statistics are exported to a ZIP file, the file name will be PhyPG_dat.ZIP. For details on the statistics exported by this operand, see Table 7-2.

You can use the **Short** or **Long** option to select the storing period of the monitoring data to be exported. If you specify **Short**, the exported file will contain statistics in a short range for up to 15 days. If you specify **Long**, the exported file will contain statistics in a long range for up to three months (i.e., up to 93 days). If neither **Short** nor **Long** is specified, statistics in both the short and long range are exported.

When you specify variables *parity-group-id*, you can narrow the range of parity groups whose monitoring data are to be exported. *parity-group-id* is a parity group ID. The colon (:) indicates a range. For example, 1-1:1-5 indicates parity groups from 1-1 to 1-5.

Ensure that the *parity-group-id* value on the left of the colon is smaller than the *parity-group-id* value on the right of the colon. For example, you can specify PhyPG 1-1:1-5, but you cannot specify PhyPG 1-5:1-1. Also, you can specify PhyPG 1-5:2-1, but you cannot specify PhyPG 2-1:1-5.

If *parity-group-id* is not specified, the monitoring data of all the parity groups will be exported.

PhyLDEV△[Short|Long]△[(parity-group-id):(parity-group-id)][△...]

Use this operand when you want to export statistics about volume usage rates, which are displayed in the **Physical** tab of the **Performance Management** window. When statistics are exported to a ZIP file, the file name will be PhyLDEV_dat.ZIP. For details on the statistics exported by this operand, see Table 7-2.

You can use the **Short** or **Long** option to select the storing period of the monitoring data to be exported. If you specify **Short**, the exported file will contain statistics in short range for up to 15 days. If you specify **Long**, the exported file will contain statistics in long range for up to three months (i.e., up to 93 days). If neither **Short** nor **Long** is specified, statistics in both the short and long range are exported.

When you specify variables *parity-group-id*, you can narrow the range of parity groups whose monitoring data are to be exported. *parity-group-id* is a parity group ID. The colon (:) indicates a range. For example, 1-1:1-5 indicates parity groups from 1-1 to 1-5.

Ensure that the *parity-group-id* value on the left of the colon is smaller than the *parity-group-id* value on the right of the colon. For example, you can specify PhyLDEV 1-1:1-5, but you cannot specify PhyLDEV 1-5:1-1. Also, you can specify PhyLDEV 1-5:2-1, but you cannot specify PhyLDEV 2-1:1-5.
If \textit{parity-group-id} is not specified, the monitoring data of all the volumes will be exported.

\textbf{PhyExG\textsubscript{△}[[exg-id]:[exg-id]]\textsubscript{△}...}

Use this operand when you want to export statistics about external volume groups, which are displayed in the \textbf{Physical} tab of the \textbf{Performance Management} window. When statistics are exported to a ZIP file, the file name will be PhyExG_dat.ZIP. For details on the statistics exported by this operand, see Table 7-2.

When you specify variables \textit{exg-id}, you can narrow the range of external volume groups whose monitoring data are to be exported. \textit{exg-id} is an ID of an external volume group. The colon (:) indicates a range. For example, E1-1:E1-5 indicates external volume groups from E1-1 to E1-5.

Ensure that the \textit{exg-id} value on the left of the colon is smaller than the \textit{exg-id} value on the right of the colon. For example, you can specify PhyExG E1-1:E1-5, but you cannot specify PhyExG E1-5:E1-1. Also, you can specify PhyExG E1-5:E2-1, but you cannot specify PhyExG E2-1:E1-5.

If \textit{exg-id} is not specified, the monitoring data of all the external volume groups will be exported.

\textbf{PhyExLDEV\textsubscript{△}[[exg-id]:[exg-id]]\textsubscript{△}...}

Use this operand when you want to export statistics about volumes in external volume groups, which are displayed in the \textbf{Physical} tab of the \textbf{Performance Management} window. When statistics are exported to a ZIP file, the file name will be PhyExLDEV_dat.ZIP. For details on the statistics exported by this operand, see Table 7-2.

When you specify variables \textit{exg-id}, you can narrow the range of external volume groups whose monitoring data are to be exported. \textit{exg-id} is an ID of an external volume group. The colon (:) indicates a range. For example, E1-1:E1-5 indicates external volume groups from E1-1 to E1-5.

Ensure that the \textit{exg-id} value on the left of the colon is smaller than the \textit{exg-id} value on the right of the colon. For example, you can specify PhyExLDEV E1-1:E1-5, but you cannot specify PhyExLDEV E1-5:E1-1. Also, you can specify PhyExLDEV E1-5:E2-1, but you cannot specify PhyExLDEV E2-1:E1-5.

If \textit{exg-id} is not specified, the monitoring data of all the external volumes will be exported.

\textbf{PhyProc\textsubscript{△} [Short|Long]}

Use this operand when you want to export the following statistics, which are displayed in the \textbf{Physical} tab of the \textbf{Performance Management} window:

- Usage rates of channel processors
- Usage rates of disk processors
- Usage rates of DRRs (data recovery and reconstruction processors)
When statistics are exported to a ZIP file, the file name will be PhyProc_dat.ZIP. For details on the statistics exported by this operand, see Table 7-2.

You can use the **Short** or **Long** option to select the storing period of the monitoring data to be exported. If you specify **Short**, the exported file will contain statistics in short range for up to 15 days. If you specify **Long**, the exported file will contain statistics in long range for up to three months (i.e., up to 93 days). If neither **Short** nor **Long** is specified, statistics in both the short and long range are exported.

PhyCSW△[Short|Long]

Use this operand when you want to export the following statistics, which are displayed in the **Physical** tab of the **Performance Management** window:

- Usage rates of access paths between channel adapters and cache memories
- Usage rates of access paths between disk adapters and cache memories
- Usage rates of access paths between channel adapters and the shared memory
- Usage rates of access paths between disk adapters and the shared memory
- Usage rates of access paths between cache switches and cache memories
- Write pending rates

When statistics are exported to a ZIP file, the file name will be PhyCSW_dat.ZIP. For details on the statistics exported by this operand, see Table 7-2.

You can use the **Short** or **Long** option to select the storing period of the monitoring data to be exported. If you specify **Short**, the exported file will contain statistics in short range for up to 15 days. If you specify **Long**, the exported file will contain statistics in long range for up to three months (i.e., up to 93 days). If neither **Short** nor **Long** is specified, statistics in both the short and long range are exported.
Use this operand when you want to export statistics about parity groups, external volume groups, or V-VOL groups which are displayed in the **LDEV** tab of the **Performance Management** window. When statistics are exported to a ZIP file, the file name will be **PG.dat.ZIP**. For details on the statistics exported by this operand, see Table 7-3.

When you specify variables **parity-group-id**, **exg-id**, or **V-VOL-group-id**, you can narrow the range of parity groups, external volume groups, or V-VOL groups, whose monitoring data are to be exported. **parity-group-id** is a parity group ID. **exg-id** is an ID of an external volume group. **V-VOL-group-id** is V-VOL group ID. The colon (:) indicates a range. For example, **1-1:1-5** indicates parity groups from 1-1 to 1-5. **E1-1:E1-5** indicates external volume groups from E1-1 to E1-5. **V1-1:V5-1** indicates V-VOL groups from V1-1 to V5-1. **X1-1:X5-1** indicates V-VOL groups from X1-1 to X5-1.

Ensure that the **parity-group-id**, **exg-id**, or **V-VOL-group-id** value on the left of the colon is smaller than the **parity-group-id**, **exg-id**, or **V-VOL-group-id** value on the right of the colon. For example, you can specify **PG 1-1:1-5**, but you cannot specify **PG 1-5:1-1**. Also, you can specify **PG 1-5:2-1**, but you cannot specify **PG 2-1:1-5**.

If neither of **parity-group-id**, **exg-id**, nor **V-VOL-group-id** is specified, the monitoring data of all the parity groups, external volume groups, and V-VOL group will be exported.

