## MITSUBISH ELECTRIC

# Mitsubishi Programmable Controller 



## Type QD75P/QD75D Positioning Module User's Manual

-QD75P1N
-QD75P2N
-QD75P4N
-QD75D1N
-QD75D2N
-QD75D4N
-QD75P1
-QD75P2
-QD75P4
-QD75D1
-QD75D2
-QD75D4


## - SAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.
The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable controller system, refer to the user's manual for the CPU module used.
In this manual, the safety precautions are classified into two levels: " $₫$ WARNING" and " $₫$ CAUTION".


Under some circumstances, failure to observe the precautions given under " $₫$ CAUTION" may lead to serious consequences.
Observe the precautions of both levels because they are important for personal and system safety.
Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

## [Design Precautions]

## WARNING

- Provide a safety circuit outside the programmable controller so that the entire system will operate safely even when an external power supply error or programmable controller fault occurs.
Failure to observe this could lead to accidents for incorrect outputs or malfunctioning.
(1) Configure an emergency stop circuit and interlock circuit such as a positioning upper limit/lower limit to prevent mechanical damage outside the programmable controller.
(2) The machine OPR operation is controlled by the OPR direction and OPR speed data. Deceleration starts when the near-point dog turns ON. Thus, if the OPR direction is incorrectly set, deceleration will not start and the machine will continue to travel. Configure an interlock circuit to prevent mechanical damage outside the programmable controller.
(3) When the module detects an error, normally deceleration stop or sudden stop will take place according to the parameter stop group settings.
Set the parameters to the positioning system specifications.
Make sure that the OPR parameter and positioning data are within the parameter setting values.


## [Design Precautions]

## @ CAUTION

- Do not bundle or adjacently lay the connection cable connected to the module external I/O signals or drive unit with the main circuit line, power line, or the load line other than that for the programmable controller. Separate these by 100 mm as a guide. Failure to observe this could lead to malfunctioning caused by noise, surge, or induction.


## [Mounting Precautions]

## $\triangle$ CAUTION

- Use the programmable controller in an environment that meets the general specifications contained in QCPU User's Manual(Hardware Design, Maintenance and Inspection) to use. Using this programmable controller in an environment outside the range of the general specifications may cause electric shock, fire, malfunction, and damage to or deterioration of the product.
- While pressing the installation lever located at the bottom of module, insert the module fixing tab into the fixing hole in the base unit until it stops. Then, securely mount the module with the fixing hole as a supporting point.
Incorrect loading of the module can cause a malfunction, failure or drop.
When using the programmable controller in the environment of much vibration, tighten the module with a screw.
Tighten the screw in the specified torque range.
Undertightening can cause a drop, short circuit or malfunction.
Overtightening can cause a drop, short circuit or malfunction due to damage to the screw or module.
- Completely turn off the externally supplied power used in the system before mounting or removing the module.
Not doing so may damage the product.
[Wiring Precautions]


## WARNING

- Always confirm the terminal layout before connecting the wires to the module.


## [Wiring Precautions]

## CAUTION

- Use applicable solderless terminals and tighten them within the specified torque range. If any spade solderless terminal is used, it may be disconnected when the terminal screw comes loose, resulting in failure.
- Tighten the connector screws within the specified torque range.

Undertightening can cause short circuit, fire, or malfunction.
Overtightening can damage the screw and/or module, resulting in drop, short circuit, fire, or malfunction.

- Connectors for external devices must be crimped with the tool specified by the manufacturer, or must be correctly soldered. Incomplete connections may cause short circuit, fire, or malfunction.
- When disconnecting the cable from the module, do not pull the cable by the cable part. For the cable with connector, hold the connector part of the cable.
Pulling the cable connected to the module may result in malfunction or damage to the module or cable.
- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.


## [Startup/Maintenance Precautions]

## WARNING

- Completely turn off the externally supplied power used in the system before cleaning or tightening the screws.
Failure to turn all phases OFF could lead to electric shocks.


## [Startup/Maintenance Precautions]

## CAUTION

- Never disassemble or modify the module.

Failure to observe this could lead to trouble, malfunctioning, injuries or fires.

- Completely turn off the externally supplied power used in the system before installing or removing the module.
Failure to turn all phases OFF could lead to module trouble or malfunctioning.
- Do not install/remove the module to/from the base unit, or the terminal block to/from the module more than 50 times after the first use of the product. (IEC 61131-2 compliant) Failure to do so may cause malfunction.
- Before starting test operation, set the parameter speed limit value to the slowest value, and make sure that operation can be stopped immediately if a hazardous state occurs.
- Always make sure to touch the grounded metal to discharge the electricity charged in the body, etc., before touching the module.
Failure to do so may cause a failure or malfunctions of the module.


## [Precautions for use]

## CAUTION

- Note that when the reference axis speed is designated for interpolation operation, the speed of the partner axis (2nd axis, 3rd axis and 4th axis) may be larger than the set speed (larger than the speed limit value).
[Disposal Precautions]


## CAUTION

- When disposing of the product, handle it as industrial waste.


## - CONDITIONS OF USE FOR THE PRODUCT •

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions; i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.
(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.
MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

REVISIONS

* The manual number is given on the bottom left of the back cover.

| Print Date | * Manual Number | Revision |
| :---: | :---: | :---: |
| Dec., 1999 | SH (NA)-080058-A | First edition |
| Oct., 2000 | SH (NA)-080058-B | Addition of function version B <br> (Overall revisions based on the Japanese Manual Version SH-080047-E) |
| Jun., 2001 | SH (NA)-080058-C | - The software package names (GPP function software package, QD75 software package) have been replaced by the product names (GX Developer, GX Configurator-QP) for standardization. <br> Partial corrections and additions <br> CONTENTS, About Manuals, Generic Terms and Abbreviations, Section 1.4, Section 2.2, Section 2.3, Section 3.2.2 to Section 3.2.4, Section 3.3.2, Section 3.3.3, Section 3.4.1, Section 3.4.3, <br> Section 3.4.4, Section 4.1.2, Section 4.3, Section 5.1.2, Section 5.1.3, Section 5.2.3, Section 5.2.5, Section 5.6.2, Section 5.7.1, Section 6.2 to Section 6.4, Section 6.5.3, Section 7.2, Section 8.2.2, Section 8.2.5, Section 8.2.6, Section 9.1.2, Section 9.2.1, Section 9.2.16, <br> Section 9.2.17, Section 10.3.2, Section 10.6.2, Section 11.2.3, Section 11.3.3, Section 11.3.4, Section 11.4.3, Section 12.1.1, Section 12.5 to Section 12.7, Section 13.1, Section 13.3, Section 13.4, Section 14.2 to Section 14.7, Section 15.1, Section 15.2, Section 15.4, Appendix 1, Appendix 9.2, Appendix 11, INDEX |
| Apr., 2003 | SH (NA)-080058-D | Partial corrections and additions <br> SAFETY INSTRUCTIONS, CONTENTS, Component List, Section 1.2.3, Section 1.4, Section 2.3, Section 2.4, Section 3.1, Section 3.2.1, Section 3.2.3, Section 3.2.4, Section 3.4.1, Section 3.4.4, Section 4.1.2, Section 4.3.1, Section 4.3.2, Section 5.1.1, Section 5.1.7, Section 5.1.8, Section 5.2.1, Section 5.2.4, Section 5.6.2, Section 5.7.1, Section 6.4, Section 6.5.4, Section 6.5.6, Section 8.2.3 to Section 8.2.8, Section 9.2.17, Section 9.2.19, Section 11.2.1, Section 11.3.1, Section 11.4.1, Section 12.1.1, Section 12.5.1, Section 12.5.2, Section 12.7.3, Section 12.7.5, Section 12.7.9, Section 14.4, Section 15.2, Appendix 1.1, Appendix 4.1 to Appendix 4.3, Appendix 7.1, Appendix 9.2, Appendix 10 to Appendix 13, INDEX |
| Oct., 2003 | SH (NA)-080058-E | Partial corrections and additions <br> CONTENTS, Section 1.1.1, Section 1.4, Section 2.2, Section 2.4, <br> Section 3.2.1, Section 3.2.3, Section 3.2.4, Section 3.3.2, <br> Section 3.4.3, Section 3.4.4, Section 5.1.1, Section 5.1.8, <br> Section 5.7.1, Section 6.5.3, Section 6.5.6, Section 7.1.2, <br> Section 9.1.2, Section 9.2.3 to Section 9.2.9, Section 11.2.1, <br> Section 11.3.1, Section 11.4.1, Section 12.2.1, Section 12.7.10, <br> Appendix 9.2, Appendix 12, INDEX |
| Feb., 2004 | SH (NA)-080058-F | Partial corrections and additions <br> CONTENTS, Section 3.4.1, Section 3.4.3, Section 3.4.4, Section 5.2.1, Section 5.4, Section 5.5, Section 5.6.2, Section 8.2.6, Section 10.1.2, Section 10.3.3, Section 10.3.5, Section 10.3.7, Appendix 9.2, Appendix 12 |

* The manual number is given on the bottom left of the back cover.

| Print Date | * Manual Number | Revision |
| :---: | :---: | :---: |
| Nov., 2004 | SH (NA)-080058-G | Partial corrections and additions <br> SAFETY INSTRUCTIONS, Section 1.4, Section 2.3, Section 2.4, <br> Section 4.2.1, Section 4.3.1, Section 4.5.1, Section 5.1.7, <br> Section 5.2.1, Section 5.2.6, Section 5.6.2, Section 6.1, <br> Section 9.2.19, Section 12.2.1, Section 12.4.4, Section 12.7.4, <br> Appendix 1.1, Appendix 9.1 |
| Jun., 2005 | SH (NA)-080058-H | Partial corrections and additions <br> Section 5.1.2, Section 9.1.2, Section 9.2.10, Section 9.2.21, <br> Section 10.3.8, Section 11.4.1, Section 12.5.2, Section 12.7.1, <br> Section 12.7.6, Section 15.1, Section 15.2 |
| Aug., 2006 | SH (NA)-080058-I | Partial corrections and additions <br> Section 3.4.4, Section 5.2.1, Section 14.5 to 14.7, Appendix 6.1, INDEX |
| Jul., 2008 | SH (NA)-080058-J | Partial corrections and additions <br> SAFETY INSTRUCTIONS, ABOUT MANUALS, Compliance with the EMC and Low Voltage Directives, Section 1.3, Section 2.3, 2.4, Section 3.1, 3.4.1, Section 4.1.2, 4.2.1, 4.3.1, Section 5.1.2, 5.2.1, 5.2.4, 5.2.5, Section 6.2, Section 6.4, Section 9.2.16, 9.2.17, Section 12.6, Section 12.7.2, Section 14.3 to 14.7, Appendix 12,13 |
| Oct., 2010 | SH (NA)-080058-K | Full revision |
| Apr., 2011 | SH (NA)-080058-L | Partial corrections and additions <br> Section 3.4.1, Section 4.3.1, 4.3.2, Section 5.6.1, 5.7.2, Section 6.2, <br> 6.4, Section 7.2, Section 8.2.7, 8.2.8, Section 9.2.3, 9.2.16, 9.2.18, <br> Section 10.5, Section 11.2.1, Section 12.4.2, 12.6, 12.7.4, <br> Section 13.2, 13.3, 13.5, Section 14.3, Appendix 3, Appendix 9.2, <br> Appendix 10, 10.2, 10.3 <br> Additions <br> Appendix 10.4 <br> Changed item numbers <br> Appendix 10.4 to $10.12 \rightarrow$ Appendix 10.5 to 10.13 |
| Sep., 2011 | SH (NA)-080058-M | Partial corrections and additions <br> Generic Terms and Abbreviations, Component List, Section 1.1.1, <br> 1.2.1, Section 2.2, 2.3, 2.4, Section 3.1, 3.4.1 to 3.4.4, Section 4.1.2, <br> 4.3.2, Section 5.1.1, 5.1.7, 5.2.1 to 5.2.4, 5.3, 5.4, 5.6.1, 5.6.2, 5.7.1, <br> 5.7.2, Section 6.1, 6.4, 6.5.3, Section 7.1.1, 7.1.2, Section 8.2.2, 8.2.5, <br> 8.3.1, Section 9.1.2, 9.1.4, 9.2.9, 9.2.16 to 9.2.18, Section 11.1.1, <br> 11.2.1, 11.3.1, 11.3.4, 11.4.1, 11.4.4, Section 12.3.2, 12.7.5, 12.7.7, <br> Section 13.5, Section 14.3, 14.6, Section 15.3, 15.4, Appendix 1.1, <br> Appendix 2.2, Appendix 10.1 to 10.13, Appendix 12 to 14 <br> Additions <br> Appendix 1.2 <br> Addition model <br> QD75P1N, QD75P2N, QD75P4N, QD75D1N, QD75D2N, QD75D4N |

* The manual number is given on the bottom left of the back cover.


Japanese Manual Version SH-080047-X

[^0]
## INTRODUCTION

Thank you for purchasing the Mitsubishi general-purpose programmable controller MELSEC-Q Series. Always read through this manual, and fully comprehend the functions and performance of the Q Series programmable controller before starting use to ensure correct usage of this product.

## CONTENTS

SAFETY PRECAUTIONS ..... A- 1
CONDITIONS OF USE FOR THE PRODUCT ..... A- 5
REVISIONS ..... A- 6
INTRODUCTION ..... A- 9
CONTENTS ..... A- 9
ABOUT MANUALS ..... A- 17
USING THIS MANUAL ..... A- 17
COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES ..... A- 18
GENERIC TERMS AND ABBREVIATIONS ..... A- 18
COMPONENT LIST ..... A- 19
PART 1 PRODUCT SPECIFICATIONS AND HANDLING

1. PRODUCT OUTLINE
1.1 Positioning control ..... 1- 2
1.1.1 Features of QD75 ..... 1- 2
1.1.2 Purpose and applications of positioning control ..... 1- 5
1.1.3 Mechanism of positioning control ..... 1- 7
1.1.4 Outline design of positioning system ..... 1- 9
1.1.5 Communicating signals between QD75 and each module ..... 1-12
1.2 Flow of system operation ..... 1-15
1.2.1 Flow of all processes ..... 1-15
1.2.2 Outline of starting ..... 1-18
1.2.3 Outline of stopping ..... 1-20
1.2.4 Outline of restarting ..... 1-22
1.3 Restrictions on using a stepping motor ..... 1-23
1.4 Function additions/modifications according to function version $B$ ..... 1-23
2.1 General image of system ..... 2- 2
2.2 Configuration list ..... 2- 4
2.3 Applicable system ..... 2- 6
2.4 How to check the function version and SERIAL No. ..... 2- 8
3.1 Performance specifications ..... 3- 2
3.2 List of functions ..... 3- 6
3.2.1 QD75 control functions ..... 3- 6
3.2.2 QD75 main functions ..... 3- 8
3.2.3 QD75 sub functions and common functions ..... 3-10
3.2.4 Combination of QD75 main functions and sub functions ..... 3-14
3.3 Specifications of input/output signals with CPU module. ..... 3-16
3.3.1 List of input/output signals with CPU module ..... 3-16
3.3.2 Details of input signals (QD75 $\rightarrow$ CPU module) ..... 3-17
3.3.3 Details of output signals (CPU module $\rightarrow$ QD75) ..... 3-18
3.4 Specifications of input/output interfaces with external devices ..... 3-19
3.4.1 Electrical specifications of input/output signals ..... 3-19
3.4.2 Signal layout for external device connection connector ..... 3-25
3.4.3 List of input/output signal details. ..... 3-26
3.4.4 Input/output interface internal circuit. ..... 3-28
2. INSTALLATION, WIRING AND MAINTENANCE OF THE PRODUCT ..... 4- 1 to 4-16
4.1 Outline of installation, wiring and maintenance ..... 4- 2
4.1.1 Installation, wiring and maintenance procedures ..... 4- 2
4.1.2 Names of each part ..... 4- 3
4.1.3 Handling precautions ..... 4- 5
4.2 Installation ..... 4- 7
4.2.1 Installation precautions ..... 4- 7
4.3 Wiring ..... 4- 8
4.3.1 Wiring precautions ..... 4- 8
4.3.2 Wiring of the differential driver common terminal ..... 4-14
4.4 Checking installation and wiring ..... 4-15
4.4.1 Items to check when installation and wiring are completed. ..... 4-15
4.5 Maintenance ..... 4-16
4.5.1 Maintenance precautions ..... 4-16
4.5.2 Disposal precautions ..... 4-16
3. DATA USED FOR POSITIONING CONTROL ..... 5- 1 to $5-128$
5.1 Types of data. ..... 5- 2
5.1.1 Parameters and data required for control ..... 5- 2
5.1.2 Setting items for positioning parameters ..... 5- 5
5.1.3 Setting items for OPR parameters ..... 5- 7
5.1.4 Setting items for positioning data ..... 5- 8
5.1.5 Setting items for block start data ..... 5-10
5.1.6 Setting items for condition data ..... 5-11
5.1.7 Types and roles of monitor data ..... 5-12
5.1.8 Types and roles of control data ..... 5-15
5.2 List of parameters ..... 5-18
5.2.1 Basic parameters 1 ..... 5-18
5.2.2 Basic parameters 2 ..... 5-24
5.2.3 Detailed parameters 1 ..... 5-26
5.2.4 Detailed parameters 2 ..... 5-34
5.2.5 OPR basic parameters. ..... 5-43
5.2.6 OPR detailed parameters ..... 5-50
5.3 List of positioning data ..... 5-54
5.4 List of block start data ..... 5-68
5.5 List of condition data ..... 5-74
5.6 List of monitor data ..... 5-80
5.6.1 System monitor data ..... 5-80
5.6.2 Axis monitor data ..... 5-90
5.7 List of control data ..... 5-104
5.7.1 System control data ..... 5-104
5.7.2 Axis control data ..... 5-1086. SEQUENCE PROGRAM USED FOR POSITIONING CONTROL6- 1 to 6-46
6.1 Precautions for creating program ..... 6- 2
6.2 List of devices used ..... 6- 5
6.3 Creating a program ..... 6-11
6.3.1 General configuration of program ..... 6-11
6.3.2 Positioning control operation program ..... 6-12
6.4 Positioning program examples ..... 6-15
6.5 Program details ..... 6-24
6.5.1 Initialization program ..... 6-24
6.5.2 Start details setting program ..... 6-25
6.5.3 Start program ..... 6-27
6.5.4 Continuous operation interrupt program. ..... 6-37
6.5.5 Restart program ..... 6-39
6.5.6 Stop program ..... 6-43
4. MEMORY CONFIGURATION AND DATA PROCESS ..... 7- 1 to $7-12$
7.1 Configuration and roles of QD75 memory ..... 7- 2
7.1.1 Configuration and roles of QD75 memory ..... 7- 2
7.1.2 Buffer memory area configuration ..... 7- 5
7.2 Data transmission process ..... 7- 6