Use this operand when you want to export statistics about volumes, which are displayed in the **LDEV** tab of the **Performance Management** window. When statistics are exported to a ZIP file, multiple ZIP files whose names are beginning with **LDEV_** will be output. For details on the statistics exported by this operand, see
When you specify variables *parity-group-id*, *exg-id*, or *V-VOL-group-id*, you can narrow the range of parity groups, external volume groups, or V-VOL groups, whose monitoring data are to be exported. *parity-group-id* is a parity group ID. *exg-id* is an ID of an external volume group. *V-VOL-group-id* is V-VOL group ID. The colon (:) indicates a range. For example, 1-1:1-5 indicates parity groups from 1-1 to 1-5. E1-1:E1-5 indicates external volume groups from E1-1 to E1-5. V1-1:V5-1 indicates V-VOL groups from V1-1 to V5-1. X1-1:X5-1 indicates V-VOL groups from X1-1 to X5-1.

Ensure that the *parity-group-id*, *exg-id*, or *V-VOL-group-id* value on the left of the colon is smaller than the *parity-group-id*, *exg-id*, or *V-VOL-group-id* value on the right of the colon. For example, you can specify LDEV 1-1:1-5, but you cannot specify LDEV 1-5:1-1. Also, you can specify LDEV 1-5:2-1, but you cannot specify LDEV 2-1:1-5.

If neither of *parity-group-id*, *exg-id*, nor *V-VOL-group-id* is specified, the monitoring data of all the volumes (including external volumes and V-VOL groups) will be exported.

Port

Use this operand when you want to export port statistics, which are displayed in the **Port-LUN** tab of the **Performance Management** window. When statistics are exported in a ZIP file, the file name will be Port.dat.ZIP. For details on the statistics exported by this operand, see
When you specify variables *port-name*, you can narrow the range of ports whose monitoring data are to be exported. *port-name* is a port name. The colon (:) indicates a range. For example, \texttt{CL3-a:CL3-c} indicates ports from CL3-a to CL3-c.

Ensure that the *port-name* value on the left of the colon is smaller than the *port-name* value on the right of the colon. The smallest *port-name* value is \texttt{CL1-A} and the largest *port-name* value is \texttt{CL4-r}. The following formula illustrates which value is smaller than which value:

\texttt{CL1-A < CL1-B < ... < CL2-A < CL2-B < ... < CL3-a < CL3-b < ... < CL4-a < ... < CL4-r}

For example, you can specify *Port WWN CL1-C:CL2-A*, but you cannot specify *Port CL2-A:CL1-C*. Also, you can specify *Port CL3-a:CL3-c*, but you cannot specify *Port CL3-c:CL3-a*.

If *port-name* is not specified, the monitoring data of all the host bus adapters will be exported.

PortWWN

Use this operand when you want to export statistics about host bus adapters (WWNs) connected to ports, which are displayed in the \textbf{Port-LUN} tab of the \textbf{Performance Management} window. When statistics are exported in a ZIP file, the file name will be *PortWWN.dat.ZIP*. For details on the statistics exported by this operand, see Table 7-6.

When you specify variables *port-name*, you can narrow the range of ports whose monitoring data are to be exported. *port-name* is a port name. The colon (:) indicates a range. For example, \texttt{CL3-a:CL3-c} indicates ports from CL3-a to CL3-c.

Ensure that the *port-name* value on the left of the colon is smaller than the *port-name* value on the right of the colon. The smallest *port-name* value is \texttt{CL1-A} and the largest *port-name* value is \texttt{CL4-r}. The following formula illustrates which value is smaller than which value:

\texttt{CL1-A < CL1-B < ... < CL2-A < CL2-B < ... < CL3-a < CL3-b < ... < CL4-a < ... < CL4-r}

For example, you can specify *Port WWN CL1-C:CL2-A*, but you cannot specify *Port WWN CL2-A:CL1-C*. Also, you can specify *Port WWN CL3-a:CL3-c*, but you cannot specify *Port WWN CL3-c:CL3-a*.

If *port-name* is not specified, the monitoring data of all the host bus adapters will be exported.

LU

Use this operand when you want to export statistics about LU paths, which are displayed in the \textbf{Port-LUN} tab of the \textbf{Performance Management} window. When statistics are exported in a ZIP file, the file name will be *LU.dat.ZIP*. For details on the statistics exported by this operand, see Table 7-5.
Table 7-7.
When you specify variables `port-name.host-group-id`, you can narrow the range of LU paths whose monitoring data are to be exported. `port-name` is a port name. `host-group-id` is the ID of a host group (that is, a host storage domain). The host group (host storage domain) ID must be a hexadecimal numeral. The colon (:) indicates a range. For example, `CL1-C.01:CL1-C.03` indicates the range from the host group #01 of the CL1-C port to the host group #03 of the CL1-C port.

Ensure that the value on the left of the colon is smaller than the value on the right of the colon. The smallest `port-name` value is `CL1-A` and the largest `port-name` value is `CL4-r`. The following formula illustrates which `port-name` value is smaller than which `port-name` value:

\[
CL1-A < CL1-B < \ldots < CL2-A < CL2-B < \ldots < CL3-a < CL3-b < \ldots < CL4-a < \ldots < CL4-r
\]

For example, you can specify LU `CL1-C.01:CL2-A.01`, but you cannot specify LU `CL2-A.01:CL1-C.01`. Also, you can specify LU `CL1-C.01:CL1-C.03`, but you cannot specify LU `CL1-C.03:CL1-C.01`.

If `port-name.host-group-id` is not specified, the monitoring data of all the LU paths will be exported.

PPCG

Use this operand when you want to export statistics about SPM groups, which are displayed in the WWN tab of the Performance Management window. When statistics are exported in a ZIP file, the file name will be `PPCG_dat.ZIP`. For details on the statistics exported by this operand, see Table 7-8.

When you specify variables `SPM-group-name`, you can narrow the range of SPM groups whose monitoring data are to be exported. `SPM-group-name` is the name of an SPM group. If the name includes any non-alphanumeric character, the name must be enclosed by double quotation marks ("). The colon (:) indicates a range. For example, `Grp01:Grp03` indicates a range of SPM groups from Grp01 to Grp03.

Ensure that the `SPM-group-name` value on the left of the colon is smaller than the `SPM-group-name` value on the right of the colon. Numerals are smaller than letters and lowercase letters are smaller than uppercase letters. In the following formulae, values are arranged so that smaller values are on the left and larger values are on the right:

- \(0 < 1 < 2 < \ldots < 9 < a < b < \ldots < z < A < B < \ldots < Z\)
- `cygnus < raid < Cancer < Pisces < RAID < RAID5`

Regardless of whether you specify or omit SPM group names, the exported CSV files contain statistics about host bus adapters that do not belong to any SPM groups. The exported CSV files use the heading named `Not Grouped` to indicate statistics about these host bus adapters.

If `SPM-group-name` is not specified, the monitoring data of all the SPM groups will be exported.
PPCGWWN\(\Delta[[SPM\text{-}group\text{-}name]::[SPM\text{-}group\text{-}name]]\)[\(\triangle...\)]

Use this operand when you want to export statistics about host bus adapters (WWNs) belonging to SPM groups, which are displayed in the **WWN** tab of the **Performance Management** window. When statistics are exported in a ZIP file, the file name will be PPCGWWN_dat.ZIP. For details on the statistics exported by this operand, see
When you specify variables \textit{SPM-group-name}, you can narrow the range of SPM groups whose monitoring data are to be exported. \textit{SPM-group-name} is the name of an SPM group. If the name includes any non-alphanumeric character, the name must be enclosed by double quotation marks ("). The colon (:) indicates a range. For example, Grp01:Grp03 indicates a range of SPM groups from Grp01 to Grp03.

Ensure that the \textit{SPM-group-name} value on the left of the colon is smaller than the \textit{SPM-group-name} value on the right of the colon. Numerals are smaller than letters and lowercase letters are smaller than uppercase letters. In the following formulae, values are arranged so that smaller values are on the left and larger values are on the right:

- \(0 < 1 < 2 < ... < 9 < a < b < ... < z < A < B < ... < Z \)
- \(\text{cygnus} < \text{raid} < \text{Cancer} < \text{Pisces} < \text{RAID} < \text{RAID5} \)

If \textit{SPM-group-name} is not specified, the monitoring data of all the host bus adapters will be exported.

RemoteCopy

Use this operand when you want to export statistics about remote copy operations which are displayed in the TC Monitor window and the TCz Monitor window. By using this operand, you can export monitoring data about remote copy operations performed by TrueCopy and TrueCopy for IBM z/OS in the whole volumes. When statistics are exported to a ZIP file, the file name will be RemoteCopy_dat.ZIP. For details on the statistics exported by this operand, see Table 7-10.