## PART 2 CONTROL DETAILS AND SETTING

8. OPR CONTROL

8- 1 to 8-24
8.1 Outline of OPR control ..... 8- 2
8.1.1 Two types of OPR control ..... 8- 2
8.2 Machine OPR ..... 8- 4
8.2.1 Outline of the machine OPR operation ..... 8- 4
8.2.2 Machine OPR method ..... 8- 5
8.2.3 OPR method (1): Near-point dog method ..... 8- 7
8.2.4 OPR method (2): Stopper method 1) ..... 8- 9
8.2.5 OPR method (3): Stopper method 2) ..... 8-12
8.2.6 OPR method (4): Stopper method 3) ..... 8-15
8.2.7 OPR method (5): Count method 1) ..... 8-17
8.2.8 OPR method (6): Count method 2) ..... 8-20
8.3 Fast OPR ..... 8-23
8.3.1 Outline of the fast OPR operation ..... 8-23
9. MAJOR POSITIONING CONTROL ..... 9- 1 to $9-120$
9.1 Outline of major positioning controls ..... 9- 2
9.1.1 Data required for major positioning control ..... 9- 4
9.1.2 Operation patterns of major positioning controls ..... 9- 5
9.1.3 Designating the positioning address ..... 9-16
9.1.4 Confirming the current value ..... 9-17
9.1.5 Control unit "degree" handling ..... 9-19
9.1.6 Interpolation control ..... 9-22
9.2 Setting the positioning data ..... 9-26
9.2.1 Relation between each control and positioning data ..... 9-26
9.2.2 1-axis linear control ..... 9-28
9.2.3 2-axis linear interpolation control ..... 9-30
9.2.4 3-axis linear interpolation control ..... 9-34
9.2.5 4-axis linear interpolation control ..... 9-40
9.2.6 1-axis fixed-feed control ..... 9-44
9.2.7 2-axis fixed-feed control (interpolation) ..... 9-46
9.2.8 3-axis fixed-feed control (interpolation) ..... 9-49
9.2.9 4-axis fixed-feed control (interpolation) ..... 9-54
9.2.10 2-axis circular interpolation control with sub point designation ..... 9-57
9.2.11 2-axis circular interpolation control with center point designation ..... 9-63
9.2.12 1-axis speed control ..... 9-71
9.2.13 2-axis speed control ..... 9-74
9.2.14 3-axis speed control ..... 9-77
9.2.15 4-axis speed control ..... 9-81
9.2.16 Speed-position switching control (INC mode) ..... 9-86
9.2.17 Speed-position switching control (ABS mode) ..... 9-95
9.2.18 Position-speed switching control ..... 9-103
9.2.19 Current value changing ..... 9-110
9.2.20 NOP instruction ..... 9-115
9.2.21 JUMP instruction ..... 9-116
9.2.22 LOOP ..... 9-118
9.2.23 LEND ..... 9-119
10. HIGH-LEVEL POSITIONING CONTROL
10.1 Outline of high-level positioning control ..... 10- 2
10.1.1 Data required for high-level positioning control. ..... 10- 3
10.1.2 "Block start data" and "condition data" configuration ..... 10- 4
10.2 High-level positioning control execution procedure ..... 10- 6
10.3 Setting the block start data ..... 10-7
10.3.1 Relation between various controls and block start data ..... 10-7
10.3.2 Block start (normal start) ..... 10- 8
10.3.3 Condition start ..... 10-10
10.3.4 Wait start. ..... 10-11
10.3.5 Simultaneous start ..... 10-12
10.3.6 Repeated start (FOR loop) ..... 10-14
10.3.7 Repeated start (FOR condition) ..... 10-15
10.3.8 Restrictions when using the NEXT start. ..... 10-16
10.4 Setting the condition data ..... 10-17
10.4.1 Relation between various controls and the condition data ..... 10-17
10.4.2 Condition data setting examples ..... 10-20
10.5 Multiple axes simultaneous start control ..... 10-21
10.6 Start program for high-level positioning control ..... 10-24
10.6.1 Starting high-level positioning control. ..... 10-24
10.6.2 Example of a start program for high-level positioning control ..... 10-25
11.1 Outline of manual control ..... 11- 2
11.1.1 Three manual control methods ..... 11- 2
11.2 JOG operation ..... 11- 4
11.2.1 Outline of JOG operation ..... 11- 4
11.2.2 JOG operation execution procedure ..... 11- 7
11.2.3 Setting the required parameters for JOG operation. ..... 11- 8
11.2.4 Creating start programs for JOG operation ..... 11-10
11.2.5 JOG operation example ..... 11-13
11.3 Inching operation ..... 11-16
11.3.1 Outline of inching operation ..... 11-16
11.3.2 Inching operation execution procedure ..... 11-19
11.3.3 Setting the required parameters for inching operation ..... 11-20
11.3.4 Creating a program to enable/disable the inching operation ..... 11-21
11.3.5 Inching operation example. ..... 11-24
11.4 Manual pulse generator operation. ..... 11-26
11.4.1 Outline of manual pulse generator operation ..... 11-26
11.4.2 Manual pulse generator operation execution procedure ..... 11-30
11.4.3 Setting the required parameters for manual pulse generator operation ..... 11-31
12.1 Outline of sub functions ..... 12- 2
12.1.1 Outline of sub functions ..... 12- 2
12.2 Sub functions specifically for machine OPR ..... 12- 4
12.2.1 OPR retry function ..... 12- 4
12.2.2 OP shift function ..... 12- 8
12.3 Functions for compensating the control ..... 12-12
12.3.1 Backlash compensation function ..... 12-12
12.3.2 Electronic gear function ..... 12-14
12.3.3 Near pass function ..... 12-21
12.3.4 Output timing selection of near pass control ..... 12-23
12.4 Functions to limit the control ..... 12-27
12.4.1 Speed limit function ..... 12-27
12.4.2 Torque limit function ..... 12-29
12.4.3 Software stroke limit function ..... 12-33
12.4.4 Hardware stroke limit function ..... 12-39
12.5 Functions to change the control details ..... 12-41
12.5.1 Speed change function ..... 12-41
12.5.2 Override function ..... 12-48
12.5.3 Acceleration/deceleration time change function ..... 12-51
12.5.4 Torque change function ..... 12-56
12.5.5 Target position change function ..... 12-58
12.6 Absolute position restoration function ..... 12-62
12.7 Other functions. ..... 12-73
12.7.1 Step function. ..... 12-73
12.7.2 Skip function ..... 12-78
12.7.3 M code output function ..... 12-81
12.7.4 Teaching function ..... 12-85
12.7.5 Command in-position function ..... 12-92
12.7.6 Acceleration/deceleration processing function ..... 12-95
12.7.7 Pre-reading start function ..... 12-98
12.7.8 Deceleration start flag function ..... 12-103
12.7.9 Stop command processing for deceleration stop function. ..... 12-107
13. COMMON FUNCTIONS ..... 13- 1 to $13-8$
13.1 Outline of common functions ..... 13- 2
13.2 Parameter initialization function ..... 13- 3
13.3 Execution data backup function ..... 13- 5
13.4 External I/O signal logic switching function ..... 13-7
13.5 External I/O signal monitor function ..... 13- 8
14. DEDICATED INSTRUCTIONS
14.1 List of dedicated instructions ..... 14- 2
14.2 Interlock during dedicated instruction is executed ..... 14- 2
14.3 Z.ABRST1, Z.ABRST2, Z.ABRST3, Z.ABRST4 ..... 14- 3
14.4 ZP.PSTRT1, ZP.PSTRT2, ZP.PSTRT3, ZP.PSTRT4. ..... 14- 8
14.5 ZP.TEACH1, ZP.TEACH2, ZP.TEACH3, ZP.TEACH4 ..... 14-12
14.6 ZP.PFWRT ..... 14-16
14.7 ZP.PINIT ..... 14-20
15. TROUBLESHOOTING ..... 15- 1 to 15-48
15.1 Troubleshooting ..... 15- 2
15.2 Error and warning details ..... 15- 6
15.3 List of errors ..... 15-10
15.4 List of warnings ..... 15-40
APPENDICES Appendix- 1 to Appendix-156
Appendix 1 Version up of the functions Appendix- ..... 2
Appendix 1.1 Comparison of functions according to function versions Appendix- ..... 2
Appendix 1.2 Precautions for the replacement of QD75P $\square /$ QD75D $\square$ with QD75P $\square$ N/QD75D $\square \mathrm{N}$
Appendix- ..... 3
Appendix 2 Format sheets Appendix- 6
Appendix 2.1 Positioning Module operation chart Appendix- 6
Appendix 2.2 Parameter setting value entry table Appendix- 8
Appendix 2.3 Positioning data setting value entry table ..... Appendix- 14
Appendix 3 Positioning data (No. 1 to 600) List of buffer memory addresses ..... Appendix- 15
Appendix 4 Connection examples with servo amplifiers manufactured by MITSUBISHI Electric Corporation ..... Appendix- 39
Appendix 4.1 Connection example of QD75D $\square \mathrm{N}$ and MR-J3- $\square$ A (Differential driver). ..... Appendix- 39
Appendix 4.2 Connection example of QD75D $\square \mathrm{N}$ and MR-H $\square$ A (Differential driver) Appendix- 40
Appendix 4.3 Connection example of QD75D $\square \mathrm{N}$ and MR-J2/J2S- $\square$ A (Differential driver) ..Appendix- 41Appendix 4.4 Connection example of QD75D $\square \mathrm{N}$ and MR-C $\square \mathrm{A}$ (Differential driver) ............Appendix- 42Appendix 5 Connection examples with stepping motors manufactured by ORIENTALMOTOR Co., Ltd.Appendix- 43
Appendix 5.1 Connection example of QD75P $\square \mathrm{N}$ and VEXTA UPD (Open collector) ..... Appendix- 43
Appendix 6 Connection examples with servo amplifiers manufactured by Panasonic Corporation
Appendix- 44
Appendix 6.1 Connection example of QD75D $\square$ N and MINAS-A series (Differential driver)....Appendix- 44Appendix 7 Connection examples with servo amplifiers manufactured by SANYO DENKI Co., Ltd.Appendix- 45
Appendix 7.1 Connection example of QD75D $\square \mathrm{N}$ and PYO series (Differential driver) ..... Appendix- 45
Appendix 8 Connection examples with servo amplifiers manufactured by YASKAWA Electric CorporationAppendix- 46
Appendix 8.1 Connection example of QD75D $\square \mathrm{N}$ and $\Sigma$-II series (Differential driver) ..... Appendix- 46
Appendix 9 Comparisons with conventional positioning modules ..... Appendix- 47
Appendix 9.1 Comparisons with A1SD71S2 model ..... Appendix- 47
Appendix 9.2 Comparisons with A1SD75P1-S3/A1SD75P2-S3/ A1SD75P3-S3 models ..... Appendix- 48
Appendix 10 When using GX Works2 ..... Appendix- 71
Appendix 10.1 Adding a module ..... Appendix- 72
Appendix 10.2 Setting parameters Appendix- 73
Appendix 10.3 Setting auto refresh Appendix- 78
Appendix 10.4 Positioning monitor ..... Appendix- 79
Appendix 10.5 Positioning test ..... Appendix- 89
Appendix 10.6 Wave trace ..... Appendix- 97
Appendix 10.7 Location trace ..... Appendix-100
Appendix 10.8 Parameter initialization function .Appendix-103
Appendix 10.9 Execution data backup function ..... Appendix-105
Appendix 10.10 External I/O signal logic switching function ..... Appendix-107
Appendix 10.11 External I/O signal monitor function ..... Appendix-108
Appendix 10.12 History monitor function ..... Appendix-109
Appendix 10.13 Checking errors ..... Appendix-111
Appendix 11 MELSEC Explanation of positioning terms. ..... Appendix-115
Appendix 12 Positioning control troubleshooting Appendix-135
Appendix 13 List of buffer memory addresses Appendix-141
Appendix 14 External dimension drawing ..... Appendix-150Index- 1 to Index- 12

The following manuals are also related to this product.
In necessary, order them by quoting the details in the tables below.

## Related Manuals

| Manual Name | Manual Number (Model Code) |
| :---: | :---: |
| GX Configurator-QP Version 2 Operating Manual <br> Data creation (such as parameters and positioning data) and operations of transferring data to modules, positioning monitor, and tests using GX Configurator-QP $\qquad$ (sold separately) ${ }^{*}$ | SH-080172 <br> (13JU19) |
| GX Developer Version 8 Operating Manual Operating methods of GX Developer, such as programming, printing, monitoring, and debugging (sold separately) | SH-080373E <br> (13JU41) |
| GX Works2 Version1 Operating Manual <br> (Common) <br> System configuration, parameter settings, and online operations (common to Simple project and <br> Structured project) of GX Works2. (sold separately) | SH-080779ENG (13JU63) |
| GX Works2 Version1 Operating Manual (Intelligent Function Module) <br> Parameter settings, monitoring, and operations of the pre-defined protocol support function of intelligent function modules, using GX Works2 $\qquad$ (sold separately) | $\begin{gathered} \text { SH-080921ENG } \\ \text { (13JU69) } \end{gathered}$ |

*1: The manual is included in the CD-ROM of the software package in a PDF-format file.
For users interested in buying the manual separately, a printed version is available. Please contact us with the manual number (model code) in the list above.

## $\underline{\text { USING THIS MANUAL }}$

The symbols used in this manual are shown below.

| Pr.* | $\ldots \ldots . .$. | Symbol indicating positioning parameter and OPR parameter item. |  |
| :--- | :--- | :--- | :--- |
| Da.* | $\ldots \ldots$. | Symbol indicating positioning data, block start data and condition |  |
|  |  |  | data item. |

(A serial No. is inserted in the $*$ mark.)
$\square$ Representation of numerical values used in this manual.

- Buffer memory addresses, error codes and warning codes are represented in decimal.
- X/Y devices are represented in hexadecimal.
- Setting data and monitor data are represented in decimal or hexadecimal. Data ended by "H" are represented in hexadecimal.
$\begin{aligned} \text { (Example) } & 10 \ldots \ldots . . . \text { Decimal } \\ 10 \mathrm{H} & \ldots \ldots . \text { Hexadecimal }\end{aligned}$
A-17


## COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES

(1) Method of ensuring compliance

To ensure that Mitsubishi programmable controllers maintain EMC and Low Voltage Directives when incorporated into other machinery or equipment, certain measures may be necessary. Please refer to one of the following manuals.

- QCPU User's Manual (Hardware Design, Maintenance and Inspection)
- Safety Guidelines (this manual is included with the CPU module or base unit)

The CE mark on the side of the programmable controller indicates compliance with EMC and Low Voltage Directives.
(2) Additional measures

To ensure that this product maintains EMC and Low Voltage Directives, please refer to Section 4.3.1.

## GENERIC TERMS AND ABBREVIATIONS

Unless specially noted, the following generic terms and abbreviations are used in this manual.

| Generic term/abbreviation | Details of generic term/abbreviation |
| :--- | :--- |
| CPU module | Generic term for CPU module on which QD75 can be mounted. |
| QD75 | Generic term for positioning module QD75P1N, QD75P2N, QD75P4N, QD75D1N, QD75D2N, <br> QD75D4N, QD75P1, QD75P2, QD75P4, QD75D1, QD75D2, and QD75D4. <br> The module type is described to indicate a specific module. |
| QD75P $\square \mathrm{N}$ | Generic term for positioning module QD75P1N, QD75P2N, QD75P4N. |
| QD75D $\square \mathrm{N}$ | Generic term for positioning module QD75D1N, QD75D2N, QD75D4N. |
| QD75P $\square$ | Generic term for positioning module QD75P1, QD75P2, QD75P4. |
| QD75D $\square$ | Generic term for positioning module QD75D1, QD75D2, QD75D4. |
| Peripheral device | Generic term for DOS/V personal computer that can run the following "GX Developer" and <br> "GX Configurator-QP". |
| GX Configurator-QP | Abbreviation for GX Configurator-QP (SW2D5C-QD75P-E or later). |
| GX Developer | Abbreviation for GX Developer (SW4D5C-GPPW-E or later). |
| GX Works2 | Product name of the software package for the MELSEC programmable controllers. |
| Drive unit (servo amplifier) | Abbreviation for pulse input compatible drive unit (servo amplifier). |
| Manual pulse generator | Abbreviation for manual pulse generator (prepared by user). |
| DOS/V personal computer | IBM PC/AT ${ }^{\circledR}$ and compatible DOS/V compliant personal computer. |
| Personal computer | Generic term for personal computer which supports Windows ${ }^{\circledR}$. |
| Workpiece | Generic term for moving body such as workpiece and tool, and for various control targets. |
| Axis 1, axis 2, axis 3, axis 4 | Indicates each axis connected to QD75. |
| 1-axis, 2-axis, 3-axis, 4-axis | Indicates the number of axes. (Example: 2-axis = Indicates two axes such as axis 1 and axis |
| $2, ~ a x i s ~ 2 ~ a n d ~ a x i s ~ 3, ~ a n d ~ a x i s ~ 3 ~ a n d ~ a x i s ~ 1) ~$. |  |,

The table below shows the component included in respective positioning modules:

| Module name | Description | Quantity |
| :--- | :--- | :---: |
| QD75P1N | QD75P1N Positioning Module(1-axis open collector output system) | 1 |
| QD75P2N | QD75P2N Positioning Module(2-axes open collector output system) | 1 |
| QD75P4N | QD75P4N Positioning Module(4-axes open collector output system) | 1 |
| QD75D1N | QD75D1N Positioning Module(1-axis differential driver output system) | 1 |
|  | Differential driver common terminal | 1 |
| QD75D2N | QD75D2N Positioning Module(2-axes differential driver output system) | 1 |
|  | Differential driver common terminal | 1 |
| QD75D4N | QD75D4N Positioning Module(4-axes differential driver output system) | 1 |
|  | Differential driver common terminal | 1 |
| QD75P1 | QD75P1 Positioning Module(1-axis open collector output system) | 1 |
|  | QD75P2 Positioning Module(2-axes open collector output system) | 1 |
| QD75P4 | QD75P4 Positioning Module(4-axes open collector output system) | 1 |
| QD75D1 | QD75D1 Positioning Module(1-axis differential driver output system) | 1 |
|  | Differential driver common terminal | 1 |
| QD75D2 | QD75D2 Positioning Module(2-axes differential driver output system) | 1 |
|  | Differential driver common terminal | 1 |
| QD75D4 | QD75D4 Positioning Module(4-axes differential driver output system) | 1 |
|  | Differential driver common terminal | 1 |

MEMO

## PART 1 PRODUCT SPECIFICATIONS AND HANDLING

PART 1 is configured for the following purposes (1) to (5).
(1) To understand the outline of positioning control, and the QD75 specifications and functions
(2) To carry out actual work such as installation and wiring
(3) To set parameters and data required for positioning control
(4) To create a sequence program required for positioning control
(5) To understand the memory configuration and data transmission process

Read PART 2 for details on each control.
CHAPTER 1 PRODUCT OUTLINE 1-1 to 1- 24
CHAPTER 2 SYSTEM CONFIGURATION ..... 2-1 to 2- 10
CHAPTER 3 SPECIFICATIONS AND FUNCTIONS ..... 3-1 to 3- 30
CHAPTER 4 INSTALLATION, WIRING AND MAINTENANCE OF THE PRODUCT. 4-1 to 4- ..... 16
CHAPTER 5 DATA USED FOR POSITIONING CONTROL ..... 5-1 to 5-128
CHAPTER 6 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL ..... 6-1 to 6- 46
CHAPTER 7 MEMORY CONFIGURATION AND DATA PROCESS ..... 7-1 to 7- 12

MEMO

## CHAPTER 1 PRODUCT OUTLINE

The purpose and outline of positioning control using QD75 are explained in this chapter. Reading this chapter will help you understand what can be done using the positioning system and which procedure to use for a specific purpose.