RCLU\([[\text{port-name}].\text{host-group-id}]:[\text{port-name}].\text{host-group-id}]]\(\triangleleft\)...

Use this operand when you want to export statistics about remote copy operations which are displayed in the TC Monitor window and the TCz Monitor window. By using this operand, you can export monitoring data about remote copy operations performed by TrueCopy and TrueCopy for IBM z/OS at each volume (LU). When statistics are exported to a ZIP file, the file name will be RCLU_dat.ZIP. For details on the statistics exported by this operand, see Table 7-11.

When you specify variables \textit{port-name}.\textit{host-group-id}, you can narrow the range of LU paths whose monitoring data are to be exported. \textit{port-name} is a port name. \textit{host-group-id} is the ID of a host group. The host group ID must be a hexadecimal numeral. The colon (:) indicates a range. For example, CL1-C.01:CL1-C.03 indicates the range from the host group #01 of the CL1-C port to the host group #03 of the CL1-C port.

Ensure that the value on the left of the colon is smaller than the value on the right of the colon. The smallest \textit{port-name} value is CL1-A and the largest \textit{port-name} value is CL4-r. The following formula illustrates which \textit{port-name} value is smaller than which \textit{port-name} value:

\[\text{CL1-A} < \text{CL1-B} < \ldots < \text{CL2-A} < \text{CL2-B} < \ldots < \text{CL3-a} < \text{CL3-b} < \ldots < \text{CL4-a} < \ldots < \text{CL4-r} \]
For example, you can specify RCLU CL1-C.01:CL2-A.01, but you cannot specify RCLU CL2-A.01:CL1-C.01. Also, you can specify RCLU CL1-C.01:CL1-C.03, but you cannot specify RCLU CL1-C.03:CL1-C.01.

If port-name.host-group-id is not specified, the monitoring data of all the volumes (LUs) will be exported.

RCLDEVΔ[[LDKC-CU-id]:[LDKC-CU-id]][△...]]

Use this operand when you want to export statistics about remote copy operations which are displayed in the TC Monitor window and the TCz Monitor window. By using this operand, you can export monitoring data about remote copy operations performed by TrueCopy and TrueCopy for IBM z/OS at volumes controlled by each CU. When statistics are exported to a ZIP file, multiple ZIP files whose names are beginning with RCLDEV will be output. For details on the statistics exported by this operand, see
When you specify variables **LDKC-CU-id**, you can narrow the range of LDKC:CUs that control the volumes whose monitoring data are to be exported. **LDKC-CU-id** is an ID of a LDKC:CU. The colon (:) indicates a range. For example, 000:105 indicates LDKC:CUs from 00:00 to 01:05.

Ensure that the **LDKC-CU-id** value on the left of the colon is smaller than the **LDKC-CU-id** value on the right of the colon. For example, you can specify RCLDEV 000:105, but you cannot specify RCLDEV 105:000.

If **LDKC-CU-id** is not specified, the monitoring data of all the volumes will be exported.

RCCLPR

Use this operand when you want to export statistics about remote copy operations which are displayed in the TC Monitor window and the TCz Monitor window. By using this operand, you can export monitoring data about remote copy operations performed by TrueCopy and TrueCopy for IBM z/OS at each CLPR. When statistics are exported to a ZIP file, the file name will be RCCLPR_dat.ZIP. For details on the statistics exported by this operand, see Table 7-13.

UniversalReplicator

Use this operand when you want to export statistics about remote copy operations which are displayed in the UR Monitor window and the URz Monitor window. By using this operand, you can export monitoring data about remote copy operations performed by Universal Replicator and Universal Replicator for IBM z/OS in the whole volume. When statistics are exported to a ZIP file, the file name will be UniversalReplicator.ZIP. For details on the statistics exported by this operand, see Table 7-14.

URJNL

Use this operand when you want to export statistics about remote copy operations which are displayed in the UR Monitor window and the URz Monitor window. By using this operand, you can export monitoring data about remote copy operations performed by Universal Replicator and Universal Replicator for IBM z/OS at each journal group. When statistics are exported to a ZIP file, the file name will be URJNL_dat.ZIP. For details on the statistics exported by this operand, see Table 7-15.

When you specify variables **JNL-group-id**, you can narrow the range of journal groups whose monitoring data are to be exported. **JNL-group-id** is a journal group number. The colon (:) indicates a range. For example, 00:05 indicates journal groups from 00 to 05.
Ensure that the *JNL-group-id* value on the left of the colon is smaller than the *JNL-group-id* value on the right of the colon. For example, you can specify URJNL 00:05, but you cannot specify URJNL 05:00.

If *JNL-group-id* is not specified, the monitoring data of all the journal volumes will be exported.

URLU△[[port-name.host-group-id]:[port-name.host-group-id]][△...]

Use this operand when you want to export statistics about remote copy operations which are displayed in the **UR Monitor** window and the **URz Monitor** window. By using this operand, you can export monitoring data about remote copy operations performed by Universal Replicator and Universal Replicator for IBM z/OS at each volume(LU). When statistics are exported to a ZIP file, the file name will be URLU_dat.ZIP. For details on the statistics exported by this operand, see
Table 7-16.

When you specify variables port-name.host-group-id, you can narrow the range of LU paths whose monitoring data are to be exported. port-name is a port name. host-group-id is the ID of a host group. The host group ID must be a hexadecimal numeral. The colon (:) indicates a range. For example, CL1-C.01:CL1-C.03 indicates the range from the host group #01 of the CL1-C port to the host group #03 of the CL1-C port.

Ensure that the value on the left of the colon is smaller than the value on the right of the colon. The smallest port-name value is CL1-A and the largest port-name value is CL4-r. The following formula illustrates which port-name value is smaller than which port-name value:

\[
\text{CL1-A} < \text{CL1-B} < \ldots < \text{CL2-A} < \text{CL2-B} < \ldots < \text{CL3-a} < \text{CL3-b} < \ldots < \text{CL4-a} < \ldots < \text{CL4-r}
\]

For example, you can specify URLU CL1-C.01:CL2-A.01, but you cannot specify URLU CL2-A.01:CL1-C.01. Also, you can specify URLU CL1-C.01:CL1-C.03, but you cannot specify URLU CL1-C.03:CL1-C.01.

If port-name.host-group-id is not specified, the monitoring data of all the volumes (LUs) will be exported.

URLDEV\[
\text{URLDEV}_{\text{[[LDKC-CU-id]:[LDKC-CU-id]]][\triangle\ldots]}
\]

Use this operand when you want to export statistics about remote copy operations which are displayed in the **UR Monitor** window and the **URz Monitor** window. By using this operand, you can export monitoring data about remote copy operations performed by Universal Replicator and Universal Replicator for IBM z/OS at volumes controlled by each CU. When statistics are exported to a ZIP file, multiple ZIP files whose names are beginning with **URLDEV_** will be output. For details on the statistics exported by this operand, see Table 7-17.

When you specify variables **LDKC-CU-id**, you can narrow the range of LDKC:CUs that control the volumes whose monitoring data are to be exported. **LDKC-CU-id** is an ID of a LDKC:CU. The colon (:) indicates a range. For example, 000:105 indicates LDKC:CUs from 00:00 to 01:05.

Ensure that the **LDKC-CU-id** value on the left of the colon is smaller than the **LDKC-CU-id** value on the right of the colon. For example, you can specify **URLDEV 000:105**, but you cannot specify **URLDEV 105:000**.

If **LDKC-CU-id** is not specified, the monitoring data of all the volumes will be exported.

Examples

The following example exports statistics about host bus adapters and SPM groups:

```plaintext
group PortWWN
group PPCG
```
The following example exports statistics about three ports (CL1-A, CL1-B, and CL1-C):

```
group Port CL1-A:CL1-C
```

The following example exports statistics about six ports (CL1-A to CL1-C, and CL2-A to CL2-C)

```
group Port CL1-A:CL1-C CL2-A:CL2-C
```

The following example exports statistics about the parity group 1-3:

```
group PG 1-3:1-3
```

The following example exports statistics about the parity group 1-3 and other parity groups whose ID is larger than 1-3 (for example, 1-4 and 1-5):

```
group PG 1-3:
```

The following example exports statistics about the parity group 1-3 and other parity groups whose ID is smaller than 1-3 (for example, 1-1 and 1-2):

```
group LDEV:1-3
```

The following example exports statistics about LU paths for the host group (host storage domain) ID 01 for the port CL1-A:

```
group LU CL1-A.01:CL1-A.01
```
short-range Subcommand

Syntax

```
short-range \[yyyyMMddhhmm\][{+-}\hhmm]:[yyyyMMddMMddhhmm][{+-}\hhmm]
```

Description

The `short-range` subcommand enables you to specify a term of monitoring data to be exported into files. Use this subcommand when you want to narrow the export-target term within the stored data.