By understanding "What can be done", and "Which procedure to use" beforehand, the positioning system can be structured smoothly.
1.1 Positioning control ..... 1- 2
1.1.1 Features of QD75 ..... 1- 2
1.1.2 Purpose and applications of positioning control ..... 1- 5
1.1.3 Mechanism of positioning control ..... 1- 7
1.1.4 Outline design of positioning system. ..... 1- 9
1.1.5 Communicating signals between QD75 and each module ..... 1-12
1.2 Flow of system operation ..... 1-15
1.2.1 Flow of all processes ..... 1-15
1.2.2 Outline of starting ..... 1-18
1.2.3 Outline of stopping ..... 1-20
1.2.4 Outline of restarting ..... 1-22
1.3 Restrictions on using a stepping motor ..... 1-23
1.4 Function additions/modifications according to function version $B$ ..... 1-23

### 1.1 Positioning control

### 1.1.1 Features of QD75

The features of the QD75 are shown below.
(1) Availability of one, two, and four axis modules
(a) The pulse output types of the available modules are either the open collector output system or the differential driver output system. A module can be selected from the following depending on the drive unit type and the number of axes. (Refer to Section 2.2.)

- Open collector output system: QD75P1N/QD75P2N/QD75P4N (QD75P1/QD75P2/QD75P4)
- Differential driver output system: QD75D1N/QD75D2N/QD75D4N (QD75D1/QD75D2/QD75D4)
(b) For connecting any of the QD75 modules to the base unit, a single slot and 32 dedicated I/O channels are required.
Within the limit imposed by the maximum number of inputs and outputs supported by the CPU module, up to 64 modules can be used. (Refer to Section 3.1.)


## (2) Wide variety of positioning control functions

(a) A wide variety of positioning control functions essential to any positioning system are supported: positioning to an arbitrary position, fixed-feed control, equal-speed control, and so on. (Refer to Section 5.3 and 9.2.)

1) Up to 600 positioning data items, including such information as positioning addresses, control systems, and operation patterns, can be prepared for each axis.
Using the prepared positioning data, the positioning control is performed independently for each axis. (In addition, such controls as interpolation involving two to four axes and simultaneous startup of multiple axes are possible.)
2) Independent control of each axis can be achieved in linear control mode (executable simultaneously over four axes).
Such control can either be the independent positioning control using a single positioning data or the continuous positioning control enabled by the continuous processing of multiple positioning data.
3) Coordinated control over multiple axes can take the form of either the linear interpolation through the speed or position control of two to four axes or the circular interpolation involving two axes.
Such control can either be the independent positioning control using a single positioning data or the continuous positioning control enabled by the continuous processing of multiple positioning data.
(b) For each positioning data, the user can specify any of the following control systems: position control, speed control, speed-position switching control, position-speed switching control, and so on. (Refer to Section 5.3 and 9.2.)
(c) Continuous positioning control using multiple positioning data can be executed in accordance with the operation patterns the user assigned to the positioning data. (Refer to Section 5.3 and 9.1.2)
Continuous positioning control can be executed over multiple blocks, where each block consists of multiple positioning data. (Refer to Section 10.3.2.)
(d) OPR control is given additional features (Refer to Section 8.2.)
4) Six different machine OPR methods are provided: near point dog method (one method), stopper methods (three methods), and count methods (two methods).
5) OPR retry function facilitates the machine OPR control from an arbitrary position.
(The machine OP a premier reference position for positioning control. The machine is set to the machine OP through one of the machine OPR methods mentioned in 1) above.)
(e) Two acceleration/deceleration control methods are provided: trapezoidal acceleration/deceleration and S-curve acceleration/deceleration. (Refer to Section 12.7.6.)
(Note that there is a restriction on executing the S-curve acceleration/deceleration for the system using stepping motors. Refer to Section 1.3.)
(3) Quick startup (Refer to Section 3.1.)

The processing time to start the positioning operation is shortened.
QD75P $\square \mathrm{N} /$ QD75D $\square \mathrm{N}: 1.5 \mathrm{~ms}$ (QD75P $\square$ QD75D $\square$ : 6ms)
When operation using simultaneous start function or interpolation operation is executed, the axes start without delay.
(Example) Axis 1 and Axis 3 are started by the : No delay in Axis 1 and simultaneous start function Axis 2 and Axis 4 are started by the interpolation operation

Axis 3 start No delay in Axis 2 and Axis 4 start
(4) Faster pulse output and allowance of longer distance to drive unit (Refer to Section 3.1.)
The modules with a differential driver (QD75D $\square \mathrm{N}$ (QD75D $\square$ )) incorporate the improvements in pulse output speed and maximum distance to the drive unit.

- QD75D $\square \mathrm{N}: 4 \mathrm{Mpulse} / \mathrm{s}, 10 \mathrm{~m}$ max. (QD75D $\square: 1 \mathrm{Mpulse} / \mathrm{s}, 10 \mathrm{~m}$ max.)
- QD75P $\square \mathrm{N}: ~ 200 \mathrm{kpulse}$ /s, 2 m max. (QD75P $\square: 200 \mathrm{kpulse/s}, \mathrm{2m} \mathrm{max)}$.
(5) Easy maintenance

Each QD75 positioning module incorporates the following improvements in maintainability:
(a) Data such as the positioning data and parameters can be stored on a flash ROM inside the QD75, eliminating the need of a battery for retaining data. (Refer to Section 7.1.1.)
(b) Error messages are classified in more detail to facilitate the initial troubleshooting procedure. (Refer to Section 15.1.)
(c) The module retains 16 error messages and 16 warning messages recently output, offering more complete error and warning histories.
(Refer to Section 5.6.1.)
(6) Support of intelligent function module dedicated instructions Dedicated instructions such as the absolute position restoration instruction, positioning start instruction, and teaching instruction are provided. The use of such dedicated instruction simplifies sequence programs. (Refer to CHAPTER 14.)
(7) Setups, monitoring, and testing through GX Configurator-QP Using GX Configurator-QP, the user can control the QD75 parameters and positioning data without having to be conscious of the buffer memory addresses. Moreover, GX Configurator-QP has a test function which allows the user to check the wiring before creating a sequence program for positioning control, or test operation the QD75 using created parameters and positioning data for checking their integrity.
The control monitor function of GX Configurator-QP allows the user to debug programs efficiently.

### 1.1.2 Purpose and applications of positioning control

"Positioning" refers to moving a moving body, such as a workpiece or tool (hereinafter, generically called "workpiece") at a designated speed, and accurately stopping it at the target position. The main application examples are shown below.


## Palletizer



Compact machining center (ATC magazine positioning)


Lifter (Storage of Braun tubes onto aging rack)

Inner surface grinder

### 1.1.3 Mechanism of positioning control

Positioning control using the QD75 is carried out with "pulse signals". (The QD75 is a module that generates pulses). In the positioning system using the QD75, various software and devices are used for the following roles. The QD75 realizes complicated positioning control when it reads in various signals, parameters and data and is controlled with the CPU module.


The principle of "position control" and "speed control" operation is shown below.

## Position control

The total No. of pulses required to move the designated distance is obtained in the following manner.

$$
\left[\begin{array}{l}
\text { Total No. of pulses } \\
\text { required to move } \\
\text { designated distance }
\end{array}\right]=\left[\begin{array}{l}
\frac{\text { Designated distance }}{\text { Movement amount of machine (load) }} \\
\text { side when motor rotates once }
\end{array}\right] \times\left[\begin{array}{l}
\text { No. of pulses } \\
\text { required for motor to } \\
\text { rotate once }
\end{array}\right]
$$

*The No. of pulses required for the motor to rotate once is the "encoder resolution" described in the motor catalog specification list.

When this total No. of pulses is issued from the QD75 to the servo amplifier, control to move the designated distance can be executed.
The machine side movement amount when one pulse is issued to the servo amplifier is called the "movement amount per pulse". This value is the min. value for the workpiece to move, and is also the electrical positioning precision.

## - Speed control

The "Total No. of pulses" mentioned above is invariably required for controlling the distance. For positioning or speed control, the speed must be controlled as well. The speed is determined by the frequency of pulses sent from the QD75 to the drive unit.


Fig. 1.1 Relationship between position control and speed control

## POINT

The QD75 controls the position with the "total No. of pulses", and the speed with the "pulse frequency".

### 1.1.4 Outline design of positioning system

The outline of the positioning system operation and design, using the QD75, is shown below.
(1) Positioning system using QD75


Fig. 1.2 Outline of the operation of positioning system using QD75
(a) Positioning operation by the QD75

1) The QD75 output is a pulse train.

The pulse train output by the QD75 is counted by and stored in the deviation counter in the drive unit.
The D/A converter outputs an analog DC current proportionate to the count maintained by the deviation counter (called "pulse droop"). The analog DC current serves as the servomotor speed control signal.
2) The motor rotation is controlled by the speed control signal from the drive unit.
As the motor rotates, the pulse encoder (PLG) attached to the motor generates feedback pulses, the frequency of which is proportionate to the rotation speed.
The feedback pulses are fed back to the drive unit and decrements the pulse droop, the pulse count maintained by the deviation counter.
The motor keeps on rotating as the pulse droop is maintained at a certain level.
3) When the QD75 terminates the output of a pulse train, the motor decelerates as the pulse droop decreases and stops when the count drops to zero.
Thus, the motor rotation speed is proportionate to the pulse frequency, while the overall motor rotation angle is proportionate to the total number of pulses output by the QD75.
Therefore, when a movement amount per pulse is given, the overall movement amount can be determined by the number of pulses in the pulse train.
The pulse frequency, on the other hand, determines the motor rotation speed (feed speed).
(b) Pulse train output from the QD75

1) As shown in Fig. 1.3, the pulse frequency increases as the motor accelerates. The pulses are sparse when the motor starts and more frequent when the motor speed comes close to the target speed.
2) The pulse frequency stabilizes when the motor speed equals the target speed.
3) The QD75 decreases the pulse frequency (sparser pulses) to decelerate the motor before it finally stops the output. There will be a little difference in timing between the decrease in the pulse frequency and the actual deceleration and stopping of the motor. This difference, called "the stop settling time", is required for gaining a stopping accuracy.


Fig. 1.3 QD75 output pulses
(2) Movement amount and speed in a system using worm gears


Fig. 1.4 System using worm gears
(a) In the system shown in Fig. 1.4, the movement amount per pulse, command pulse frequency, and the deviation counter droop pulse amount are determined as follows:

1) Movement amount per pulse

The movement amount per pulse is determined by the worm gear lead, deceleration ratio, and the pulse encoder resolution.
The movement amount, therefore, is given as follows: (Number of pulses output) $\times$ (Movement amount per pulse).
$A=\frac{L}{R \times n}[m m /$ pulse $]$
2) Command pulse frequency

The command pulse frequency is determined by the speed of the moving part and movement amount per pulse:
$\mathrm{Vs}=\frac{\mathrm{V}}{\mathrm{A}}$ [pulse/s]
3) Deviation counter droop pulse amount.

The deviation counter droop pulse amount is determined by the command pulse frequency and position loop gain.
$\varepsilon=\frac{\mathrm{Vs}}{\mathrm{K}}$ [pulse]
(b) The QD75 allows the user to select from the following four units as the unit used by positioning commands to any of the axes ( 1 to 4 , if the module supports four axes): mm, inch, degree, and pulse.
The unit selected for one axis may differ from the unit selected for another axis.
When such data as the acceleration/deceleration time, positioning speed, and positioning address are correctly set in consideration of the chosen unit, the QD75 can calculate the number of pulses required for a movement amount to the target positioning address and execute the positioning by outputting a pulse train that includes the calculated number of pulses.

### 1.1.5 Communicating signals between QD75 and each module

The outline of the signal communication between the QD75 and CPU module, peripheral device and drive unit, etc., is shown below. (A peripheral device communicates with the QD75 via the CPU module to which it is connected)


QD75 $\leftrightarrow$ CPU module
The QD75 and CPU module communicate the following data via the base unit.

| Direction |  | QD75 $\rightarrow$ CPU module |
| :--- | :--- | :--- |

Refer to Section 3.3 "Specifications of input/output signals with CPU module " for details.
QD75 ↔ Peripheral device
The QD75 and peripheral device communicate the following data via the CPU module:

| Direction Communication | QD75 $\rightarrow$ Peripheral device | Peripheral device $\rightarrow$ QD75 |
| :---: | :---: | :---: |
| Data (read/write) | - Parameter <br> - Positioning data <br> - Block start data | - Parameter <br> - Positioning data <br> - Block start data |
| Test operation | - | - OPR control start command <br> - Positioning control start command <br> - JOG/Inching operation start command <br> - Teaching start command <br> - Manual pulse generator operation enable/disable command |
| Operation monitor | - Monitor data | - |

QD75 ↔ Drive unit
The QD75 and drive unit communicate the following data via the external device connection connector.

| Direction | QD75 $\rightarrow$ Drive unit | Drive unit $\rightarrow$ QD75 |
| :--- | :--- | :---: |
| Communication | Signals related to commands such as <br> deviation counter clear signal | Signals indicating drive unit state such as <br> drive unit READY signal |
| Control signal | Pulse train output | - |
| Pulse train |  | - |

QD75 $\leftrightarrow$ Manual pulse generator
The QD75 and manual pulse generator communicate the following data via the external device connection connector.
(The manual pulse generator should be connected to an external device connection connector for axis 1 or for axes 1 and 2 .)

| Direction | QD75 $\rightarrow$ Manual pulse generator | Manual pulse generator $\rightarrow$ QD75 |
| :--- | :---: | :--- |
| Communication | - | Manual pulse generator A-phase, manual <br> pulse generator B-phase |
| Pulse signal |  |  |

QD75 $\leftrightarrow$ External signal
The QD75 and external signal communicate the following data via the external device connection connector.

| Direction | QD75 $\rightarrow$ External signal | External signal $\rightarrow$ QD75 |
| :--- | :---: | :---: |
| Communication | - | $\bullet$Signals from detector such as near-point <br> dog signal, upper/lower limit signal, zero <br> signal <br>  <br> Control signal <br> Control signals from external device such <br> as stop signal, external command signal |

### 1.2 Flow of system operation

### 1.2.1 Flow of all processes

The positioning control processes, using the QD75, are shown below.


The following work is carried out with the processes shown on the previous page.

|  | Details | Reference |
| :---: | :---: | :---: |
| 1) | Understand the product functions and usage methods, the configuration devices and specifications required for positioning control, and design the system. | - CHAPTER 1 <br> - CHAPTER 2 <br> - CHAPTER 3 <br> - CHAPTER 8 to CHAPTER 13 |
| 2) | Install the QD75 onto the base unit, wire the QD75 and external connection devices (drive unit, etc.). | - CHAPTER 4 |
| 3) | Using GX Configurator-QP, set the parameters, positioning data, block start data and condition data required for the positioning control to be executed. *1 | - CHAPTER 5 <br> - CHAPTER 8 to CHAPTER 13 <br> - GX Configurator-QP Operating Manual |
| 4) | Using GX Developer, create the sequence program required for positioning operation. (When not using GX Configurator-QP, also create the sequence program for setting data.) | - CHAPTER 6 <br> - GX Developer Operating Manual |
| 5) | Write the parameters and positioning data, etc., created with GX Configurator-QP into the QD75. | - CHAPTER 7 <br> - GX Configurator-QP Operating Manual |
| 6) | Using GX Developer, write the created sequence program into the CPU module. (When not using GX Configurator-QP, also write in the sequence program for setting data.) | - CHAPTER 7 <br> - GX Developer Operating Manual |
| 7) | Carry out test operation and adjustments in the test mode to check the connection with the QD75 and external connection device, and to confirm that the designated positioning operation is executed correctly. (Debug the set "parameters" and "positioning data", etc.) | - GX Configurator-QP Operating Manual <br> - CHAPTER 13 <br> - GX Developer Operating Manual |
| 8) | Carry out test operation and adjustment to confirm that the designated positioning operation is executed correctly. (Debug the created sequence program. When not using GX Configurator-QP, also debug the set data.) | - GX Developer Operating Manual |
| 9) | Actually operate the positioning operation. At this time, monitor the operation state as required. If an error or warning occurs, remedy. | - CHAPTER 5 <br> - CHAPTER 15 <br> - GX Configurator-QP Operating Manual <br> - GX Developer Operating Manual |
| 10) | Service the QD75 as required. | - CHAPTER 4 |
| 11) | Dispose of the QD75. | - CHAPTER 4 |

[^1]MEMO

### 1.2.2 Outline of starting

The outline for starting each control is shown with the following flowchart. *It is assumed that each module is installed, and the required system configuration, etc., has been prepared.



### 1.2.3 Outline of stopping

Each control is stopped in the following cases.
(1) When each control is completed normally.
(2) When the drive unit READY signal is turned OFF.
(3) When a CPU module error occurs
(4) When the PLC READY signal is turned OFF.
(5) When an error occurs in the QD75.
(6) When control is intentionally stopped (Stop signal from CPU module turned ON, stop signal from an external device, etc.)