The `short-range` subcommand is valid for monitoring data in short range. The monitoring data in short range is the contents displayed in the following windows:

- The **Performance Management** window with selecting `short-range` as the storing period
- The **TC Monitor** and **TCz Monitor** windows
- The **UR Monitor** and **URz Monitor** windows

All the monitoring items are stored in short range. Therefore, you can use the `short-range` subcommand whichever operand you specify to the `group` subcommand. If you run the Export Tool without specifying the `short-range` subcommand, the data stored in the whole monitoring term will be exported.

The `login` subcommand must execute before the `short-range` subcommand executes.

Operands

The value on the left of the colon (:) specifies the starting time of the period. The value on the right of the colon specifies the ending time of the period. Specify the term within "Short Range From XXX To XXX" which is output by the `show` subcommand.

If no value is specified on the left of the colon, the starting time for collecting monitoring data is assumed. If no value is specified on the right of the colon, the ending time for collecting monitoring data is assumed. The starting and ending times for collecting monitoring data are displayed in the **Monitoring Term** area in the **Performance Management** window.
Using the Export Tool

Hitachi Universal Storage Platform V/VM Hitachi Performance Manager User’s Guide

Figure 7-10 Starting and Ending Time for Collecting Monitoring Data

yyyyMMddhhmm

yyyyMMdd indicates the year, the month, and the day. *hhmm* indicates the hour and the minute.

If **yyyyMMddhhmm** is omitted on the left of the colon, the starting time for collecting monitoring data is assumed. If **yyyyMMddhhmm** is omitted on the right of the colon, the ending time for collecting monitoring data is assumed.

+hhmm

Adds time (*hhmm*) to **yyyyMMddhhmm** if **yyyyMMddhhmm** is specified. For example, **200601230000+0130** indicates Jan. 23, 2006. 01:30.

Adds time to the starting time for collecting monitoring data, if **yyyyMMddhhmm** is omitted.

-hhmm

Subtracts time (*hhmm*) from **yyyyMMddhhmm** if **yyyyMMddhhmm** is specified. For example, **200601230000-0130** indicates Jan. 22, 2006. 22:30.

Subtracts time from the ending time for collecting monitoring data, if **yyyyMMddhhmm** is omitted.

If the last two digit of the time on the left or right of the colon (:) is not a multiple of the sampling interval, the time will automatically be changed so that the last two digits is a multiple of the sampling interval. If this change occurs to the time on the left of the colon, the time will be smaller than the original time. If this change occurs to the time on the right of the colon, the time will be larger than the original time. The following are the examples:

- **If the time on the left is 10:15, the time on the right is 20:30, and the sampling interval is 10 minutes:**

The time on the left will be changed to 10:10 because the last two digits of the time is not a multiple of 10 minutes. The time on the right will remain unchanged because the last two digits of the time is a multiple of 10 minutes.
If the time on the left is 10:15, the time on the right is 20:30, and the sampling interval is 7 minutes:
The time on the left will be changed to 10:14 because the last two digits of the time is not a multiple of 7 minutes. The time on the right will be changed to 20:35 because of the same reason.

Examples

The examples below assume that:
- the starting time for collecting monitoring data is Jan. 1, 2006, 00:00,
- the ending time for collecting monitoring data is Jan. 2, 2006, 00:00.

short-range 200601010930:200601011730
 The Export Tool saves monitoring data within the range of Jan. 1, 9:30-17:30.

short-range 200601010930:
 The Export Tool saves monitoring data within the range of Jan. 1, 9:30 to Jan. 2, 00:00.

shortrange:200601011730
 The Export Tool saves monitoring data within the range of Jan. 1, 0:00-17:30.

short-range +0001:
 The Export Tool saves monitoring data within the range of Jan. 1, 0:01 to Jan. 2, 00:00.

short-range -0001:
 The Export Tool saves monitoring data within the range of Jan. 1, 23:59 to Jan. 2, 00:00.

shortrange:+0001
 The Export Tool saves monitoring data within the range of Jan. 1, 0:00-00:01.

shortrange:-0001
 The Export Tool saves monitoring data within the range of Jan. 1, 0:00-23:59.

short-range +0101:-0101
 The Export Tool saves monitoring data within the range of Jan. 1, 1:01-22:59.

short-range 200601010900+0130:200601011700-0130
 The Export Tool saves monitoring data within the range of Jan. 1, 10:30-15:30.
The Export Tool saves monitoring data within the range of Jan. 1, 7:30-18:30.

The Export Tool saves monitoring data within the range of Jan. 1, 7:30 to Jan. 2, 00:00.
long-range Subcommand

Syntax

```
long-range \d[yyyyMMddhhmm][\{+\-\}ddhhmm][:yyyyMMddhhmm][\{+\-\}ddhhmm]
```

Description

The `long-range` subcommand enables you to specify a term of monitoring data to be exported into files. Use this subcommand when you want to narrow the export-target term within the stored data.

The `long-range` subcommand is valid for monitoring data in long range. The monitoring data in long range is the contents displayed in the **Physical** tab of the **Performance Management** window with selecting `long-range` as the storing period. The monitoring items whose data can be stored in long range are limited. Table 7-24 shows the monitoring items to which the `long-range` subcommand can be applied, and also shows the operands to export those monitoring items.

Table 7-24 Monitoring Items To Which the long-range Subcommand Can be Applied

<table>
<thead>
<tr>
<th>Monitoring Data</th>
<th>Operands of the group subcommand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage statistics about parity groups</td>
<td>PhyPG Long</td>
</tr>
<tr>
<td>Usage statistics about volumes</td>
<td>PhyLDEV Long</td>
</tr>
<tr>
<td>Usage statistics about channel processors, disk processors, and data recovery and reconstruction processors</td>
<td>PhyProc Long</td>
</tr>
<tr>
<td>Usage statistics about access paths and write pending rate</td>
<td>PhyCSW Long</td>
</tr>
</tbody>
</table>

If you run the Export Tool without specifying the `long-range` subcommand, the data stored in the whole monitoring term will be exported.

The `login` subcommand must execute before the `long-range` subcommand executes.

Operands

The value on the left of the colon (:) specifies the starting time of the period. The value on the right of the colon specifies the ending time of the period. Specify the term within "Long Range From XXX To XXX" which is output by the **show** subcommand.
If no value is specified on the left of the colon, the starting time for collecting monitoring data is assumed. If no value is specified on the right of the colon, the ending time for collecting monitoring data is assumed. The starting and ending times for collecting monitoring data are displayed in the Monitoring Term area in the Performance Management window.

Figure 7-11 Starting and Ending Time for Collecting Monitoring Data

yyyyMMddhhmm

yyyyMMdd indicates the year, the month, and the day. *hhmm* indicates the hour and the minute.

If yyyyMMddhhmm is omitted on the left of the colon, the starting time for collecting monitoring data is assumed. If yyyyMMddhhmm is omitted on the right of the colon, the ending time for collecting monitoring data is assumed.

+ddhhmm

Adds time (ddhhmm) to yyyyMMddhhmm if yyyyMMddhhmm is specified. For example, *200601120000+010130* indicates Jan. 13, 2006. 01:30.

Adds time to the starting time for collecting monitoring data, if yyyyMMddhhmm is omitted.

-ddhhmm

Subtracts time (ddhhmm) from yyyyMMddhhmm if yyyyMMddhhmm is specified. For example, *200601120000-010130* indicates Jan. 10, 2006. 22:30.

Subtracts time from the ending time for collecting monitoring data, if yyyyMMddhhmm is omitted.

Ensure that *mm* is 00, 15, 30, or 45. If you do not specify *mm* in this way, the value on the left of the colon (:) will be rounded down to one of the four values. Also, the value on the right of the colon will be rounded up to one of the four values. For example, if you specify 200601010013:200601010048, the specified value is regarded as 200601010000:200601010100.
Examples

The examples below assume that:

- the starting time for collecting monitoring data is Jan. 1, 2006, 00:00,
- the ending time for collecting monitoring data is Jan. 2, 2006, 00:00.

`long-range 200601010930:200601011730`

The Export Tool saves monitoring data within the range of Jan. 1, 9:30-17:30.

`long-range 200601010930:`

The Export Tool saves monitoring data within the range of Jan. 1, 9:30 to Jan. 2, 00:00.

`longrange:200601011730`

The Export Tool saves monitoring data within the range of Jan. 1, 0:00-17:30.

`long-range +000015:`

The Export Tool saves monitoring data within the range of Jan. 1, 0:15 to Jan. 2, 00:00.

`long-range -000015:`

The Export Tool saves monitoring data within the range of Jan. 1, 23:45 to Jan. 2, 00:00.

`longrange:+000015`

The Export Tool saves monitoring data within the range of Jan. 1, 0:00-00:15.

`longrange:-000015`

The Export Tool saves monitoring data within the range of Jan. 1, 0:00-23:45.

`long-range +000115:-000115`

The Export Tool saves monitoring data within the range of Jan. 1, 1:15-22:45.

`long-range 200601010900+000130:200601011700-000130`

The Export Tool saves monitoring data within the range of Jan. 1, 10:30-15:30.

`long-range 200601010900-000130:200601011700+000130`

The Export Tool saves monitoring data within the range of Jan. 1, 7:30-18:30.

`long-range 200601010900-000130:`
The Export Tool saves monitoring data within the range of Jan. 1, 7:30 to Jan. 2, 00:00.
outpath Subcommand

Syntax

```
outpath △ [path]
```

Description

The `outpath` subcommand specifies the directory to which monitoring data will be exported.

Operands

`path`

Specifies the directory in which files will be saved.

If the directory includes any non-alphanumeric character, the directory must be enclosed by double quotation marks ("). If you want to specify a back slash (\) in the character string enclosed by double quotation marks, repeat the back slash twice such as \\.

If the specified directory does not exist, this subcommand creates a directory that has the specified name.

If this operand is omitted, the current directory is assumed.

Examples

The following example saves files in the directory `C:\Project\out` in a Windows computer:

```
outpath "C:\Project\out"
```

The following example saves files in the `out` directory in the current directory:

```
outpath out
```
option Subcommand

Syntax

\[\text{option} \{\text{compress|nocompress}\} \{\text{ask|clear|noclear}\}\]

Description

The `option` subcommand specifies the following:

- whether to compress monitoring data in ZIP files
- whether to overwrite or delete existing files and directories when saving monitoring data in files

Operands

The two operands below specify whether to compress CSV files into ZIP files. If none of these operands is specified, `compress` is assumed:

- **compress**
 Compresses data in ZIP files. To extract CSV files out of a ZIP file, you will need to decompress the ZIP file.

- **nocompress**
 Does not compress data in ZIP files and saves data in CSV files.

The three operands below specify whether to overwrite or delete an existing file or directory when the Export Tool saves files. If none of these operands is specified, `ask` is assumed:

- **ask**
 Displays a message that asks whether to delete existing files or directories.

- **clear**
 Deletes existing files and directories and then saves monitoring data in files.

- **noclear**
 Overwrites existing files and directories.

Example

The following example saves monitoring data in CSV files, not in ZIP files:

```sh
option nocompress
```
apply Subcommand

Syntax

apply

Description

The apply subcommand saves monitoring data specified by the group subcommand into files.

The login subcommand must execute before the apply subcommand executes.

The apply subcommand does nothing if the group subcommand executes.

The settings made by the group subcommand will be reset when the apply subcommand finishes.

set subcommand

Syntax

set\triangle [switch=\{ m | off \}]

Description

The set subcommand starts or ends monitoring the storage system (i.e., starts or ends collecting performance statistics). The set subcommand also specifies the gathering interval (interval of collecting statistics) in short range monitoring.

If you want to use the set subcommand, you must use the login subcommand (see login Subcommand) to log on to the SVP. Ensure that the set subcommand executes immediately before the Export Tool finishes.

Executing the set subcommand generates an error in the following conditions:

- Some other user is being logged onto the SVP in Modify mode.
- Maintenance operations are being performed at the SVP.

If an error occurs, do the following:

- Ensure that all the users who are logged onto the SVP are not in Modify mode. If any user is logged on in Modify mode, ask the user to switch to View mode.
- Wait until maintenance operations finish at the SVP, so that the set subcommand can execute.
Notes:

- Your batch files can include script that should execute when an error occurs. For information about writing such a script in your batch file, refer to Notes in Running the Export Tool.
- When the set subcommand starts or ends the monitoring or changes the gathering interval after the Performance Management window is started, the contents displayed in the Performance Management window does not change automatically in conjunction with the set subcommand operation. To display the current monitoring status in the Performance Management window, click File, and then Refresh on the menu bar of the Storage Navigator main window.
- If you change the specified gathering interval during a monitoring, the previously gathered monitoring data will be deleted.

Operands

switch={m|off}

To start monitoring, specify the gathering interval (interval of collecting statistics) of monitoring data at m. Specify a value between 1 and 15 in minutes. m is the gathering interval in short range monitoring by Performance Monitor. The gathering interval in long range is fixed to 15 minutes.

To end monitoring, specify off.

If this operand is omitted, the set subcommand does not make settings for starting or ending monitoring.

Examples

The following command file saves port statistics and then ends monitoring ports:

```
svpip 158.214.135.57
login expusr passwd
show
group Port
short-range 200604010850:200604010910
apply
set switch=off
```

The following command file starts monitoring remote copy operations. The sampling time interval is 10 minutes:

```
svpip 158.214.135.57
login expusr passwd
set switch=10
```
help Subcommand

Syntax

help

Description

The help subcommand displays the online help for subcommands.

If you want to view the online help, it is recommended that you create a batch file and a command file that are exclusively used for displaying the online help. For detailed information, refer to Example below.

Example

In this example, a command file (cmdHelp.txt) and a batch file (runHelp.bat) are created in the C:\export directory in a Windows computer:

- Command file (c:\export\cmdHelp.txt):
 help

- Batch file (c:\export\runHelp.bat):
  ```
  Java -classpath ".\lib/JSanExport.jar;\lib/JSanRmiServerSx.jar" -Xmx512m -Dmd.command=cmdHelp.txt -Dmd.logpath=log sanproject.getmondat.RJMdMain
  pause
  ```

In the above script, the "\" symbol in this batch file example indicates the end of a command line.

In this example, you must do one of the following to view the online Help:

- Double-click runHelp.bat with the mouse.
- Go to the c:\export directory at the command prompt, enter runHelp or runHelp.bat and then press the <Enter> key.

Java Command for Exporting Data In Files

Syntax

Java△-classpath△class-path△property-parameters△sanproject.getmondat.RJMdMain

Description

This Java command starts the Export Tool.

To start the Export Tool, you must write this Java command in your batch file and then run the batch file.
Operands

class-path

Specifies the path to the class file of the Export Tool.

The path must be enclosed in double quotation marks (".

property-parameters

You can specify the following parameters. At least you must specify -

Dmd.command.

- -Dhttp.proxyHost=host-name-of-proxy-host, or
 -Dhttp.proxyHost=IP-address-of-proxy-host

Specifies the host name or the IP address of a proxy host. You must
specify this parameter if the computer that runs the Export Tool
communicates with the SVP via a proxy host.

- -Dhttp.proxyPort=port-number-of-proxy-host

Specifies the port number of a proxy host. You must specify this
parameter if the computer that runs the Export Tool communicates with
the SVP via a proxy host.

- -Xmxmemory-size(bytes)

Specifies the size of memory to be used by JRE when the Export Tool is
being executed. You must specify this parameter. The memory size
must be 536870912, as shown in the Example later in this section. If an
installed memory size is smaller than the recommended memory size of
Storage Navigator PC, you must install more memory, before executing
the Export Tool.

If an installed memory size is larger than the recommended memory
size of Storage Navigator PC, you can specify a memory size larger than
as shown in the Example. However, to prevent lowering of execution
speed, you do not set oversized memory size.

- -Dmd.command=path-to-command-file

Specifies the path to the command file

- -Dmd.logpath=path-to-log-file

Specifies the path to log files. A log file will be created whenever the
Export Tool executes.

If this parameter is omitted, log files will be saved in the current
directory.

- -Dmdlogfile=name-of-log-file

Specifies the name of the log file.