The outline for the stopping process in these cases is shown below. (Excluding (1) for normal stopping.)

| Stop cause |  | Stop axis | M code ON signal after stop | Axis operation status after stopping Md.26 | Stop process |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OPR control |  |  | Major positioning control | High-level positioning control | Manual control |  |
|  |  | Machine OPR control |  |  |  |  | Fast OPR control | JOG/ Inching operation | Manual pulse generator operation |
| Forced stop | Drive unit READY signal OFF |  | Each axis | No change | Error | Immediate stop |  |  |  |  | Deceleration stop |
| Fatal stop (Stop group 1) | Hardware stroke limit upper/lower limit error occurrence |  | Each axis | No change | Error | Deceleration stop/sudden stop (Select with " Pr. 37 Stop group 1 sudden stop selection") |  |  |  |  | Deceleration stop |
| Emergency stop (Stop group 2) | CPU module error occurrence <br> PLC READY signal OFF | All axes | No change <br> Turns OFF | Error | Deceleration stop/sudden stop <br> (Select with " Pr. 38 Stop group 2 sudden stop selection") |  |  |  |  | Deceleration stop |
|  | Error in test mode |  | No change |  |  |  |  |  |  |  |  |
| Relatively safe stop (Stop group 3) | Axis error detection (Error other than stop group 1 or 2) *1 | Each | No change | Error | Deceleration stop/sudden stop <br> (Select with " Pr. 39 Stop group 3 sudden stop selection") |  |  |  |  | Deceleration stop |
| Intentional stop <br> (Stop group 3) | "Stop signal" ON from external source | Eachaxis | No change | Stopped (Standby) |  |  |  |  |  |  |  |
|  | "Axis stop signal" ON from CPU module |  |  |  |  |  |  |  |  |  |  |
|  | "Stop signal" input from peripheral device $* 2$ |  |  |  |  |  |  |  |  |  |  |

*1: When multiple positioning data is executed by the continuous positioning control and there is invalid setting value in a positioning data, an error occurs and deceleration is performed at the previous positioning data. In this case, sudden stop is not performed even when it is set for the stop group 3. If any of the following error occurs, the operation is immediately stopped after executing up to previous positioning data of the positioning data where an error occurred.

- No command speed (error code: 503)
- Outside linear movement amount range (error code: 504)
- Large arc error deviation (error code: 506)
- Software stroke limit + (error code: 507)
- Software stroke limit - (error code: 508)
- Sub point setting error (error code: 525)
- End point setting error (error code: 526)
- Center point setting error (error code: 527)
- Outside radius range (error code: 544)
- Illegal setting of $A B S$ direction in unit of degree (error code: 546)
*2: This means the stop using a stop button on the test dialog box when using the positioning test function of GX Works2 or test function of GX Configurator-QP.


### 1.2.4 Outline of restarting

When a stop cause has occurred during operation with position control causing the axis to stop, positioning to the end point of the positioning data can be restarted from the stopped position by using the " Cd. 6 Restart command".
If issued during a continuous positioning or continuous path control operation, the restart command will cause the positioning to be re-executed using the current position (pointed by the positioning data No. associated with the moment when the movement was interrupted) as the start point.

## $\square$ When " Cd. 6 Restart command" is ON

(1) If the " Md.26 Axis operation status" is "Stopped", positioning to the end point of the positioning data will be restarted from the stopped position regardless of the absolute system or incremental system.
(2) When " Md. 26 Axis operation status" is not "Stopped", the warning "Restart not possible" (warning code: 104) will be applied, and the restart command will be ignored.

## [Example for incremental system]

(a) The restart operation when the axis 1 movement amount is 300, and the axis 2 movement amount is 600 is shown below.


Reference
If the positioning start signal [Y10 to Y13]/external command signal * is turned ON while the " Md. 26 Axis operation status" is "Standby" or "Stopped", positioning will be restarted from the start of the positioning start data regardless of the absolute system or incremental system. ( $*$ : When the external command signal is set to "External positioning start")
(Same as normal positioning.)
[Example for incremental system]
(a) The positioning start operation when the axis 1 movement amount is 300 and the axis 2 movement amount is 600 is shown below.


### 1.3 Restrictions on using a stepping motor

Note the following restrictions on using a stepping motor:
(1) For an axis where a stepping motor is connected, executing the S-curve acceleration/deceleration may cause step-out.
Before using the S-curve acceleration/deceleration, confirm that step-out does not occur.
(2) The circular interpolation control cannot be used for an axis where a stepping motor is connected.
Although setting the bias speed at start is required by the characteristics of the stepping motor, the setting of the bias speed at start is disabled for circular interpolation control.
Therefore, when using the circular interpolation control, use servomotors for both two axes.
(3) The backlash compensation function cannot be used for an axis where a stepping motor is connected. If the function is used, the motor may lose steps.

### 1.4 Function additions/modifications according to function version $B$

| POINT |
| :---: |
| When it is desired to check the following items, refer to the corresponding |
| explanation sections. |
| How to check the function version and SERIAL No. (Refer to Section 2.4) |

The following function additions/modifications according to the function version $B$ of the QD75:

| Function | Outline | Reference |
| :--- | :--- | :--- |
| Multiple CPU compatible function | Refer to QCPU User's Manual (Multiple CPU System). |  |
| Speed-position switching control (ABS mode) | Function which starts the axis under speed control, <br> switches to position control at the external command <br> signal input, then positions the axis to a stop at the <br> designated address. | Section 9.2.17 |
| Pre-reading start function | Function which shortens virtual start time. | Section 12.7.7 |
| External I/O signal monitor function | Function which monitors the external I/O signal monitor <br> information in the module's detailed information which <br> can be displayed on the system monitor of GX <br> Developer *1. | Section 13.5 |
| Deceleration start flag function $* 2$ | Function that turns ON the flag when the constant <br> speed status or acceleration status switches to the <br> deceleration status during position control whose <br> operation pattern is "Positioning complete". | Section 12.7.8 |
| Stop command processing for deceleration stop <br> function $* 3$ | Function that selects a deceleration curve when a stop <br> cause occurs during deceleration stop processing to <br> speed 0. | Section 12.7.9 |

*1: For the QD75P $\square$ /QD75D $\square$, this function is available in GX Developer (SW6D5C-GPPW-E or later). For details, refer to GX Developer Operating Manual.
For the QD75P $\square \mathrm{N} /$ QD75D $\square \mathrm{N}$, external I/O signals cannot be monitored on GX Developer. Use the system monitor of GX Works2. For details on the system monitor of GX Works2, refer to GX Works2 Version 1 Operating Manual (Common).
*2: For the QD75P $\square /$ QD75D $\square$, this function is available for modules whose serial No. (first five digits) is "03042" or later.
*3: For the QD75P $\square$ QD75D $\square$, this function is available for modules whose serial No. (first five digits) is "05072" or later.

MEMO

## CHAPTER 2 SYSTEM CONFIGURATION

In this chapter, the general image of the system configuration of the positioning control using QD75, the configuration devices, applicable CPU and the precautions of configuring the system are explained.
Prepare the required configuration devices to match the positioning control system.
2.1 General image of system ..... 2- 2
2.2 Configuration list ..... 2- 4
2.3 Applicable system ..... 2- 6
2.4 How to check the function version and SERIAL No ..... 2- 8

### 2.1 General image of system

The general image of the system, including the QD75, CPU module and peripheral devices is shown below.
(The Nos. in the illustration refer to the "No." in Section 2.2 "Component list".


## REMARK

*1 Refer to Section 2.3 "Applicable system" for the CPU modules that can be used. *2 Refer to the CPU module User's Manual for the base units that can be used.


### 2.2 Configuration list

The positioning system using the QD75 is configured of the following devices.

| No. | Part name | Type | Remarks |
| :---: | :---: | :---: | :---: |
| 1 | Positioning module | QD75P1N QD75P2N QD75P4N QD751N QD75D2N QD75D4N QD75P1 QD75P2 QD75P4 QD75D1 QD5D2 QD75D4 | Refer to Appendix 1.2 for differences between QD75P $\square \mathrm{N} /$ QD75D $\square \mathrm{N}$ and QD75P $\square$ QD75D $\square$ |
| 2 | GX Configurator-QP | SW:D5C- QD75P-E | Refer to GX Configurator-QP Operating Manual for details. |
| 3 | Personal computer | Personal computer which supports Windows ${ }^{\circledR}$. | (Prepared by user) <br> Refer to GX Configurator-QP Operating Manual for details. |
| 4 | RS-232 cable | QC30R2 | (Prepared by user) <br> An RS-232 cable is needed for connecting the CPU module with a personal computer. <br> For details, refer to GX Configurator-QP Operating Manual. |
| 5 | USB cable | - | (Prepared by user) <br> A USB cable is needed for connecting the CPU module with a personal computer. <br> For details, refer to GX Configurator-QP Operating Manual. |
| 6 | Drive unit | - | (Prepared by user) |
| 7 | Manual pulse generator | - | (Prepared by user) <br> Recommended: MR-HDP01 (Mitsubishi Electric) |
| 8 | Connection cable (For connecting between the QD75 and the drive unit) | - | (Prepared by user) <br> Cables are needed to connect the QD75 with the drive unit, manual pulse generator, and input devices in the machine system. <br> (Prepare them referring to the manuals for the connected devices and information given in 3.4.2 of this manual.) |

Specifications of recommended manual pulse generator

| Item | Specifications |
| :---: | :---: |
| Model name | MR-HDP01 |
| Pulse resolution | 25pulse/rev (100 pulse/rev after magnification by 4) |
| Output method | Voltage-output (power supply voltage -1V or more), Output current $=$ Max. 20mA |
| Power supply voltage | 4.5 to $13.2 \mathrm{VDC}^{*}{ }^{*}$ |
| Current consumption | 60 mA |
| Output level | "H" level: power supply voltage ${ }^{* 1}-1 \mathrm{~V}$ or more (in no-load) "L" level: 0.5 V or less (with maximum leading-in) |
| Life time | 100 revolutions (at 200r/min) |
| Permitted axial loads | Radial load: Max. 19.6N |
|  | Thrust load: Max. 9.8 N |
| Operation temperature | -10 to $60^{\circ} \mathrm{C}$ ( 14 to $140^{\circ} \mathrm{F}$ ) |
| Weight | 0.4 (0.88) [kg(lb)] |
| Number of max. revolution | Instantaneous Max. 600r/min. normal 200r/min |
| Pulse signal status | 2 signals: A phase, B phase, $90^{\circ}$ phase difference |
| Start friction torque | $0.06 \mathrm{~N} \cdot \mathrm{~m}$ (at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ ) |

*1: Use the stabilized power supply of 4.5 to 6.1 VDC for the power supply of the manual pulse generator.

### 2.3 Applicable system

The QD75 can be used in the following system.
(1) Applicable modules and base units, and No. of modules
(a) When mounted with a CPU module

For the CPU modules, the number of modules, and base units applicable to the QD75, refer to the user's manual for the CPU modules used.

Check the following when the QD75 is mounted with the CPU module.

- Depending on the combination with other modules or the number of mounted modules, power supply capacity may be insufficient. Pay attention to the power supply capacity before mounting modules, and if the power supply capacity is insufficient, change the combination of the modules.
- Mount a module within the number of I/O points for the CPU module. If the number of slots is within the available range, the module can be mounted on any slot.


## REMARK

To use a C Controller module with the QD75, refer to C Controller Module User's Manual.
(b) Mounting to a MELSECNET/H remote I/O station For the MELSECNET/H remote I/O station, the number of modules, and base units applicable to the QD75, refer to the Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O network).
(2) Compatibility with multiple CPU system When using the QD75 in a multiple CPU system, refer to the QCPU User's Manual (Multiple CPU System).
(3) Supported software packages

The following table lists the compatibility between the systems using the QD75 and the software packages. GX Developer or GX Works 2 is required for use of the QD75.

|  |  |  | Software version |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | GX Developer | GX Configurator-QP*1 | GX Works2 |
| Q00J/Q00/Q01CPU | Single CPU system | Version 7 or later | Version 2.10L or later | Refer to GX Works2 <br> Version 1 Operating <br> Manual (Common). |
|  | Multiple CPU system | Version 8 or later |  |  |
| Q02/Q02H/Q06H/Q12H/Q25HCPU | Single CPU system | Version 4 or later | Version 2.00A or later |  |
|  | Multiple CPU system | Version 6 or later |  |  |
| Q02PH/Q06PHCPU | Single CPU system | Version 8.68W or later | Version 2.29F or later |  |
|  | Multiple CPU system |  |  |  |
| Q12PH/Q25PHCPU | Single CPU system | $\underset{\text { later }}{\text { Version } 7.10 \mathrm{~L} \text { or }}$ | Version 2.13P or later |  |
|  | Multiple CPU system |  |  |  |
| $\begin{aligned} & \text { Q02U/Q03UD/ } \\ & \text { Q04UDH/ } \\ & \text { Q06UDHCPU } \end{aligned}$ | Single CPU system | Version 8.48A or later | Version 2.25B or later |  |
|  | Multiple CPU system |  |  |  |
| $\begin{gathered} \text { Q13UDH/Q26UDH/ } \\ \text { Q03UDE/Q04UDEH/ } \\ \text { Q06UDEH/Q13UDEH/ } \\ \text { Q26UDEHCPU } \end{gathered}$ | Single CPU system | Version 8.68W or later | Version 2.29F or later |  |
|  | Multiple CPU system |  |  |  |
| ```Q00U/Q00UJ/Q01U/Q 10UDH/Q20UDH/ Q10UDEH/ Q20UDEHCPU``` | Single CPU system | Version 8.76E or later | Version 2.32J or later |  |
|  | Multiple CPU system |  |  |  |
| CPU modules other than above |  | Not supported | Not supported |  |
| For use on MELSECNET/H remote I/Ostation |  | Version 6 or later | Version 2.00A or later |  |

*1: To use the QD75P $\square$ N/QD75D $\square$ N with GX Configurator-QP, select the
QD75P $\square /$ QD75D $\square$ as the model name. The QD75P $\square \mathrm{N} /$ QD75D $\square \mathrm{N}$ can be used in the same manner as the QD75P $\square /$ QD75D $\square$; the setting ranges are the same. Therefore, a speed exceeding 1000000 pulse/s cannot be set in some items. (Refer to Appendix 1.2)

2.4 How to check the function version and SERIAL No.
(1) Confirming the serial number on the rating plate

The rating plate is situated on the side face of the QD75.

(2) Checking on the front of the module

The serial No. on the rating plate is also indicated on the front of the module (lower part).


## (3) Confirming the serial number with software

Check the function version and SERIAL No. in "Product information" displayed on System monitor "Module's Detailed Information" of GX Developer or on "OS information" of GX Configurator-QP *1
(a) Checking on the System monitor (Product Information List) screen To open the screen, select [Diagnostics] $\rightarrow$ [System monitor] and click the Product Information List button in GX Developer.
<GX Developer display screen>

[Production No. display]
Since the QD75 does not support the production number display, "-" is displayed.

## POINT

The serial No. on the rating plate may be different from the serial No. displayed on the product information screen of GX Developer.

- The serial No. on the rating plate indicates the management information of the product.
- The serial No. displayed on the product information screen of GX Developer indicates the function information of the product. The function information of the product is updated when a new function is added.
(b) Checking with GX Configurator-QP
<GX Configurator-QP display screen>
05 inform

*1: For details, refer to GX Configurator-QP Operating Manual.

MEMO

# CHAPTER 3 SPECIFICATIONS AND FUNCTIONS 

The various specifications of the QD75 are explained in this chapter.
The "Performance specifications", "List of functions", "Specifications of input/output signals with CPU module", and the "Specifications of input/output interfaces with external devices", etc., are described as information required when designing the positioning system.
Confirm each specification before designing the positioning system.
3.1 Performance specifications ..... 3- 2
3.2 List of functions ..... 3- 6
3.2.1 QD75 control functions ..... 3- 6
3.2.2 QD75 main functions ..... 3- 8
3.2.3 QD75 sub functions and common functions ..... 3-10
3.2.4 Combination of QD75 main functions and sub functions ..... 3-14
3.3 Specifications of input/output signals with CPU module ..... 3-16
3.3.1 List of input/output signals with CPU module ..... 3-16
3.3.2 Details of input signals (QD75 $\rightarrow$ CPU module) ..... 3-17
3.3.3 Details of output signals (CPU module $\rightarrow$ QD75) ..... 3-18
3.4 Specifications of input/output interfaces with external devices ..... 3-19
3.4.1 Electrical specifications of input/output signals ..... 3-19
3.4.2 Signal layout for external device connection connector ..... 3-25
3.4.3 List of input/output signal details ..... 3-26
3.4.4 Input/output interface internal circuit ..... 3-28

### 3.1 Performance specifications

QD75P $\square N / Q D 75 D \square N$

| Item Model |  | $\begin{aligned} & \text { QD75P1N *1 } \\ & \text { QD75D1N } \end{aligned}$ | $\begin{aligned} & \text { QD75P2N *1 } \\ & \text { QD75D2N } \end{aligned}$ | $\begin{aligned} & \text { QD75P4N *1 } \\ & \text { QD75D4N } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| No. of control axes |  | 1 axis | 2 axes | 4 axes |
| Interpolation function |  | None | 2-axis linear interpolation 2-axis circular interpolation | 2-, 3-, or 4-axis linear interpolation 2-axis circular interpolation |
| Control system |  | PTP (Point To Point) control, path control (both linear and arc can be set), speed control, speedposition switching control, position-speed switching control |  |  |
| Control unit |  | mm, inch, degree, pulse |  |  |
| Positioning data |  | 600 data /axis (Can be set with peripheral device or sequence program.) |  |  |
| Backup |  | Parameters, positioning data, and block start data can be saved on flash ROM (battery-less backup) |  |  |
| Positioning | Positioning system | PTP control: Incremental system/absolute system <br> Speed-position switching control: Incremental system/absolute system *2 <br> Position-speed switching control: Incremental system <br> Path control: Incremental system/absolute system |  |  |
|  | Positioning range | In absolute system <br> --214748364.8 to 214748364.7 ( $\mu \mathrm{m}$ ) <br> - -21474.83648 to 21474.83647 (inch) <br> - 0 to 359.99999 (degree) <br> - -2147483648 to 2147483647 (pulse) <br> In incremental system <br> - -214748364.8 to 214748364.7 ( $\mu \mathrm{m}$ ) <br> - -21474.83648 to 21474.83647 (inch) <br> - -21474.83648 to 21474.83647 (degree) <br> - -2147483648 to 2147483647 (pulse) <br> In speed-position switching control (INC mode) / position-speed switching control <br> - 0 to 214748364.7 ( $\mu \mathrm{m}$ ) <br> - 0 to 21474.83647 (inch) <br> - 0 to 21474.83647 (degree) <br> - 0 to 2147483647 (pulse) <br> In speed-position switching control (ABS mode) $* 2$ <br> - 0 to 359.99999 (degree) |  |  |
|  | Speed command | 0.01 to $20000000.00(\mathrm{~mm} / \mathrm{min})$ <br> 0.001 to 2000000.000 (inch $/ \mathrm{min}$ ) <br> 0.001 to 2000000.000 (degree $/ \mathrm{min}$ ) <br> 1 to 4000000 (pulse/s) |  |  |
|  | Acceleration/ deceleration process | Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration |  |  |
|  | Acceleration/ deceleration time | 1 to 8388608 (ms) <br> Four patterns can be set for each of acceleration time and deceleration time |  |  |
|  | Sudden stop deceleration time | 1 to 8388608 (ms) |  |  |

*1: QD75P $\square \mathrm{N}$ represents the open collector output system, and QD75D $\square \mathrm{N}$ represents the differential driver output system.
*2: In speed-position switching control (ABS mode), the control unit available is "degree" only. (For details, refer to Section 9.2.17 "Speedposition switching control (ABS mode)".

|  | $\begin{aligned} & \text { QD75P1N *1 } \\ & \text { QD75D1N } \end{aligned}$ | $\begin{aligned} & \text { QD75P2N *1 } \\ & \text { QD75D2N } \end{aligned}$ |  | $\begin{aligned} & \text { QD75P4N * } 1 \\ & \text { QD75D4N } \\ & \hline \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Starting time *3 | 1-axis linear control <br> 1-axis speed control |  | 1.5 ms | Factors in starting time extension <br> The following times will be added to the starting time in the described conditions: <br> - S-curve acceleration/ deceleration is selected: <br> - Other axis is in operation: <br> - During continuous positioning control: <br> - During continuous path control: |  |
|  |  |  | 1.5 ms |  |  |
|  | 2-axis linear interpolation control (Composite speed) |  | 1.5 ms |  |  |
|  | 2-axis linear interpolation control (Reference axis speed) |  | 1.5 ms |  |  |
|  | 2-axis circular interpolation control |  | 2.0 ms |  |  |
|  | 2-axis speed control |  | 1.5 ms |  |  |
|  | 3-axis linear interpolation control (Composite speed) |  | 1.7 ms |  |  |
|  | 3-axis linear interpolation control (Reference axis speed) |  | 1.7 ms |  |  |
|  | 3-axis speed control |  | 1.7 ms |  |  |
|  | 4-axis linear interpolation control |  | 1.8 ms |  |  |
|  | 4-axis speed control |  | 1.8 ms |  |  |
| External wiring connection system | 40-pin connector |  |  |  |  |
| Applicable wire size | $0.3 \mathrm{~mm}^{2}$ (22AWG) (for A6CON1 or A6CON4),0.088 to $0.24 \mathrm{~mm}^{2}$ ( 28 to 24AWG) (for A6CON2) |  |  |  |  |
| Applicable connector for external device | A6CON1, A6CON2, A6CON4 (sold separately) |  |  |  |  |
| Max. output pulse | QD75P1N, QD75P2N, QD75P4N: 200kppsQD75D1N, QD75D2N, QD75D4N: 4Mpps |  |  |  |  |
| Max. connection distance between servos | QD75P1N, QD75P2N, QD75P4N: 2 mQD75D1N, QD75D2N, QD75D4N: 10 m |  |  |  |  |
| Internal current consumption (5VDC) | QD75P1N: 0.29A QD75D1N: 0.43A | $\begin{aligned} & \text { QD75P2N: 0.30A } \\ & \text { QD75D2N: } 0.45 \mathrm{~A} \end{aligned}$ |  | $\begin{aligned} & \text { QD75P4N: 0.36A } \\ & \text { QD75D4N: } 0.66 \mathrm{~A} \end{aligned}$ |  |
| Flash ROM write count | Max. 100000 times |  |  |  |  |
| No. of occupied I/O points | 32 points (I/O assignment: intelligent 32 points) |  |  |  |  |
| Outline dimensions | $98(\mathrm{H}) \times 27.4(\mathrm{~W}) \times 90$ (D) mm |  |  |  |  |
| Weight | QD75P1N: 0.14 kg QD75D1N: 0.15kg | $\begin{aligned} & \hline \text { QD75P2N: } 0.1 \\ & \text { QD75D2N: } 0.1 \end{aligned}$ |  | QD75P4N: 0.16 kg QD75D4N: 0.16kg |  |

* 1: QD75P $\square \mathrm{N}$ represents the open collector output system, and QD75D $\square \mathrm{N}$ represents the differential driver output system.
*3: Using the "Pre-reading start function", the virtual start time can be shortened. (For details, refer to Section 12.7.7 "Pre-reading start function".

QD75P $\square / Q D 75 D \square$

| Item $\quad$ Model |  | $\begin{aligned} & \hline \text { QD75P1 } * 1 \\ & \text { QD75D1 } \end{aligned}$ | $\begin{aligned} & \text { QD75P2 *1 } \\ & \text { QD75D2 } \end{aligned}$ | $\begin{aligned} & \hline \text { QD75P4 } * 1 \\ & \text { QD75D4 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| No. of control axes |  | 1 axis | 2 axes | 4 axes |
| Interpolation function |  | None | 2-axis linear interpolation 2-axis circular interpolation | 2-, 3-, or 4-axis linear interpolation 2-axis circular interpolation |
| Control system |  | PTP (Point To Point) control, path control (both linear and arc can be set), speed control, speedposition switching control, position-speed switching control |  |  |
| Control unit |  | mm, inch, degree, pulse |  |  |
| Positioning data |  | 600 data /axis <br> (Can be set with peripheral device or sequence program.) |  |  |
| Backup |  | Parameters, positioning data, and block start data can be saved on flash ROM (battery-less backup) |  |  |
| Positioning | Positioning system | PTP control:  <br> Speed-position switching control: Incremental system/absolute system <br> Position-speed switching control: Incremental system/absolute system *2 <br> Path control: Incremental system/absolute system  |  |  |
|  | Positioning range | In absolute system <br> - -214748364.8 to 214748364.7 ( $\mu \mathrm{m}$ ) <br> - -21474.83648 to 21474.83647 (inch) <br> - 0 to 359.99999 (degree) <br> - -2147483648 to 2147483647 (pulse) <br> In incremental system <br> --214748364.8 to 214748364.7 ( $\mu \mathrm{m}$ ) <br> - -21474.83648 to 21474.83647 (inch) <br> - -21474.83648 to 21474.83647 (degree) <br> - -2147483648 to 2147483647 (pulse) <br> In speed-position switching control (INC mode) / position-speed switching control <br> - 0 to 214748364.7 ( $\mu \mathrm{m}$ ) <br> - 0 to 21474.83647 (inch) <br> - 0 to 21474.83647 (degree) <br> - 0 to 2147483647 (pulse) <br> In speed-position switching control (ABS mode) $* 2$ <br> - 0 to 359.99999 (degree) |  |  |
|  | Speed command | 0.01 to 20000000.00 ( $\mathrm{mm} / \mathrm{min}$ ) <br> 0.001 to 2000000.000 (inch/min) <br> 0.001 to 2000000.000 (degree $/ \mathrm{min}$ ) <br> 1 to 1000000 (pulse/s) |  |  |
|  | Acceleration/ deceleration process | Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration |  |  |
|  | Acceleration/ deceleration time | 1 to 8388608 (ms) <br> Four patterns can be set for each of acceleration time and deceleration time |  |  |
|  | Sudden stop deceleration time | 1 to 8388608 (ms) |  |  |

*1: QD75P $\square$ represents the open collector output system, and QD75D $\square$ represents the differential driver output system.
$* 2$ : In speed-position switching control (ABS mode), the control unit available is "degree" only. (For details, refer to Section 9.2.17 "Speedposition switching control (ABS mode)".

| Item Model | $\begin{aligned} & \text { QD75P1 } * 1 \\ & \text { QD75D1 } \end{aligned}$ | $\begin{aligned} & \text { QD75P2 *1 } \\ & \text { QD75D2 } \end{aligned}$ |  | $\begin{aligned} & \text { QD75P4 *1 } \\ & \text { QD75D4 } \\ & \hline \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Starting time $* 3$ | 1-axis linear control |  | 6 ms | Factors in starting time extensionThe following times will be added tothe starting time in the describedconditions:- S-curve acceleration/deceleration is selected: $\quad 0.5 \mathrm{~ms}$- Other axis is inoperation: <br> - During continuous <br> positioning control: <br> - During continuous path <br> control:$\quad 1.5 \mathrm{~ms}$ |  |
|  | 1-axis speed control |  | 6 ms |  |  |
|  | 2-axis linear interpolation | mposite speed) | 7 ms |  |  |
|  | 2-axis linear interpolation | erence axis speed) | 7 ms |  |  |
|  | 2-axis circular interpolatio |  | 7 ms |  |  |
|  | 2-axis speed control |  | 6 ms |  |  |
|  | 3-axis linear interpolation | mposite speed) | 7 ms |  |  |
|  | 3-axis linear interpolation | erence axis speed) | 7 ms |  |  |
|  | 3-axis speed control |  | 6 ms |  |  |
|  | 4-axis linear interpolation |  | 7 ms |  |  |
|  | 4-axis speed control |  | 7 ms |  |  |
| External wiring connection system | 40-pin connector |  |  |  |  |
| Applicable wire size | $\begin{aligned} & 0.3 \mathrm{~mm}^{2}(22 \mathrm{AWG}) \text { (for A6CON1 or A6CON4), } \\ & 0.088 \text { to } 0.24 \mathrm{~mm}^{2} \text { ( } 28 \text { to 24AWG) (for A6CON2) } \\ & \hline \end{aligned}$ |  |  |  |  |
| Applicable connector for external device | A6CON1, A6CON2, A6CON4 (sold separately) |  |  |  |  |
| Max. output pulse | QD75P1, QD75P2, QD75P4: 200kppsQD75D1, QD75D2, QD75D4: 1Mpps |  |  |  |  |
| Max. connection distance between servos | QD75P1, QD75P2, QD75P4 : 2 mQD75D1, QD75D2, QD75D4 : 10 m |  |  |  |  |
| Internal current consumption (5VDC) | $\begin{aligned} & \hline \text { QD75P1 : } 0.40 \mathrm{~A} \\ & \text { QD75D1: } 0.52 \mathrm{~A} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { QD75P2 : 0.46A } \\ & \text { QD75D2 : 0.56A } \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { QD75P4 : 0.58A } \\ & \text { QD75D4 :0.82A } \end{aligned}$ |  |
| Flash ROM write count | Max. 100000 times |  |  |  |  |
| No. of occupied I/O points | 32 points (I/O assignment: intelligent 32 points) |  |  |  |  |
| Outline dimensions | $98(\mathrm{H}) \times 27.4(\mathrm{~W}) \times 90$ (D) mm |  |  |  |  |
| Weight | 0.15 kg | 0.15 kg |  | 0.16 kg |  |

*1: QD75P $\square$ represents the open collector output system, and QD75D $\square$ represents the differential driver output system.
*3: Using the "Pre-reading start function", the virtual start time can be shortened. (For details, refer to Section 12.7.7 "Pre-reading start function".

Differential driver common terminal specifications(QD75D $\square$ N/QD75D $\square$ only)

| Applicable wire size | 0.24 to $2.5 \mathrm{~mm}^{2}(24$ to 12 AWG$)$ |
| :--- | :---: |
| Applicable sizes of two <br> wires inserted into same <br> spot of terminal | Solid wire: 0.2 to $0.8 \mathrm{~mm}^{2} \times 2$ pcs. |
|  | Stranded wire: 0.2 to $0.8 \mathrm{~mm}^{2} \times 2 \mathrm{pcs}$. |
| Screw tightening torque | 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ |



Fig. 3.1 Two wires inserted into same spot of terminal

### 3.2 List of functions

### 3.2.1 QD75 control functions

The QD75 has several functions. In this manual, the QD75 functions are categorized and explained as follows.

## - Main functions

(1) OPR control
"OPR control" is a function that established the start point for carrying out positioning control, and carries out positioning toward that start point. This is used to return a workpiece, located at a position other than the OP when the power is turned ON or after positioning stop, to the OP. The "OPR control" is preregistered in the QD75 as the "Positioning start data No. 9001 (Machine OPR)", and "Positioning start data No. 9002 (Fast OPR). (Refer to CHAPTER 8 "OPR CONTROL".)
(2) Major positioning control

This control is carried out using the "Positioning data" stored in the QD75. Positioning control, such as position control and speed control, is executed by setting the required items in this "positioning data" and starting that positioning data. An "operation pattern" can be set in this "positioning data", and with this whether to carry out control with continuous positioning data (ex.: positioning data No. 1, No. 2, No. 3, ...) can be set. (Refer to CHAPTER 9 "MAJOR POSITIONING CONTROL".)
(3) High-level positioning control

This control executes the "positioning data" stored in the QD75 using the "block start data". The following types of applied positioning control can be carried out.

- Random blocks, handling several continuing positioning data items as "blocks", can be executed in the designated order.
- "Condition judgment" can be added to position control and speed control.
- The operation of the designated positioning data No. that is set for multiple axes can be started simultaneously. (Pulses are output simultaneously to multiple servos.)
- The designated positioning data can be executed repeatedly, etc., (Refer to CHAPTER 10 "HIGH-LEVEL POSITIONING CONTROL".)
(4) Manual control

By inputting a signal into the QD75 from an external source, the QD75 will output a random pulse train and carry out control. Use this manual control to move the workpiece to a random position (JOG operation), and to finely adjust the positioning (inching operation, manual pulse generator operation), etc. (Refer to CHAPTER 11 "MANUAL CONTROL".)

## - Sub functions

When executing the main functions, control compensation, limits and functions can be added. (Refer to CHAPTER 12 "CONTROL SUB FUNCTIONS".)

## - Common functions

Common control using the QD75 for "parameter initialization" or "backup of execution data" can be carried out. (Refer to CHAPTER 13 "COMMON FUNCTIONS".)


### 3.2.2 QD75 main functions

The outline of the main functions for positioning control with the QD75 is described below. (Refer to PART 2 for details on each function.)

| Main functions |  |  | Details | Reference section |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \overline{2} \\ & \text { 흔 } \\ & \text { O} \\ & \text { 즘 } \end{aligned}$ | Machine OPR control |  | Mechanically establishes the positioning start point using a near-point dog or stopper. (Positioning start No. 9001) | 8.2 |
|  | Fast OPR control |  | Positions a target to the OP address (Md. 21 Machine feed value) stored in the QD75 using machine OPR. (Positioning start No. 9002) | 8.3 |
|  | Position control | Linear control <br> (1-axis linear control) <br> (2-axis linear interpolation control) <br> (3-axis linear interpolation control) <br> (4-axis linear interpolation control) | Positions a target using a linear path to the address set in the positioning data or to the position designated with the movement amount. | $\begin{aligned} & 9.2 .2 \\ & 9.2 .3 \\ & 9.2 .4 \\ & 9.2 .5 \end{aligned}$ |
|  |  | Fixed-feed control (1-axis fixed-feed control) (2-axis fixed-feed control) (3-axis fixed-feed control) (4-axis fixed-feed control) | Positions a target by the movement amount designated with the amount set in the positioning data. <br> (With fixed-feed control, the " Md.20 Current feed value" is set to " 0 " when the control is started. With 2-, 3-, or 4-axis fixed-feed control, the fixed-feed is fed along a linear path obtained by interpolation.) | $\begin{aligned} & 9.2 .6 \\ & 9.2 .7 \\ & 9.2 .8 \\ & 9.2 .9 \end{aligned}$ |
|  |  | 2-axis circular interpolation control | Positions a target using an arc path to the address set in the positioning data, or to the position designated with the movement amount, sub point or center point. | $\begin{aligned} & 9.2 .10 \\ & 9.2 .11 \end{aligned}$ |
|  | Speed control | Linear control (1-axis speed control) (2-axis speed control) (3-axis speed control) (4-axis speed control) | Continuously outputs the pulses corresponding to the command speed set in the positioning data. | $\begin{aligned} & 9.2 .12 \\ & 9.2 .13 \\ & 9.2 .14 \\ & 9.2 .15 \end{aligned}$ |
|  | Speed-position switching control |  | First, carries out speed control, and then carries out position control (positioning with designated address or movement amount) by turning the "speed-position switching signal" ON. | $\begin{aligned} & 9.2 .16 \\ & 9.2 .17 \end{aligned}$ |
|  | Position-speed switching control |  | First, carries out position control, and then carries out speed control (continuous output of the pulses corresponding to the designated command speed) by turning the "position-speed switching signal" ON. | 9.2.18 |
|  | Other control | Current value changing | Changes the Current feed value ( Md.20) to the address set in the positioning data. <br> The following two methods can be used. <br> (The machine feed value cannot be changed.) <br> - Current value changing using positioning data <br> - Current value changing using current value changing start No. (No. 9003) | 9.2.19 |
|  |  | NOP instruction | No execution control system. When NOP instruction is set, this instruction is not executed and the operation of the next data is started. | 9.2.20 |
|  |  | JUMP instruction | Unconditionally or conditionally jumps to designated positioning data No. | 9.2.21 |
|  |  | LOOP | Carries out loop control with repeated LOOP to LEND. | 9.2.22 |
|  |  | LEND | Returns to the beginning of the loop control with repeated LOOP to LEND. | 9.2.23 |


|  | Main functions | Details | Reference section |
| :---: | :---: | :---: | :---: |
|  | Block start (Normal start) | With one start, executes the positioning data in a random block with the set order. | 10.3.2 |
|  | Condition start | Carries out condition judgment set in the "condition data" for the designated positioning data, and then executes the "block start data". <br> When the condition is established, the "block start data" is executed. When not established, that "block start data" is ignored, and the next point's "block start data" is executed. | 10.3.3 |
|  | Wait start | Carries out condition judgment set in the "condition data" for the designated positioning data, and then executes the "block start data". <br> When the condition is established, the "block start data" is executed. When not established, stops the control until the condition is established. (Waits.) | 10.3.4 |
|  | Simultaneous start | Simultaneously executes the positioning data having the No. for the axis designated with the "condition data". (Outputs pulses at the same timing.) | 10.3.5 |
|  | Repeated start (FOR loop) | Repeats the program from the block start data set with the "FOR loop" to the block start data set in "NEXT" for the designated No. of times. | 10.3.6 |
|  | Repeated start (FOR condition) | Repeats the program from the block start data set with the "FOR condition" to the block start data set in "NEXT" until the conditions set in the "condition data" are established. | 10.3.7 |
|  | Multiple axes simultaneous start control | Starts the operation of multiple axes simultaneously according to the pulse output level. <br> (Positioning start No. 9004, same as the "simultaneous start" above) | 10.5 |
|  | JOG operation | Outputs a pulse to drive unit while the JOG start signal is ON. | 11.2 |
|  | Inching operation | Outputs pulses corresponding to minute movement amount by manual operation to drive unit. <br> (Performs fine adjustment with the JOG start signal.) | 11.3 |
|  | Manual pulse generator operation | Outputs pulses commanded with the manual pulse generator to drive unit. (Carry out fine adjustment, etc., at the pulse level.) | 11.4 |