If this parameter is omitted, log files are named

exportMMddHHmmss.log. MMddHHmmss indicates when the Export
Tool executed. For example, the log file export0101091010.log
contains log information about Export Tool execution at Jan. 1,
09:10:10.
Examples

The following example assumes that the computer running the Export Tool communicates with the SVP via a proxy host. In this example, the host name of the proxy host is Jupiter, and the port name of the proxy host is 8080:

```
Java -classpath "./lib/JSanExport.jar;/lib/JSanRmiServerSx.jar" -Dhttp.proxyHost=Jupiter
-Dhttp.proxyPort=8080 -Xmx536870912 -Dmd.command=command.txt -Dmd.logpath=log
sanproject.getmondat.RJMdMain
```

In the following example, a log file named `export.log` will be created in the log directory below the current directory when the Export Tool executes:

```
Java -classpath "./lib/JSanExport.jar;/lib/JSanRmiServerSx.jar" -Xmx536870912 -
Dmd.command=command.txt
-Dmd.logfile=export.log -Dmd.logpath=log sanproject.getmondat.RJMdMain
```

In the above script, the "→" symbol indicates the end of a command line.
Causes of Invalid Monitoring Data

If the value of monitoring data in CSV files is less than 0 (zero), consider the following causes:

Table 7-25 Causes of Invalid Monitoring Data

<table>
<thead>
<tr>
<th>Invalid Values of Monitoring Data</th>
<th>Probable Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The monitoring data in the CSV file includes "-1".</td>
<td>The value "-1" indicates that Performance Monitor failed to obtain monitoring data. Probable reasons are:</td>
</tr>
<tr>
<td></td>
<td>• Performance Monitor attempted to obtain statistics when an operation for rebooting the disk array is in progress.</td>
</tr>
<tr>
<td></td>
<td>• Performance Monitor attempted to obtain statistics when a heavy workload is imposed on the disk array.</td>
</tr>
<tr>
<td></td>
<td>• There is no volume in a parity group.</td>
</tr>
<tr>
<td></td>
<td>• Just after the CUs to be monitored were added, the Export Tool failed to save files that contain monitoring data for all volumes or journal volumes used by remote copy software (i.e., TrueCopy, TrueCopy for z/OS, Universal Replicator, or Universal Replicator for z/OS). For details about the files, see Table 7-10, Table 7-14, and Table 7-15.</td>
</tr>
<tr>
<td></td>
<td>• If Disable is selected to stop monitoring in Monitoring Switch on the Monitoring Options window and longrange is specified as the gathering interval, the monitoring data for the period when Performance Monitor stops monitoring is "-1".</td>
</tr>
<tr>
<td></td>
<td>• If you added the CU during monitoring, specified longrange as the gathering interval, and collected monitoring data, the value "-1" is displayed as the monitoring data before the CU was added.</td>
</tr>
<tr>
<td>The monitoring data in the CSV file includes "-3".</td>
<td>The value "-3" indicates that Performance Monitor failed to obtain monitoring data for the following reason:</td>
</tr>
<tr>
<td></td>
<td>If IOPS is 0 (zero), the Response Time that is included in the monitoring data for LUs, LDEVs, ports, WWNs, or external volumes is "-3". Because IOPS is 0 (zero), the average response time becomes invalid.</td>
</tr>
<tr>
<td>The monitoring data in the CSV file includes "-4".</td>
<td>The value "-4" indicates that Performance Monitor failed to obtain monitoring data for the following reason:</td>
</tr>
<tr>
<td></td>
<td>If the period for the monitoring data that is specified with the Export Tool does not match the collecting period for monitoring data, the Export Tool cannot collect the monitoring data. If data of SVP is updated while the monitoring data is being collected, the collected monitoring data near the collection start time is "-4".</td>
</tr>
<tr>
<td>Invalid Values of Monitoring Data</td>
<td>Probable Causes</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>The monitoring data in the CSV file includes "-5".</td>
<td>When the CU number is not the monitoring target, Performance Monitor cannot obtain monitoring data from the CU. If the PG, LDEV, LU, RCLU, RCLDEV, URLU, or URLDEV operand is specified, the value of the monitoring data is "-5". To solve this problem, specify the CU as the monitoring target by using the Monitoring Options window of Performance Monitor (not by using the Export Tool). For details on specifying the CU as the monitoring target, see Monitoring Options Window, and Table 4-4. If the RemoteCopy, UniversalReplicator, or URJNL operand is specified, the value "-5" is not output in the monitoring data though the CU number is not the monitoring target. In this case, data on monitored CUs are summed up and output into the CSV file.</td>
</tr>
</tbody>
</table>
Troubleshooting

This chapter gives troubleshooting information on Performance Monitor, Server Priority Manager, and Export Tool. For troubleshooting information on Storage Navigator, see the *Storage Navigator User’s Guide* and *Storage Navigator Messages*.

- Troubleshooting Performance Monitor
- Troubleshooting Server Priority Manager
- Troubleshooting the Export Tool
- Calling the Hitachi Data Systems Support Center
Troubleshooting Performance Monitor

- When the WWN of a host bus adapter is displayed in red in the tree of the WWN tab:
 The host bus adapter (HBA) whose WWN is displayed in red is connected to two or more ports, but the traffic between the HBA and some of the ports are not monitored by Performance Monitor. When many-to-many connections are established between HBAs and ports, you should make sure that all the traffic between HBAs and ports is monitored. For details on the measures, see Monitoring All Traffic between HBAs and Ports.

- When a part of monitoring data is missing:
 While displaying Performance Monitor in short range, if I/O workloads between hosts and the storage system become heavy, the storage system gives higher priority to I/O processing than monitoring processing. If you notice that frequently monitoring data is missing, use the Gathering Interval option located in the Monitoring Options window to change to a longer collection interval. For details, see Start Monitoring and Monitoring Options Window.

Note: The display of the LDEV tab, Port-LUN tab, and WWN tab is fixed to in short range.

- Although Monitoring Switch is set to Enable, the monitoring data is not updated:
 Because the time setting of SVP is changed, the monitoring data might not be updated. Set Monitoring Switch to Disable, and set Monitoring Switch to Enable again.
Troubleshooting Server Priority Manager

When the WWN of a host bus adapter is displayed in red in the lower-left tree of the WWN tab, the host bus adapter (HBA) whose WWN is displayed in red is connected to two or more ports, but the traffic between the HBA and some of the ports are not monitored by Performance Monitor. When many-to-many connections are established between HBAs and ports, make sure that all the traffic between HBAs and ports is monitored. For details on the measures, see Monitoring All Traffic between HBAs and Ports.

Troubleshooting the Export Tool

Table 8-1 explains possible problems with the Export Tool and probable solutions to the problems.

Table 8-1 Troubleshooting the Export Tool

<table>
<thead>
<tr>
<th>Possible Problems</th>
<th>Probable Causes and Recommended Action</th>
</tr>
</thead>
</table>
| You cannot run the batch file. | The path to the Java Virtual Machine (Java.exe) might not be defined in the PATH environment variable. If this is true, you must add that path to the PATH environment variable. For information about how to add a path to the environment variable, refer to the documentation for your operating system.
 An incorrect version of Java Runtime Environment (JRE) might be installed on your computer. To check the JRE version, enter the following command at the Windows command prompt or the UNIX console window:
    ```
    Java -version
    ```  
 If the version is incorrect, install the correct version of JRE. |
| The Export Tool stops and the processing does not continue. | The command prompt window might be in pause mode.
 The command prompt window will be in pause mode if you click the command prompt window when the Export Tool is running.
 To cancel pause mode, you need to activate the command prompt window and then press the <ESC> key.
 If a timeout of RMI occurs during pause mode, the login will be canceled and an error will occur when you cancel pause mode after the timeout. The error message ID will be (0001 4011).
 If a memory size is not specified in a batch file, the Out Of Memory Error occurs in JRE, the Export Tool might stop and the processing might not continue. Confirm whether the specified memory size is correct or not. |
| The command prompt window was displaying progress of the export processing, but the window stopped displaying progress before the processing stopped. The progress information does not seem to be updated anymore. | The command prompt window might be in pause mode.
 The command prompt window will be in pause mode if you click the command prompt window when the Export Tool is running.
 To cancel pause mode, you need to activate the command prompt window and then press the <ESC> key.
 If a timeout of RMI occurs during pause mode, the login will be canceled and an error will occur when you cancel pause mode after the timeout. The error message ID will be (0001 4011).
 If a memory size is not specified in a batch file, the Out Of Memory Error occurs in JRE, the Export Tool might stop and the processing might not continue. Confirm whether the specified memory size is correct or not. |
Possible Problems