With the "major positioning control" ("high-level positioning control"), whether or not to continuously execute the positioning data can be set with the "operation pattern". Outlines of the "operation patterns" are given below.

| Da.1 Operation pattern | Details | Reference <br> section |
| :--- | :--- | :---: |
| Independent positioning control <br> (Positioning complete) | When "independent positioning control" is set for the operation <br> pattern of the started positioning data, only the designated <br> positioning data will be executed, and then the positioning will <br> end. |  |
| Continuous positioning control | When "continuous positioning control" is set for the operation <br> pattern of the started positioning data, after the designated <br> positioning data is executed, the program will stop once, and <br> then the next following positioning data will be executed. | 9.1 .2 |
| Continuous path control | When "continuous path control" is set for the operation pattern <br> of the started positioning data, the designated positioning data <br> will be executed, and then without decelerating, the next <br> following positioning data will be executed. |  |

### 3.2.3 QD75 sub functions and common functions

## Sub functions

The functions that assist positioning control using the QD75 are described below. (Refer to PART 2 for details on each function.

| Sub function |  | Details | Reference section |
| :---: | :---: | :---: | :---: |
| Functions characteristic to machine OPR | OPR retry function | This function retries the machine OPR with the upper/lower limit switches during machine OPR. This allows machine OPR to be carried out even if the axis is not returned to before the near-point dog with JOG operation, etc. | 12.2.1 |
|  | OP shift function | After returning to the machine OP, this function compensates the position by the designated distance from the machine OP position and sets that position as the OP address. | 12.2.2 |
| Functions that compensate control | Backlash compensation function | This function compensates the mechanical backlash. Feed pulses equivalent to the set backlash amount are output each time the movement direction changes. | 12.3.1 |
|  | Electronic gear function | By setting the movement amount per pulse, this function can freely change the machine movement amount per commanded pulse. <br> A flexible positioning system that matches the machine system can be structured with this function. | 12.3.2 |
|  | Near pass function *1 | This function suppresses the machine vibration when the positioning data is switched during continuous path control in the interpolation control. | 12.3.3 |
|  | Output timing selection of near pass control | This function allows the user to select the timing to output the difference $(\triangle \ell)$ between the actual and the set positioning end addresses in continuous path control, in which the difference ( $\triangle \ell$ ) is output during the execution of the next positioning data. | 12.3.4 |
| Functions that limit control | Speed limit function | If the command speed exceeds " Pr. 8 Speed limit value" during control, this function limits the commanded speed to within the " Pr. 8 Speed limit value" setting range. | 12.4.1 |
|  | Torque limit function *2 | If the torque generated by the servomotor exceeds " Pr. 17 Torque limit setting value" during control, this function limits the generated torque to within the " Pr. 17 Torque limit setting value" setting range. | 12.4.2 |
|  | Software stroke limit function | If a command outside of the upper/lower limit stroke limit setting range, set in the parameters, is issued, this function will not execute positioning for that command. | 12.4.3 |
|  | Hardware stroke limit function | This function carries out deceleration stop with the limit switch connected to the QD75 external device connector. | 12.4.4 |
| Functions that change control details | Speed change function | This function changes the speed during positioning. Set the new speed in the speed change buffer memory (Cd. 14 New speed value), and change the speed with the Speed change request (Cd.15). | 12.5.1 |
|  | Override function | This function changes the speed within a percentage of 1 to $300 \%$ during positioning. This is executed using Cd. 13 Positioning operation speed override". | 12.5.2 |
|  | Acceleration/deceleration time change function | This function changes the acceleration/deceleration time during speed change. (Functions added to the speed change function and override function) | 12.5.3 |
|  | Torque change function | This function changes the "torque limit value" during control. | 12.5.4 |
|  | Target position change function | This function changes the target position during positioning. Position and speed can be changed simultaneously. | 12.5.5 |

* 1: The near pass function is featured as standard and is valid only for position control. It cannot be set to be invalid with parameters.
*2: Using "Torque limit function" requires a "D/A conversion module" and a "drive unit capable of torque limit command with analog voltage".

| Sub function | Details | Reference <br> section |
| :---: | :--- | :---: |
| Absolute position restoration function $* 3$ | This function restores the absolute position of designated axis. <br> By this function, the OPR after power ON from OFF is not <br> required once the OPR is executed when the system operation <br> is started. | 12.6 |

* 3: An I/O module (or general-purpose I/O function of QCPU) with arbitrary number of points and "the drive unit capable of configuring an absolute position detection system (, which is a Mitsubishi General-Purpose AC Servo and has an absolute position detection function (absolute position data transference protocol) equivalent to that of $\mathrm{MR}-\mathrm{J} 3-\square \mathrm{A}$ )" are required to execute the "absolute position restoration function".

|  | Sub function | Details | Reference section |
| :---: | :---: | :---: | :---: |
| Other functions | Step function | This function temporarily stops the operation to confirm the positioning operation during debugging, etc. <br> The operation can be stopped at each "automatic deceleration" or "positioning data". | 12.7.1 |
|  | Skip function | This function stops (decelerates to a stop) the positioning being executed when the skip signal is input, and carries out the next positioning. | 12.7.2 |
|  | M code output function | This function issues a command for a sub work (clamp or drill stop, tool change, etc.) corresponding to the M code No. ( 0 to 65535) that can be set for each positioning data. | 12.7.3 |
|  | Teaching function | This function stores the address positioned with manual control into the positioning address having the designated positioning data No. (Cd.39). | 12.7.4 |
|  | Command in-position function | At each automatic deceleration, this function calculates the remaining distance for the QD75 to reach the positioning stop position. When the value is less than the set value, the "command in-position flag" is set to "1". <br> When using another auxiliary work before ending the control, use this function as a trigger for the sub work. | 12.7.5 |
|  | Acceleration/deceleration process function | This function adjusts the control acceleration/deceleration. (acceleration/deceleration time and curve). | 12.7.6 |
|  | Continuous operation interrupt function | This function interrupts continuous operation. When this request is accepted, the operation stops when the execution of the current positioning data is completed. | 6.5.4 |
|  | Pre-reading start function | This function shortens the virtual start time. | 12.7.7 |
|  | Deceleration start flag function | Function that turns ON the flag when the constant speed status or acceleration status switches to the deceleration status during position control, whose operation pattern is "Positioning complete", to make the stop timing known. | 12.7.8 |
|  | Stop command processing for deceleration stop function | Function that selects a deceleration curve when a stop cause occurs during deceleration stop processing to speed 0 . | 12.7.9 |

Common functions
The outline of the functions executed as necessary are described below.
(Refer to PART 2 for details on each function.)

| Common functions | Details | Reference <br> section |
| :--- | :--- | :---: |
| Parameter initialization function | This function returns the "parameters" stored in the QD75 <br> buffer memory and flash ROM to the default values. <br> The following two methods can be used. <br> 1) Method using sequence program <br> 2) Method using GX Configurator-QP | 13.2 |
| Execution data backup function | This functions stores the "setting data", currently being <br> executed, into the flash ROM. <br> 1) Method using sequence program <br> 2) Method using GX Configurator-QP | 13.3 |
| External I/O signal logic switching function | This function switches I/O signal logic according to externally <br> connected devices. <br> This function enables the use of the system that does not use b <br> (N.C.)-contact signals, such as Drive unit READY or <br> Upper/lower limit signal, by setting parameters to positive logic. | 13.4 |
| External I/O signal monitor function | This function monitors the external I/O signal monitor <br> information in the module's detailed information which can be <br> displayed on the system monitor of GX Developer*4. | 13.5 |

*4: For the QD75P $\square$ QD75D $\square$, this function is available in GX Developer (SW6D5C-GPPW-E or later).
For the QD75P $\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}$, external I/O signals cannot be monitored on GX Developer. Use the system monitor of GX Works2.

### 3.2.4 Combination of QD75 main functions and sub functions

With positioning control using the QD75, the main functions and sub functions can be combined and used as necessary. A list of the main function and sub function combinations is given below.


[^2]

### 3.3 Specifications of input/output signals with CPU module

### 3.3.1 List of input/output signals with CPU module

The QD75 uses 32 input points and 32 output points for exchanging data with the CPU module.
The input/output signals when the QD75 is mounted in slot No. 0 of the main base unit are shown below.
Device $X$ refers to the signals input from the QD75 to the CPU module, and device $Y$ refers to the signals output from the CPU module to the QD75.


## Important

[Y1 to Y3], [Y18 to Y1F], [X2, X3], and [X18 to X1F] are used by the system, and cannot be used by the user.
If these devices are used, the operation of the QD75 will not be guaranteed.

### 3.3.2 Details of input signals (QD75 $\rightarrow$ CPU module)

The ON/OFF timing and conditions of the input signals are shown below.

| Device No. | Signal name |  |  | Details |
| :---: | :---: | :---: | :---: | :---: |
| X0 | QD75 | READY | ON: READY <br> OFF: Not READY/ <br> Watch dog timer error | - When the PLC READY signal [Y0] turns from OFF to ON, the parameter setting range is checked. If no error is found, this signal turns ON. <br> - When the PLC READY signal [Y0] turns OFF, this signal turns OFF. <br> - When watch dog timer error occurs, this signal turns OFF. <br> - This signal is used for interlock in a sequence program, etc. |
| X1 | Sync flag | ization | OFF: $\begin{aligned} & \text { Module } \\ & \text { access } \\ & \text { disabled } \\ & \text { ON: } \begin{array}{l}\text { Module } \\ \text { access } \\ \\ \text { enabled }\end{array}\end{aligned}$ | - After the programmable controller is turned ON or the CPU module is reset, this signal turns ON if the access from the CPU module to the QD75 is possible. <br> - When "Asynchronous" is selected in the module synchronization setting of the CPU module, this signal can be used as interlock for the access from a sequence program to the QD75. |
| $\begin{aligned} & \mathrm{X} 4 \\ & \text { X5 } \\ & \text { X6 } \\ & \text { X7 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | M code ON | OFF: M code is not set <br> ON : M code is set | - In the WITH mode, this signal turns ON when the positioning data operation is started. In the AFTER mode, this signal turns ON when the positioning data operation is completed. <br> - This signal turns OFF with the " Cd. 7 M code OFF request". <br> - When M code is not designated (when " Da.10 M code" is "0"), this signal will remain OFF. <br> - With using continuous path control for the positioning operation, the positioning will continue even when this signal does not turn OFF. However, the warning "M CODE ON SIGNAL START" (warning code: 503) will occur. <br> - When the PLC READY signal [Y0] turns OFF, the M code ON signal will also turn OFF. <br> - If the operation is started while the M code is ON , the error "M CODE ON SIGNAL START" (error code: 536) will occur. |
| $\begin{aligned} & \text { X8 } \\ & \text { X9 } \\ & \text { XA } \\ & \text { XB } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Error detection | OFF: No error <br> ON: Error occurrence | - This signal turns ON when an error listed in Section 15.2 occurs, and turns OFF when the error is reset on " Cd. 5 Axis error rest". |
| $\begin{aligned} & \text { XC } \\ & \text { XD } \\ & \text { XE } \\ & \text { XF } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | BUSY * 1 | OFF: Not BUSY ON: BUSY | - This signal turns ON at the start of positioning, OPR or JOG operation. It turns OFF when the " Da. 9 Dwell time" has passed after positioning stops. (This signal remains ON during positioning.) This signal turns OFF when the positioning is stopped with step operation. <br> - During manual pulse generator operation, this signal turns ON while the <br> " Cd. 21 Manual pulse generator enable flag" is ON. <br> - This signal turns OFF at error completion or positioning stop. |
| $\begin{aligned} & \hline \text { X10 } \\ & \text { X11 } \\ & \text { X12 } \\ & \text { X13 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Start complete | OFF:Start <br> incomplete <br> ON: <br> Start <br> complete | - This signal turns ON when the positioning start signal turns ON and the QD75 starts the positioning process. <br> (The start complete signal also turns ON during OPR control.) |
| $\begin{aligned} & \mathrm{X} 14 \\ & \mathrm{X} 15 \\ & \mathrm{X} 16 \\ & \mathrm{X} 17 \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Positioning complete *2 | $\begin{array}{\|cc} \text { OFF: } & \text { Positioning } \\ \text { incomplete } \end{array}, \begin{aligned} & \text { Positioning } \\ & \text { complete } \end{aligned}$ | - This signal turns ON for the time set in " Pr. 40 Positioning complete signal output time" from the instant when the positioning control for each positioning data No. is completed. For the interpolation control, the positioning completed signal of interpolation axis turns ON during the time set to the reference axis. <br> (It does not turn ON when " Pr. 40 Positioning complete signal output time" is " 0 ".) <br> - If positioning (including OPR), JOG/Inching operation, or manual pulse generator operation is started while this signal is ON, the signal will turn OFF. <br> - This signal will not turn ON when speed control or positioning is canceled midway. |

## Important

*1: The BUSY signal turns ON even when position control of movement amount 0 is executed. However, since the ON time is short, the ON status may not be detected in the sequence program.
*2: "Positioning complete" of the QD75 refers to the point when the pulse output from QD75 is completed.
Thus, even if the QD75's positioning complete signal turns ON, the system may continue operation.

### 3.3.3 Detail of output signals (CPU module $\rightarrow$ QD75)

The ON/OFF timing and conditions of the output signals are shown below.

| Device No. | Signal name |  |  | Details |
| :---: | :---: | :---: | :---: | :---: |
| Y0 | PLC RE | EADY | OFF: <br> PLC READY OFF <br> ON: <br> PLC READY ON | (a) This signal notifies the QD75 that the CPU module is normal. <br> - It is turned ON/OFF with the sequence program. <br> - The PLC READY signal is turned ON during positioning control, OPR control, JOG operation, inching operation, and manual pulse generator operation, unless the system is in the peripheral device test mode. <br> (b) When parameters are changed, the PLC READY signal is turned OFF depending on the parameter (Refer to CHAPTER 7.). <br> (c) The following processes are carried out when the PLC READY signal turns from OFF to ON. <br> - The parameter setting range is checked. <br> - The QD75 READY signal [X0] turns ON. <br> (d) The following processes are carried out when the PLC READY signal turns from ON to OFF. <br> In these cases, the OFF time should be set to 100 ms or more. <br> - The QD75 READY signal [X0] turns OFF. <br> - The operating axis stops. <br> - The M code ON signal [X4 to X7] for each axis turns OFF, and " 0 " is stored in " Md. 25 Valid M code". <br> (e) When parameters or positioning data (No. 1 to 600) are written from the peripheral device or CPU module to the flash ROM, the PLC READY signal will turn OFF. |
| $\begin{aligned} & \text { Y4 } \\ & \text { Y5 } \\ & \text { Y6 } \\ & \text { Y7 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Axis stop | OFF: <br> Axis stop not requested <br> ON: <br> Axis stop requested | - When the axis stop signal turns ON, the OPR control, positioning control, JOG operation, inching operation and manual pulse generator operation will stop. <br> - By turning the axis stop signal ON during positioning operation, the positioning operation will be "stopped". <br> - Whether to decelerate or suddenly stop can be selected with " Pr. 39 Stop group 3 sudden stop selection". <br> - During interpolation control of the positioning operation, if the axis stop signal of any axis turns ON, all axes in the interpolation control will decelerate and stop. |
| $\begin{aligned} & \text { Y8 } \\ & \text { Y9 } \\ & \text { YA } \\ & \text { YB } \\ & \text { YC } \\ & \text { YD } \\ & \text { YE } \\ & \text { YF } \\ & \hline \end{aligned}$ | Axis 1 <br> Axis 1 <br> Axis 2 <br> Axis 2 <br> Axis 3 <br> Axis 3 <br> Axis 4 <br> Axis 4 | Forward run JOG start Reverse run JOG start | OFF: <br> JOG not started <br> ON: <br> JOG started | - When the JOG start signal is ON, JOG operation will be carried out at the " Cd. 17 JOG speed". When the JOG start signal turns OFF, the operation will decelerate and stop. <br> - When inching movement amount is set, the designated movement amount is output for one control cycle and then the operation stops. |
| $\begin{aligned} & \text { Y10 } \\ & \text { Y11 } \\ & \text { Y12 } \\ & \text { Y13 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Positioning start | OFF: <br> Positioning start not requested <br> ON: <br> Positioning start requested | - OPR operation or positioning operation is started. <br> - The positioning start signal is valid at the rising edge, and the operation is started. <br> - When the positioning start signal turns ON during BUSY, the warning "Start during operation" (warning code: 100) will occur. |
| $\begin{aligned} & \text { Y14 } \\ & \text { Y15 } \\ & \text { Y16 } \\ & \text { Y17 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Execution prohibition flag | OFF: Not during execution prohibition ON: During execution prohibition | - If the execution prohibition flag is ON when the positioning start signal turns ON, positioning control does not start until the execution prohibition flag turns OFF. (Pulse output not provided) Used with the "Pre-reading start function". (Refer to Section 12.7.7) |

### 3.4 Specifications of input/output interfaces with external devices

### 3.4.1 Electrical specifications of input/output signals

■ QD75P■N/QD75D $\square N$
(1) Input specifications


## （2）Output specifications

| Signal name | Rated load voltage | Operating load voltage range | Max．load current／inrush current | Max．voltage drop at ON | Leakage current at OFF | Response time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deviation counter clear （CLEAR） | 5 to 24VDC | 4.75 to 30VDC | $0.1 \mathrm{~A} / 1$ point／ 0.4 A 10 ms or less | $\begin{gathered} \text { 1VDC (TYP) } \\ 2.5 \mathrm{VDC}(\mathrm{MAX}) \end{gathered}$ | 0.1 mA or less | 2 ms or less （resistance load） |
| ```QD75P\squareN Pulse output F (PULSE F) Pulse output R (PULSE R)``` | 5 to 24VDC | 4.75 to 30VDC | 50mA／1 point／ 200 mA 10 ms or less | 0．5VDC（TYP） | 0.1 mA or less | － |
| $\begin{aligned} & \text { QD75D } \square \mathrm{N} \\ & \text { Pulse output F (+/-) (PULSE F }+/-) \\ & \text { Pulse output R (+/-) (PULSE R }+/-) \\ & \hline \end{aligned}$ | Differential driver equivalent to AM26C31 |  |  |  |  |  |
| －Select the PULSE／SIGN type，CW／CCW type，and A phase／B phase type using the parameter（ Pr． 5 Pulse output mode）according to the drive unit specifications． <br> －The relation of the pulse output with the＂Pr． 5 Pulse output mode＂and＂Pr． 23 Output signal logic selection＂is shown below： |  |  |  |  |  |  |


| Pr． 5 Pulse output mode＊${ }^{*}$ | Terminal name | Pr． 23 Output signal logic selection（bit0） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Positive logic |  | Negative logic |  |
|  |  | Forward run | Reverse run | Forward run | Reverse run |

Open collector connection（QD75P $\square \mathrm{N}$ ）
－The voltage of a terminal having the PULSE COM terminal as a reference is shown．（Refer to Section 3．4．4，（2）．） （The transistor output becomes OFF to High and ON to Low．）

| PULSE | PULSE F | High <br> Low $\qquad$几 $\qquad$凸凸凸 | High Low $\square$ $\square$ |
| :---: | :---: | :---: | :---: |
| SIGN | PULSE R | High Low | High <br> Low $\qquad$ $\square$ |
| CW | PULSE F | $\begin{aligned} & \text { High } \\ & \text { Low } \\ & \square \end{aligned}$ | $\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned} \square \square \square \square$ |
| CCW | PULSE R | High <br> Low $\qquad$ $\square \square \square \square$ | $\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned} \square \square \square \square$ |
| A phase | PULSE F | $\begin{aligned} & \text { High } \\ & \text { Low } \\ & \square \end{aligned} \square$ | $\begin{aligned} & \text { High } \\ & \text { Low } \\ & \square \\ & \square \end{aligned}$ |
| B phase | PULSE R | $\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned} \square \square \square \square$ | $\begin{aligned} & \text { High } \\ & \text { Low }-\square \square \\ & \square \end{aligned}$ |

Differential driver connection（ QD75D $\square \mathrm{N}$ ）
－The voltage of a terminal having the differential driver common terminal as a reference is shown．（Refer to Section 3．4．4，（3）．）
－For the differential driver common terminal，refer to＂Section 4．3．2，Wiring of the differential driver common terminal＂．

| PULSE | PULSE F＋ PULSE F－ | High $\square \square \square \square \square \square \square \square$ Low High Low $-\square \square \square \square \square \square \square \square$ |  |
| :---: | :---: | :---: | :---: |
| SIGN | PULSE R＋ PULSE R－ |  |  |
| CW | PULSE F＋ <br> PULSE F－ | High $\square \square \square \square$ Low High Low $\square \square \square$ |  |
| CCW | PULSE R＋ PULSE R－ |  |  |
| A phase | PULSE F＋ <br> PULSE F－ | High Low High Low Lin $\square \square \square \square \square$ | High Low High Low $\square \square \square$ |
| B phase | PULSE R＋ PULSE R－ |  | $\left.\begin{array}{l}\text { High } \\ \text { Low } \\ \text { High } \\ \text { Low }\end{array} \square \square \square \square \square, \square, \square\right)$ |

＊1：For details on＂Pr． 5 Pulse output mode＂，refer to＂Section 5．2．1，Basic parameters 1＂．

## POINT

Set the parameters，＂Pr． 5 Pulse output mode＂and＂Pr． 23 Output signal logic selection＂，in accordance with the specifications of a connected servo amplifier．If not，the motor may rotate in the opposite direction or may not rotate at all．

Connection examples with a MELSERVO－J3 series servo amplifier are shown below．
Open collector connection（QD75P $\square \mathrm{N}$ ）

| Pr． 5 Pulse output mode | QD75P $\square \mathrm{N}$ <br> （Pr． 23 Output <br> signal logic selection（bit0）） | Logic of $\text { MR-J3- } \square \mathrm{A}$ <br> servo amplifier | QD75P口N | MR－J3－$\square$ A servo amplifier |
| :---: | :---: | :---: | :---: | :---: |
| CW／CCW | Negative logic | Negative logic |  | OPC |
|  | Positive logic | Positive logic |  | DOCOM |
| PULSE／SIGN | Negative logic | Negative logic | PULSE F | PP 気口 |
|  | Positive logic | Positive logic |  |  |
| A phase／ <br> B phase | Negative logic | Negative logic | PULSE R |  |
|  | Negative logic | Positive logic |  |  |
|  | Positive logic | Negative logic |  |  |
|  | Positive logic | Positive logic |  |  |

Differential driver connection（QD75D $\square \mathrm{N}$ ）

| Pr． 5 Pulse output mode | QD75D $\square \mathrm{N}$ （Pr．23 Output signal logic selection（bit0）） | Logic of $\text { MR-J3- } \square \mathrm{A}$ <br> servo amplifier | $\text { QD75D } \square N$ | MR－J3－$\square$ A servo amplifier |
| :---: | :---: | :---: | :---: | :---: |
| CW／CCW | Negative logic | Positive logic |  |  |
|  | Positive logic | Negative logic |  | PPP |
| PULSE／SIGN | Negative logic | Positive logic |  | PG |
|  | Positive logic | Negative logic |  | $\mathrm{P}=\square \longrightarrow-{ }^{n}$ |
|  | Negative logic | Negative logic |  | NG |
| A phase／ | Negative logic | Positive logic |  |  |
| B phase | Positive logic | Negative logic |  |  |
|  | Positive logic | Positive logic |  |  |

QD75P $\square$ QD75D $\square$
(1) Input specifications

| Signal name | Rated input voltage/current | Working voltage range | ON <br> voltage/current | OFF <br> voltage/current | Input resistance | Response time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive unit READY (READY) <br> Stop signal (STOP) <br> Upper limit signal <br> (FLS) <br> Lower limit signal <br> (RLS) | 24VDC/5mA | $\begin{gathered} 19.2 \text { to } \\ \text { 26.4VDC } \end{gathered}$ | 17.5VDC or more/ 3.5 mA or more | 7VDC or less/ <br> 1.7 mA or less | Approx. $4.7 \mathrm{k} \Omega$ | 4 ms or less |
| $\begin{aligned} & \text { Zero signal } \\ & \text { (PG05/PG024) } \end{aligned}$ | 5VDC/5mA | 4.5 to 6.1VDC | 2VDC or more/ 2 mA or more | 0.5 VDC or less/ 0.5 mA or less | Approx. $0.3 \mathrm{k} \Omega$ | 1 ms or less |
|  | 24VDC/5mA | 12 to 26.4 VDC | 10VDC or more/ 3 mA or more | 3VDC or less/ 0.2 mA or less | Approx. $4.7 \mathrm{k} \Omega$ | 1 ms or less |
|  |  |  |  |  |  |  |
|  | Differential receiver equivalent to AM26LS32 <br> (ON/OFF level ON: 1.8 V or more, OFF: 0.6 V or less) |  |  |  |  |  |
|  | 5VDC/5mA | 4.5 to 6.1VDC | 2.5VDC or more/ 2 mA or more | 1VDC or less/ 0.1 mA or less | Approx. 1.5k $\Omega$ | 1 ms or less |
| Manual pulse generator A phase (PULSE GENERATOR A) Manual pulse generator B phase (PULSE GENERATOR B) | (1) Pulse width <br> (2) Phase differe <br> A ph <br> B ph |  |  | n the A phase tioning address | ads the B pha current value) | , the creases. |
| Near-point dog signal (DOG) <br> External command signal (CHG) | 24VDC/5mA | $\begin{gathered} 19.2 \text { to } \\ \text { 26.4VDC } \end{gathered}$ | 17.5VDC or more/ 3.5 mA or more | 7VDC or less/ <br> 1.7 mA or less | Approx. $4.3 \mathrm{k} \Omega$ | 1 ms or less |

(2) Output specifications

*1: For details on " Pr. 5 Pulse output mode", refer to "Section 5.2.1, Basic parameters 1".

## POINT

Set the parameters, " Pr. 5 Pulse output mode" and " Pr. 23 Output signal logic selection", in accordance with the specifications of a connected servo amplifier. If not, the motor may rotate in the opposite direction or may not rotate at all.

Connection examples with a MELSERVO-J3 series servo amplifier are shown below.
Open collector connection (QD75P $\square$ )


Differential driver connection (QD75D $\square$ )


### 3.4.2 Signal layout for external device connection connector

The specifications of the connector section, which is the input/output interface for the QD75 and external device, are shown below.
The signal layout for the QD75 external device connection connector is shown.


[^3]
### 3.4.3 List of input/output signal details

The details of each QD75 external device connection connector are shown below:

| Signal name | Pin No. |  |  |  | Signal details <br> (Negative logic is selected by external I/O signal logic selection) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AX1 | AX2 | AX3 | AX4 |  |
| Manual pulse generator $A$ phase (PULSER A+) <br> Manual pulse generator $B$ phase (PULSER B+) | $\begin{aligned} & \text { 1A19 } \\ & \text { 1A20 } \end{aligned}$ |  | - |  | - Input the pulse signal from the manual pulse generator $A$ phase and $B$ phase. <br> - If the A phase leads the B phase, the positioning address will increase at the rising and falling edges of each phase. <br> - If the B phase leads the A phase, the positioning address will decrease at the rising and falling edges of each phase. |
| Manual pulse generator $A$ common (PULSER A-) Manual pulse generator $B$ common (PULSER B-) | $\begin{aligned} & \text { 1B19 } \\ & \text { 1B20 } \end{aligned}$ |  | - |  | [When decreased] |
| Zero signal (+24V) <br> (PG024) <br> Zero signal (+5V) <br> (PG05) | $1 A 8$ --- 149 | 1B8 | 2A8 | 2B8 | - Input the zero signal for machine OPR. Use the pulse encoder's zero signal and so on. <br> - Also use this signal when the machine OPR method is the stopper method and the OPR complete is input from an external source. <br> - The zero signal is detected at turning from OFF to ON. |
| Zero signal common (PG0COM) | 1A10 | 1B10 | 2A10 | 2B10 | - Common for zero signal (+5V) and zero signal (+24V). |
| Pulse output F (+) <br> (PULSE F+) <br> Pulse output F (-) <br> (PULSE F-) | $\begin{aligned} & \text { 1A15 } \\ & \text { 1A16 } \end{aligned}$ | 1B15 | $\begin{aligned} & \text { 2A15 } \\ & \text { 2A16 } \end{aligned}$ | 2B15 | - Output the positioning pulses and pulse sign for the differential driver output |
| Pulse output R (+) (PULSE R+) <br> Pulse output R (-) <br> (PULSE R-) | 1A17 1A18 | $\begin{gathered} 1 \mathrm{~B} 17 \\ 1 \mathrm{~B} 18 \end{gathered}$ | 2A17 | 2B17 | (QD75D $\square$ N/QD75D $\square$ only) |
| Pulse output F <br> (PULSE F) <br> Pulse output F common <br> (PULSE COM) | 1A15 1A16 | $1 B 15$ 1B16 | 2A15 | 2B15 | - Output the positioning pulses and pulse sign for the open collector output |
| Pulse output R (PULSE R) <br> Pulse output R common (PULSE COM) | 1A17 1A18 | 1 B 17 1B18 | 2A17 | 2B17 | (QD75P $\square$ N/QD75P $\square$ only) |
| Upper limit signal (FLS) | 1A1 | 1B1 | 2A1 | 2B1 | - This signal is input from the limit switch installed at the upper limit position of the stroke. <br> - Positioning will stop when this signal turns OFF. <br> - When OPR retry function is valid, this will be the upper limit for finding the near-point dog signal. |
| Lower limit signal (RLS) | 1A2 | 1B2 | 2A2 | 2B2 | - This signal is input from the limit switch installed at the lower limit position of the stroke. <br> - Positioning will stop when this signal turns OFF. <br> - When OPR retry function is valid, this will be the lower limit for finding the near-point dog signal. |


| Signal name | Pin No. |  |  |  | Signal details(Negative logic is selected by external I/O signal logic selection) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AX1 | AX2 | AX3 | AX4 |  |
| Near-point dog signal (DOG) | 1A3 | 1B3 | 2A3 | 2B3 | - This signal is used for detecting the near-point dog during OPR. <br> - The near-point dog signal is detected at turning from OFF to ON. |
| Stop signal (STOP) | 1A4 | 1B4 | 2A4 | 2B4 | - Input this signal to stop positioning. <br> - When this signal turns ON, the QD75 will stop the positioning being executed. <br> After that, even if this signal is turned from ON to OFF, the system will not start. |
| External command signal \|(CHG) | 1A5 | 1B5 | 2A5 | 2B5 | - Input a control switching signal during speed-position or position-speed switching control. <br> - Use this signal as the input signal of positioning start, speed change request, and skip request from an external source. <br> Set the function to use this signal in " Pr. 42 External command function selection". |
| Common (COM) | $\begin{aligned} & 1 \mathrm{~A} 6 \\ & \text { 1A7 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~B} 6 \\ & 1 \mathrm{~B} 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2 \mathrm{~A} 6 \\ & 2 \mathrm{~A} 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2 \mathrm{~B} 6 \\ & 2 \mathrm{~B} 7 \\ & \hline \end{aligned}$ | - Common for upper/lower limit, near-point dog, stop, and external command signals. |
| Drive unit READY (READY) | 1A11 | 1B11 | 2A11 | 2B11 | - This signal turns ON when the drive unit is normal and can accept the feed pulse. <br> - The QD75 checks the drive unit READY signal, and outputs the OPR request if the system is not in the READY state. <br> - When the drive unit is inoperable, such as if an error occurs in the drive unit's control power supply, this signal will turn OFF. <br> - If this signal is turned OFF during positioning, the system will stop. The system will not start even if this signal is turned ON again. <br> - When this signal turns OFF, the OPR complete signal will also turn OFF. |
| Drive unit READY common (RDYCOM) | 1A12 | 1B12 | 2A12 | 2B12 | - Common for drive unit READY signal. |
| Deviation counter clear (CLEAR) | 1A13 | 1B13 | 2A13 | 2B13 | - This signal is output during machine OPR. (Note that it is not output during the count method (2).) <br> (Example) When machine OPR is carried out in the stopper (2) method. <br> - The output time of the deviation counter clear signal is set in " Pr. 55 Deviation counter clear signal output time". <br> - Use the drive unit that can reset the droop pulse amount in the internal deviation counter when the QD75 turns this signal ON. <br> (Note) The deviation counter clear is a signal output by the QD75 during machine OPR. It cannot be output randomly by the user. |
| Deviation counter clear common (CLRCOM) | 1A14 | 1B14 | 2A14 | 2B14 | - Common for deviation counter clear signal |

### 3.4.4 Input/output interface internal circuit

The outline diagrams of the internal circuits for the QD75P1N/QD75D1N/QD75P1/QD75D1 external device connection interface are shown below.
(1) Input (Common to QD75P1N, QD75D1N, QD75P1, and QD75D1)

*1: The symbols in Need for wiring column indicate the following meanings:

- $O$ Wiring is necessary for positioning.
- $\triangle$ : Wiring is necessary depending on the situation.
*2: Either polarity can be connected to the common (COM).


## (a) Input signal ON/OFF status

The input signal ON/OFF status is defied by the external wiring and logic setting.
This is explained below with the example of near-point dog signal (DOG). (The other input signals also perform the same operations as the near-point dog signal (DOG).)

| Logic setting $* 3, * 4$ | External wiring *4 |  | ON/OFF status of near-point dog signal (DOG) as seen from QD75 |
| :---: | :---: | :---: | :---: |
| Negative logic (Initial value) | (Voltage not applied) | DOG COM | OFF |
|  | (Voltage applied) | DOG | ON |
| Positive logic | (Voltage not applied) | DOG | ON |
|  | (Voltage applied) | DOG | OFF |

*3: Set the logic setting using " Pr. 22 Input signal logic selection". For details of the settings, refer to "Section 5.2.3 Detailed parameters 1" and "Section 13.4 External I/O signal logic switching function".
*4: When using the upper limit signal (FLS) or lower limit signal (RLS), always wire it as a "b" (normally closed) contact in the negative logic setting. The signal will turn OFF to stop positioning.
(b) About logic setting and internal circuit In the QD75, the case where the internal circuit (photocoupler) is OFF in the negative logic setting is defined as "input signal OFF". Reversely, the case where the internal circuit (photocoupler) is OFF in the positive logic setting is defined as "input signal ON".

[^4](2) Output (For QD75P1N and QD75P1)

| External wiring | Pin No. | Internal circuit | Signal name |  | Need for wiring*1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $- \text { Load }$ | 1A13 |  | Deviation counter clear | CLEAR | $\triangle$ |
| ${ }^{-}$ | 1A14 |  | Common | CLEAR COM |  |
| Load | 1A15 | $\int_{0}-\infty=\ngtr$ | CW | PULSE F | $\bigcirc$ |
|  | 1A16 |  | PULSE | PULSE COM |  |
| to 24VDC <br> $\left.{ }^{+}\right\|^{-}$ | 1A17 |  | CCW | PULSE R |  |
|  | 1A18 |  | SIGN | PULSE COM |  |

(3) Output (For QD75D1N and QD75D1)

*1: The symbols in Need for wiring column indicate the following meanings:

- $\bigcirc$ : Wiring is necessary for positioning.
- $\triangle$ : Wiring is necessary depending on the situation.
*2: A terminal block at the bottom of the module. (Refer to Section 4.1.2)


# CHAPTER 4 INSTALLATION, WIRING AND MAINTENANCE OF THE PRODUCT 

The installation, wiring and maintenance of the QD75 are explained in this chapter.
Important information such as precautions to prevent malfunctioning of the QD75, accidents and injuries as well as the proper work methods are described. Read this chapter thoroughly before starting installation, wiring or maintenance, and always following the precautions.
4.1 Outline of installation, wiring and maintenance ..... 4- 2
4.1.1 Installation, wiring and maintenance procedures ..... 4- 2
4.1.2 Names of each part ..... 4- 3
4.1.3 Handling precautions ..... 4- 5
4.2 Installation ..... 4- 7
4.2.1 Installation precautions ..... 4- 7
4.3 Wiring ..... 4- 8
4.3.1 Wiring precautions ..... 4- 8
4.3.2 Wiring of the differential driver common terminal ..... 4-14
4.4 Checking the installation and wiring ..... 4-15
4.4.1 Items to check when installation and wiring are completed ..... 4-15
4.5 Maintenance ..... 4-16
4.5.1 Maintenance precautions ..... 4-16
4.5.2 Disposal precautions ..... 4-16

### 4.1 Outline of installation, wiring and maintenance

### 4.1.1 Installation, wiring and maintenance procedures

The outline and procedures for QD75 installation, wiring and maintenance are shown below.