<table>
<thead>
<tr>
<th>Possible Problems</th>
<th>Probable Causes and Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>An error occurs and the processing stops.</td>
<td>If the error message ID is (0001 4011), the user is forcibly logged off and the processing stops because the Export Tool did not issue any request to the SVP. The computer running the Export Tool could be slow. Confirm whether you are using a computer that is not supported, or whether the computer is slow. Run the Export Tool again. If the error persists, contact the maintenance personnel. If the error message ID is (0002 5510), probable error causes and solutions are: An internal processing is being performed in the disk array. Alternatively, another user is changing configurations. Wait for a while and then run the Export Tool again. Maintenance operations are being performed on the disk array. Wait until the maintenance operations finish and then run the Export Tool again. If the error message ID is none of the above, see Table 8-2.</td>
</tr>
<tr>
<td>The monitoring data in the CSV file includes "-1".</td>
<td>For details on invalid monitoring data, see Causes of Invalid Monitoring Data.</td>
</tr>
<tr>
<td>When the Export Tool terminated abnormally due to error, the row of Check License is shown as UnmarshalException in the log file.</td>
<td>It might be unsuitable combination of DKCMAIN/SVP program version and Export Tool version. Confirm whether versions of these programs are correct.</td>
</tr>
<tr>
<td>When a CSV file is opened, the parity group ID and volume ID are displayed as following:</td>
<td>To display a CSV file correctly, you need to perform following operations: 1. Start Microsoft® Excel. 2. On the menu bar, select Data, Import External Data, and Import Text File, and specify a CSV file to import. The Text Import Wizard - Step 1 of 3 dialog box is displayed. 3. In the Text Import Wizard - Step 1 of 3 dialog box, click Next. Text Import Wizard - Step 2 of 3 dialog box is displayed. 4. In the Text Import Wizard - Step 2 of 3 dialog box, check only Comma in the Delimiter area, and click Next. The Text Import Wizard - Step 3 of 3 dialog box is displayed. 5. In the Text Import Wizard - Step 3 of 3 dialog box, select all columns of Date preview, and check Text in the Column data format area on the upper right of this dialog box. 6. Click Finish. The imported CSV file is displayed.</td>
</tr>
<tr>
<td>The parity group IDs are displayed as dates</td>
<td></td>
</tr>
<tr>
<td>The volume IDs are displayed with a decimal point</td>
<td></td>
</tr>
<tr>
<td>When you executed the Export Tool with many volumes specified, the Export Tool terminated abnormally while gathering monitoring data.</td>
<td>Because too many volumes are specified, a timeout error might have occurred due to a heavy workload imposed on the computer where the Export Tool was running. The error message ID is (0001 4011). Specify fewer volumes. It is recommended that the number of volumes to be specified is 16,384 or less.</td>
</tr>
</tbody>
</table>

If an error occurs when you run the Export Tool, error messages are issued to the standard output (for example, the command prompt) and the log file. Table 8-2 lists the Export Tool messages and recommended actions against errors.
<table>
<thead>
<tr>
<th>Possible Problems</th>
<th>Probable Causes and Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection to the server has not been established.</td>
<td>Connection to the server has not been established. Use the login subcommand.</td>
</tr>
<tr>
<td>Execution stops.</td>
<td>Execution stops. Remove errors.</td>
</tr>
<tr>
<td>Illegal character: "character"</td>
<td>An illegal character is used. Use legal characters.</td>
</tr>
<tr>
<td>Invalid length: token</td>
<td>The length is invalid. Specify a value that has a correct length.</td>
</tr>
<tr>
<td>Invalid range: range</td>
<td>The specified range is invalid. Specify the correct range.</td>
</tr>
<tr>
<td>Invalid value: "value"</td>
<td>The specified value is invalid. Specify a correct value.</td>
</tr>
<tr>
<td>Login failed</td>
<td>1. An attempt to log into the SVP failed. Probable causes are:</td>
</tr>
<tr>
<td></td>
<td>2. An incorrect operand is used for the svpip subcommand.</td>
</tr>
<tr>
<td></td>
<td>3. An incorrect operand is used for the login subcommand.</td>
</tr>
<tr>
<td></td>
<td>4. The specified user ID is used by another person, and the person is being logged in.</td>
</tr>
<tr>
<td></td>
<td>5. Two users are currently displaying the Performance Management window.</td>
</tr>
<tr>
<td></td>
<td>Two users are currently executing the Export Tool.</td>
</tr>
<tr>
<td></td>
<td>Note: If the error cause is step 4 or 5 above, Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• ask one of the users to display another window.</td>
</tr>
<tr>
<td></td>
<td>• ask one of the users to log off.</td>
</tr>
<tr>
<td></td>
<td>• wait for one of the users to quit the Export Tool.</td>
</tr>
<tr>
<td>Missing command file</td>
<td>The command file is not specified. Specify the name of the command file correctly.</td>
</tr>
<tr>
<td>Missing group name</td>
<td>No operand is specified in the group subcommand. Specify operands for the subcommand.</td>
</tr>
<tr>
<td>Missing host name</td>
<td>No host name is specified. Specify a host name.</td>
</tr>
<tr>
<td>Missing output directory</td>
<td>No directory is specified for saving files. Specify the directory for saving files.</td>
</tr>
<tr>
<td>Missing password</td>
<td>The Export Tool cannot find the user ID, which is used to log into the SVP. Specify the password.</td>
</tr>
<tr>
<td>Missing svpip</td>
<td>The svpip subcommand is not used. Use the svpip command.</td>
</tr>
<tr>
<td>Missing time range</td>
<td>Specify the time range.</td>
</tr>
<tr>
<td>Missing user ID</td>
<td>The Export Tool cannot find the user ID, which is used to log into the SVP. Specify the user ID.</td>
</tr>
<tr>
<td>Out of range: range</td>
<td>The value is outside the range. If the short-range subcommand or the long-range subcommand is used, specify a value within the range from the monitoring start time to the monitoring end time. If the set subcommand is used with the switch operand, specify a value within the range of 1 to 15.</td>
</tr>
<tr>
<td>Possible Problems</td>
<td>Probable Causes and Recommended Action</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Permission Denied.</td>
<td>The user ID does not have the required permission. The user ID needs to have at least one of permissions for Performance Monitor, TrueCopy, TrueCopy for IBM z/OS, Universal Replicator, and Universal Replicator for IBM z/OS.</td>
</tr>
<tr>
<td>RMI server error (part-code, error-number)</td>
<td>An error occurs at the RMI server. For detailed information, see the Storage Navigator Messages.</td>
</tr>
<tr>
<td>Unable to display help message</td>
<td>The Export Tool cannot display the online help due to a system error.</td>
</tr>
<tr>
<td>Unable to get serial number</td>
<td>The Export Tool cannot obtain the serial number due to a system error.</td>
</tr>
<tr>
<td>Unable to get time range for monitoring</td>
<td>The SVP does not contain monitoring data.</td>
</tr>
<tr>
<td>Unable to read command file: file</td>
<td>The Export Tool cannot read the command file. Specify the name of the command file correctly.</td>
</tr>
<tr>
<td>Unable to use the command: command</td>
<td>The specified subcommand is unavailable because you logged in as a storage partition administrator.</td>
</tr>
<tr>
<td>Unable to use the group name: operand</td>
<td>The specified operand of the group subcommand is unavailable because you logged in as a storage partition administrator.</td>
</tr>
<tr>
<td>Unknown host: host</td>
<td>The Export Tool cannot resolve the host name. Specify the correct host name.</td>
</tr>
<tr>
<td>Unsupported command: command</td>
<td>The Export Tool does not support the specified command. Specify a correct command.</td>
</tr>
<tr>
<td>Unsupported operand: operand</td>
<td>The specified operand is not supported. Correct the specified operand.</td>
</tr>
<tr>
<td>Unsupported option: option</td>
<td>The specified option is not supported. Correct the specified option.</td>
</tr>
<tr>
<td>Some file exists in path. What do you do? clear(c)/update(u)/stop(p) You selected "action". Is it OK? (y/n)</td>
<td>Files exist in path. If you want to clear the files, press the <c> key. If you want to overwrite the files, press the <u> key. If you want to stop the operation, press the <p> key. When you press a key, a message appears and asks whether to perform the specified action. To perform the specified action, press the <y> key. To cancel the specified action, press the <n> key.</td>
</tr>
<tr>
<td>Specify the following subcommand before login subcommand: retry</td>
<td>The retry subcommand is written in an incorrect position in the command file. Write the retry subcommand before the login subcommand.</td>
</tr>
<tr>
<td>Possible Problems</td>
<td>Probable Causes and Recommended Action</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Start gathering group data</td>
<td>The Export Tool starts collecting data specified by the <code>group</code> subcommand. The number of targets is <code>xxx</code> and the total number is <code>yyy</code> (refer to Note below). The Export Tool ends collecting data.</td>
</tr>
<tr>
<td>Note: For example, suppose that the storage system contains 100 parity groups and the command file contains the following command line: <code>group PG 1-1:1-2</code> The Export Tool displays the message "Target=2, Total=100", which means that the group subcommand specifies two parity groups and that the total number of parity groups in the storage system is 100.</td>
<td></td>
</tr>
<tr>
<td>Syntax error: "line"</td>
<td>A syntax error is detected in a command line in your command file. Check the command line for the syntax error and then correct the script.</td>
</tr>
<tr>
<td>Note: Some operands must be enclosed by double quotation marks ("). Check the command line to find whether double quotation marks are missing.</td>
<td></td>
</tr>
</tbody>
</table>
Calling the Hitachi Data Systems Support Center

If you need to call the Hitachi Data Systems Support Center, please provide as much information about the problem as possible, including:

- The circumstances surrounding the error or failure.
- The exact content of any error messages displayed on the host system(s).
- The Volume Retention Manager (or other) error code(s) displayed by the Storage Navigator computer.
- The USP V/VM Storage Navigator configuration information saved on diskette using the FD Dump Tool (see the Storage Navigator User’s Guide).
- The remote service information messages (R-SIMs) logged on the Storage Navigator computer and the reference codes and severity levels of the recent R-SIMs.

The Hitachi Data Systems customer support staff is available 24 hours/day, seven days a week. If you need technical support, please call:

- United States: (800) 446-0744
- Outside the United States: (858) 547-4526
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>array control processor</td>
</tr>
<tr>
<td>CCI</td>
<td>command control interface</td>
</tr>
<tr>
<td>CHA</td>
<td>channel adapter</td>
</tr>
<tr>
<td>CHP</td>
<td>channel processor</td>
</tr>
<tr>
<td>CLPR</td>
<td>cache logical partition</td>
</tr>
<tr>
<td>CSW</td>
<td>cache switch</td>
</tr>
<tr>
<td>CU</td>
<td>control unit (logical control unit)</td>
</tr>
<tr>
<td>CV</td>
<td>customized volume</td>
</tr>
<tr>
<td>DASD</td>
<td>direct-access storage device</td>
</tr>
<tr>
<td>DFW</td>
<td>DASD fast write</td>
</tr>
<tr>
<td>DKA</td>
<td>disk adapter</td>
</tr>
<tr>
<td>DKCMAIN</td>
<td>Disk Controller Main</td>
</tr>
<tr>
<td>DKP</td>
<td>disk processor</td>
</tr>
<tr>
<td>DRR</td>
<td>data recovery and reconstruction</td>
</tr>
<tr>
<td>ESCON®</td>
<td>Enterprise System Connection (IBM trademark for optical channels)</td>
</tr>
<tr>
<td>GB</td>
<td>gigabyte (see Convention for Storage Capacity Values)</td>
</tr>
<tr>
<td>HBA</td>
<td>host bus adapter</td>
</tr>
<tr>
<td>HDD</td>
<td>hard disk drive</td>
</tr>
<tr>
<td>JRE</td>
<td>Java Runtime Environment</td>
</tr>
<tr>
<td>KB</td>
<td>kilobyte (see Convention for Storage Capacity Values)</td>
</tr>
<tr>
<td>LAN</td>
<td>local-area network</td>
</tr>
<tr>
<td>LDEV</td>
<td>logical device</td>
</tr>
<tr>
<td>LDKC</td>
<td>logical disk controller</td>
</tr>
<tr>
<td>LU</td>
<td>logical unit</td>
</tr>
<tr>
<td>LUN</td>
<td>logical unit number</td>
</tr>
<tr>
<td>LUSE</td>
<td>LU size expansion</td>
</tr>
<tr>
<td>MB</td>
<td>megabyte (see Convention for Storage Capacity Values)</td>
</tr>
<tr>
<td>NSC</td>
<td>network storage controller</td>
</tr>
<tr>
<td>NVS</td>
<td>nonvolatile storage</td>
</tr>
<tr>
<td>PB</td>
<td>petabyte (see Convention for Storage Capacity Values)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PC</td>
<td>personal computer</td>
</tr>
<tr>
<td>PDEV</td>
<td>physical device</td>
</tr>
<tr>
<td>PSUE</td>
<td>pair suspended-error</td>
</tr>
<tr>
<td>PSUS</td>
<td>pair suspended-split</td>
</tr>
<tr>
<td>P-VOL</td>
<td>primary volume</td>
</tr>
<tr>
<td>RAID</td>
<td>redundant array of independent disks</td>
</tr>
<tr>
<td>SIM</td>
<td>service information message</td>
</tr>
<tr>
<td>SLPR</td>
<td>storage management logical partition</td>
</tr>
<tr>
<td>SM</td>
<td>shared memory</td>
</tr>
<tr>
<td>SMPL</td>
<td>simplex</td>
</tr>
<tr>
<td>SPM</td>
<td>Server Priority Manager</td>
</tr>
<tr>
<td>S-VOL</td>
<td>secondary volume</td>
</tr>
<tr>
<td>SVP</td>
<td>service processor</td>
</tr>
<tr>
<td>TB</td>
<td>terabyte (see Convention for Storage Capacity Values)</td>
</tr>
<tr>
<td>TC</td>
<td>TrueCopy</td>
</tr>
<tr>
<td>TCz</td>
<td>TrueCopy for IBM z/OS</td>
</tr>
<tr>
<td>UR</td>
<td>Universal Replicator</td>
</tr>
<tr>
<td>USP</td>
<td>Universal Storage Platform</td>
</tr>
<tr>
<td>VLL</td>
<td>Virtual LVI/LUN</td>
</tr>
<tr>
<td>V-VOL</td>
<td>virtual volume (Snapshot Image)</td>
</tr>
<tr>
<td>WWN</td>
<td>world-wide name</td>
</tr>
</tbody>
</table>
A
access path, 2-10

C
CHA. --- Refer to channel adapter
channel adapter, 2-6
channel processor, 2-6
CHP. --- Refer to channel processor

D
data recovery and reconstruction processor, 2-9
development server, 2-13
disk adapter, 2-6
disk processor, 2-6
DKA. --- Refer to disk adapter
DKP. --- Refer to disk processor
DRR. --- Refer to data recovery and reconstruction processor

H
HBA. --- Refer to host bus adapter
host bus adapter, 2-13, 4-21, 5-45, 6-2

I
I/O rate, 2-11, 2-12, 5-26, 6-4

N
nickname, 5-36, 5-39
non- prioritized port, 6-14
non-prioritized port, 6-3
non-prioritized WWN, 6-8, 6-22

P
parity group, 2-4
Performance Manager
system requirements, 3-2
prioritized port, 6-3, 6-14

R
read hit ratio, 2-11, 5-26
real-time mode, 4-16

S
SPM group, 6-28
SPM name, 5-36, 5-39, 5-47, 5-50

T
threshold, 2-14
threshold control, 2-14
transfer rate, 2-11, 2-12, 5-26, 6-4

U
upper limit control, 2-14

W
write hit rate, 2-11
write hit ratio, 5-26
write pending rate, 2-9

prioritized WWN, 6-8, 6-22
production server, 2-13
Hitachi Data Systems

Corporate Headquarters
750 Central Expressway
Santa Clara, California 95050-2627
U.S.A.
Phone: 1 408 970 1000
www.hds.com
info@hds.com

Asia Pacific and Americas
750 Central Expressway
Santa Clara, California 95050-2627
U.S.A.
Phone: 1 408 970 1000
info@hds.com

Europe Headquarters
Sefton Park
Stoke Poges
Buckinghamshire SL2 4HD
United Kingdom
Phone: + 44 (0)1753 618000
info.eu@hds.com