### 4.1.2 Names of each part

(1) The part names of the QD75 are described with the QD75P $\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}$ as an example. The QD75P $\square$ N/QD75D $\square \mathrm{N}$ and QD75P $\square$ QD75D $\square$ are different in the indication of their model names and serial numbers

QD75P4N


QD75D4N


| No. | Name | Details |  |  |  |
| :---: | :--- | :--- | :---: | :---: | :---: |
| 1) | RUN indicator LED, ERR indicator LED | Refer to the next page. |  |  |  |
| 2) | Axis display LED (AX1 to AX4) | Connector for connection with the drive unit, mechanical <br> system input or manual pulse generator. (40-pin connector) <br> AX1: Axis 1, AX2: Axis 2, AX3: Axis 3, AX4: Axis 4 <br> For details, refer to Section 3.4.2 "Signal layout for external <br> device connection connector". |  |  |  |
| 3$)$ | External device connector | Terminal connected to the differential receiver common of the <br> drive unit. For details, refer to Section 4.3.2 "Wiring of the <br> differential driver common terminal". |  |  |  |
| 4$)$ | Differential driver common terminal <br> (Differential driver output system (the_ <br> QD75D $\square$ N/QD75D $\square$ ) only) | Indicates the serial number of the QD75 |  |  |  |
| 5$)$ | Serial number plate |  |  |  |  |

(2) The LED display indicates the following operation statuses of the QD75 and axes.


| Display |  | Attention point | Description | Display | Attention point | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RUN $\square$ <br> ERR $\square$ | $\begin{aligned} & \square \text { AX1 } \\ & \square \text { AX2 } \\ & \square \text { AX3 } \\ & \square \text { AX4 } \end{aligned}$ | RUN is OFF. | Hardware failure, watch dog timer error | RUN $\square$ $\square$ AX1 <br>  $\square$ AX2 <br>  $\square$ AX3 <br> ERR $\square$ $\square$ AX4 | AX1 (or other axis) illuminates. | The corresponding axis is in operation. |
| RUN ■ <br> ERR | $\square$ AX1 $\square$ AX2 $\square$ AX3 $\square$ AX4 | RUN illuminates. ERR is OFF. | The module operates normally. | RUN $\square$ $\square$ AX1 <br>  $\square$ AX2 <br>  $\square$ AX3 <br> ERR $\square$ AX4 | ERR flashes. AX1 (or other axis) flashes. | An error occurs on the corresponding axis. |
| RUN <br> ERR | $\square$ AX1 $\square$ AX2 $\square$ AX3 $\square$ AX4 | ERR illuminates. | System error | RUN  <br>  ■ AX1 <br> AX2 <br> ERR AX3 <br> AX4 | All LEDs illuminate. | Hardware failure |
| RUN <br> ERR | $\square$ AX1 $\square$ AX2 $\square$ AX3 $\square$ AX4 | AX1 to AX4 are OFF. | The axes are stopped or on standby. |  |  |  |

The symbols in the Display column indicate the following statuses:
$\square$ : Turns OFF. ■: Illuminates. $\boldsymbol{*}$ : Flashes.
(3) The interface of each QD75 is as shown below.


### 4.1.3 Handling precautions

Handle the QD75 and cable while observing the following precautions.
[1] Handling precautions

## CAUTION

- Use the programmable controller in an environment that meets the general specifications contained in QCPU User's Manual(Hardware Design, Maintenance and Inspection) to use. Using this programmable controller in an environment outside the range of the general specifications may cause electric shock, fire, malfunction, and damage to or deterioration of the product.
- Do not directly touch the conductive section and electronic parts of the module. Failure to observe this could lead to module malfunctioning or trouble.
- Make sure that foreign matter, such as cutting chips or wire scraps, do not enter the module. Failure to observe this could lead to fires, trouble or malfunctioning.
- Never disassemble or modify the module.

Failure to observe this could lead to trouble, malfunctioning, injuries or fires.

## [2] Other precautions

(1) Main body

- The main body case is made of plastic. Take care not to drop or apply strong impacts onto the case.
- Do not remove the QD75 PCB from the case. Failure to observe this could lead to faults.
(2) Cable
- Do not press on the cable with a sharp object.
- Do not twist the cable with force.
- Do not forcibly pull on the cable.
- Do not step on the cable.
- Do not place objects on the cable.
- Do not damage the cable sheath.
(3) Installation environment

Do not install the module in the following type of environment.

- Where the ambient temperature exceeds the 0 to $55^{\circ} \mathrm{C}$ range.
- Where the ambient humidity exceeds the 5 to $95 \%$ RH range.
- Where there is sudden temperature changes, or where dew condenses.
- Where there is corrosive gas or flammable gas.
- Where there are high levels of dust, conductive powder, such as iron chips, oil mist, salt or organic solvents.
- Where the module will be subject to direct sunlight.
- Where there are strong electric fields or magnetic fields.
- Where vibration or impact could be directly applied onto the main body.


### 4.2 Installation

### 4.2.1 Installation precautions

The precautions for installing the QD75 are given below. Refer to this section as well as "4.1.3 Handling precautions" when carrying out the work.

Installation precautions

| Completely turn off the externally supplied power used in the system before cleaning or |
| :--- |
| tightening the screws. |
| Failure to turn all phases OFF could lead to electric shocks. |

## CAUTION

- Never disassemble or modify the module.

Failure to observe this could lead to trouble, malfunctioning, injuries or fires.

- Completely turn off the externally supplied power used in the system before installing or removing the module.
Failure to turn all phases OFF could lead to module trouble or malfunctioning.
- Do not install/remove the module to/from the base unit, or the terminal block to/from the module more than 50 times after the first use of the product (IEC 61131-2 compliant). Failure to do so may cause the module to malfunction due to poor contact of connector.
- Use the programmable controller in an environment that meets the general specifications contained in QCPU User's Manual(Hardware Design, Maintenance and Inspection) to use.
Using this programmable controller in an environment outside the range of the general specifications may cause electric shock, fire, malfunction, and damage to or deterioration of the product.
- Hold down the module mounting lever at the bottom of the module and securely insert the module fixing projection into the fixing holes of the base module. Improper mounting of the module may lead to malfunctioning, faults, or dropping.
When using the module in the environment subject to much vibration, secure the module with a screw.
Tighten the screw within the range of the specified tightening torque.
Insufficient tightening may lead to dropping, short-circuit, or malfunctioning.
Excessive tightening may damage the screw or module, leading to dropping, short-circuit, or malfunctioning.


### 4.3 Wiring

The precautions for wiring the QD75 are given below. Refer to this section as well as "4.1.3 Handling precautions" when carrying out the work.

### 4.3.1 Wiring precautions

(1) Always confirm the terminal layout before connecting the wires to the QD75. (For the terminal layout, refer to Section 3.4.2 "Signal layout for external device connection connector".)
(2) Correctly solder the external wiring connector. An incomplete soldering could lead to malfunctioning.
(3) Make sure that foreign matter such as cutting chips and wire scraps does not enter the QD75. Failure to observe this could lead to fires, faults or malfunctioning.
(4) A protective label is attached on the top of the QD75 to avoid foreign matter such as wire scraps from entering inside during wiring process. Do not remove the label until the wiring is completed. Before starting the system, however, be sure to remove the label to ensure heat radiation.
(5) Tighten the connector screws within the specified torque range. Undertightening can cause short circuit, fire, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, fire, or malfunction.
(6) When disconnecting the cable from the QD75 or the drive unit, do not pull the cable by the cable part. Hold the connector part of the cable. Pulling the cable connected to the QD75 or the drive unit may result in malfunction or damage to the module, drive unit, or cable.
(7) Do not bundle or adjacently lay the connection cable connected to the QD75 external I/O signals or drive unit with the main circuit line, power line, or the load line other than that for the programmable controller. Separate these by 100 mm as a guide. Failure to observe this could lead to malfunctioning caused by noise, surge, or induction.
(8) The shielded cable for connecting QD75 can be secured in place.

If the shielded cable is not secured, unevenness or movement of the shielded cable or careless pulling on it could result in damage to the QD75 or drive unit or shielded cable or defective cable connections could cause mis-operation of the unit.
(9) If the cable connected to the QD75 and the power line must be adjacently laid (less than 100 mm ), use a shielded cable. Ground the shield of the cable securely to the control panel on the QD75 side. (A wiring example is given on the next page.)

## [Applicable connectors]

The table below shows applicable connectors for external devices. When wiring, use applicable wires and an appropriate tightening torque.

| Mitsubishi 40-pin connector |  | Wire |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Tightening torque | Diameter | Type | Material | Temperature rating |
| A6CON1 | 0.20 to $0.29 \mathrm{~N} \cdot \mathrm{~m}$ | $0.3 \mathrm{~mm}^{2}$ (22AWG) | Stranded | Copper | $75^{\circ} \mathrm{C}$ or more |
| A6CON2 |  | $\begin{gathered} 0.088 \text { to } 0.24 \mathrm{~mm}^{2} \\ (28 \text { to } 24 \mathrm{AWG} \text { ) } \\ \hline \end{gathered}$ |  |  |  |
| A6CON4 |  | $0.3 \mathrm{~mm}^{2}$ (22AWG) |  |  |  |

## [Wiring example of shielded cable]

The following shows a wiring example for noise reduction in the case where the connector A6CON1 is used.

[Processing example of shielded cables]
Connect a cable with the FG wire and bind all shielded cables as shown below.
Remove the covering from all shielded cables and bind the appeared shield with a conductive tape.


## Assembling of connector (A6CON1)


(10) For compliance with the EMC and Low Voltage Directives, satisfy the following requirements.

- The cable connecting the drive unit and the QD75 must be the length below.

```
QD75P\squareN/QD75P\square: 2m or shorter
``` QD75D \(\square \mathrm{N} /\) QD75D \(\square: 10 \mathrm{~m}\) or shorter
- The cables connected to the external device for the QD75 must be 30 m or shorter. (except the one for pulse output)
- Use shielded twisted pair cables and an AD75CK type cable clamp (manufactured by Mitsubishi Electric) to ground the cables to the control box.
Even when compliance with the EMC Directive is not required, attaching an AD75CK type cable clamp to the cable connected to the QD75 may reduce the influence of external noise.


For details on AD75CK, refer to the following.
AD75CK-type Cable Clamping Instruction Manual

\section*{[Wiring examples using duct (incorrect example and corrected example)]}

(11) The influence of noise may be reduced by installing ferrite cores to the cable connected to the QD75 as a noise reduction technique.
For the noise reduction techniques related to connection with the servo amplifier, also refer to the instruction manual of the servo amplifier.

\subsection*{4.3.2 Wiring of the differential driver common terminal}

When the differential driver output system (QD75D \(\square\) N/QD75D \(\square\) ) is used, a potential difference between commons may occur between the differential driver common terminal and the differential receiver common terminal of the drive unit. To remove the potential difference between commons, connect the differential driver common terminal of the QD75D \(\square\) N/QD75D \(\square\) and the differential receiver common terminal of the drive unit.
When the common terminal of the drive unit is photocoupler-connected, the wiring to the differential driver common terminal of the QD75D \(\square\) N/QD75D \(\square\) is not needed since a potential difference between commons does not exist.
(For the drive unit specifications, refer to the manual of the used drive unit.)

\section*{Applicable connectors}

To wire the differential driver common terminal, use the wire applied to the following table.
\begin{tabular}{|c|c|c|c|}
\hline Wire diameter & Type & Material & Temperature rating \\
\hline \begin{tabular}{l}
0.24 to \(2.5 \mathrm{~mm}^{2}\) \\
\((24\) to 12 AWG\()\)
\end{tabular} & Stranded wire/single wire & Copper & \(75^{\circ} \mathrm{C}\) or more \\
\hline
\end{tabular}

\section*{Wiring example}

The following shows an example of wiring to the differential driver common terminal of the QD75D \(\square\) N/QD75D \(\square\).
Up to two cables can be connected to one differential driver common terminal. (For details, refer to Section 3.1 "Performance specifications".


\subsection*{4.4 Checking installation and wiring}

\subsection*{4.4.1 Items to check when installation and wiring are completed}

Check the following points when completed with the QD75 installation and wiring.
- Is the module correctly wired? ... "Connection confirmation" With "connection confirmation", the following three points are confirmed using GX Configurator-QP's connection confirmation function. (GX Configurator-QP is required for this "connection confirmation".)
-Are the QD75 and servo amplifier correctly connected?
-Are the servo amplifier and servomotor correctly connected?
- Are the QD75 and external device (input/output signal) correctly connected?

With this "connection confirmation", "whether the direction that the QD75 recognizes as forward run matches the address increment direction in the actual positioning work", and "whether the QD75 recognizes the external input/output signals such as the near-point dog signal and stop signal" can be checked.

Refer to GX Configurator-QP Operating Manual for details on "Connection confirmation".

Note that GX Developer (SW6D5C-GPPW-E or later) \(* 1\) may also be used to "confirm the connection between the QD75 and external device (I/O signals). For details, refer to Section 13.5 "External I/O signal monitor function" and GX Developer Operating Manual.

\footnotetext{
*1: For the QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\), external I/O signals cannot be monitored on GX Developer. Use the system monitor of GX Works2. For details on the system monitor of GX Works2, refer to GX Works2 Version 1 Operating Manual (Common).
}

\section*{Important}

If the QD75 is faulty, or when the required signals such as the near-point dog signal and stop signal are not recognized, unexpected accidents such as "not decelerating at the near-point dog during machine OPR and colliding with the stopper", or "not being able to stop with the stop signal" may occur. The "connection confirmation" must be carried out not only when structuring the positioning system, but also when the system has been changed with module replacement or rewiring, etc.

\subsection*{4.5 Maintenance}

\subsection*{4.5.1 Maintenance precautions}

The precautions for servicing the QD75 are given below. Refer to this section as well as "4.1.3 Handling precautions" when carrying out the work.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ WARNING } \\
\hline - Always turn all phases of the power supply OFF externally before cleaning or tightening the \\
screws. \\
Failure to turn all phases OFF could lead to electric shocks. \\
\hline
\end{tabular}

\section*{CAUTION}
- Never disassemble or modify the module.

Failure to observe this could lead to trouble, malfunctioning, injuries or fires.
- Completely turn off the externally supplied power used in the system before installing or removing the module.
Failure to turn all phases OFF could lead to module trouble or malfunctioning.

\subsection*{4.5.2 Disposal precautions}

\section*{CAUTION}
- When disposing of the product, handle it as industrial waste.

\section*{CHAPTER 5 DATA USED FOR POSITIONING CONTROL}
The parameters and data used to carry out positioning control with the QD75 are explained in this chapter.
With the positioning system using the QD75, the various parameters and data explained in this chapter are used for control. The parameters and data include parameters set according to the device configuration, such as the system configuration, and parameters and data set according to each control. Read this chapter thoroughly and make settings according to each control or application.
* Read PART 2 for details on each control.
5.1 Types of data ..... 5- 2
5.1.1 Parameters and data required for control ..... 5- 2
5.1.2 Setting items for positioning parameters ..... 5- 5
5.1.3 Setting items for OPR parameters ..... 5- 7
5.1.4 Setting items for positioning data ..... 5- 8
5.1.5 Setting items for block start data ..... 5-10
5.1.6 Setting items for condition data. ..... 5-11
5.1.7 Types and roles of monitor data ..... 5-12
5.1.8 Types and roles of control data ..... 5-15
5.2 List of parameters ..... 5-18
5.2.1 Basic parameters 1 ..... 5-18
5.2.2 Basic parameters 2 ..... 5-24
5.2.3 Detailed parameters 1 ..... 5-26
5.2.4 Detailed parameters 2 ..... 5-34
5.2.5 OPR basic parameters ..... 5-43
5.2.6 OPR detailed parameters ..... 5-50
5.3 List of positioning data ..... 5-54
5.4 List of block start data ..... 5-68
5.5 List of condition data ..... 5-74
5.6 List of monitor data ..... 5-80
5.6.1 System monitor data ..... 5-80
5.6.2 Axis monitor data ..... 5-90
5.7 List of control data ..... 5-104
5.7.1 System control data ..... 5-104
5.7.2 Axis control data ..... 5-108

\subsection*{5.1 Types of data}

\subsection*{5.1.1 Parameters and data required for control}

The parameters and data required to carry out control with the QD75 include the "setting data", "monitor data" and "control data" shown below.

Setting data (Data set beforehand according to the machine and application, and stored in the flash ROM.)


The data is set with the sequence program or peripheral device.
In this chapter, the method using the peripheral device will be explained.
(Refer to "Point" on the next page.)The basic parameters 1, detailed parameters 1, and OPR parameters become valid when the PLC READY signal [Y0] turns from OFF to ON. Note, however, that the only valid value of the " Pr. 5 Pulse output mode" is the value at the moment when the PLC READY signal [Y0] turns from OFF to ON for the first time after the power is switched ON or the CPU module is reset. Once the PLC READY signal [Y0] has been turned ON, the value will not be reset even if another value is set to the parameter and the PLC READY signal [Y0] is turned from OFF to ON.
\(\diamond\) Even when the PLC READY signal [Y0] is ON, the values or contents of the following can be changed: basic parameters 2, detailed parameters 2, positioning data, and block start data.
\(\diamond\) The only valid data assigned to basic parameters 2 , detailed parameters 2 , positioning data, or block start data are the data read at the moment when a positioning or JOG operation is started. Once the operation has started, any modification to the data is ignored.
Exceptionally, however, modifications to the following are valid even when they are made during a positioning operation: acceleration time 0 to 3 , deceleration time 0 to 3 , and external start command.
- Acceleration time 0 to 3 and deceleration time 0 to 3:

Positioning data are pre-read and pre-analyzed. Modifications to the data four or more steps after the current step are valid.
- External command function selection: The value at the time of detection is valid.
Monitor data
(Data that indicates the control state. Stored in the buffer memory, and monitors as necessary.)


*1: Md.50 to Md.52 are only for the QD75P \(\square\) N/QD75D \(\square\) N.
\(\diamond\) The data is monitored with the sequence program or peripheral device. In this chapter, the method using the peripheral device will be explained.

\(\diamond\) Control using the control data is carried out with the sequence program.
" Cd. 41 Deceleration start flag valid" is valid for only the value at the time when the PLC READY signal [Y0] turns from OFF to ON.

\section*{POINT}
(1) The "setting data" is created for each axis.
(2) The "setting data" parameters have determined default values, and are set to the default values before shipment from the factory. (Parameters related to axes that are not used are left at the default value.)
(3) The "setting data" can be initialized with GX Configurator-QP or the sequence program.
(4) It is recommended to set the "setting data" with GX Configurator-QP. When executed with the sequence program, many sequence programs and devices must be used. This will not only complicate the program, but will also increase the scan time.

\subsection*{5.1.2 Setting items for positioning parameters}

The table below lists items set to the positioning parameters. Setting of positioning parameters is similarly done for individual axes for all controls achieved by the QD75. For details of controls, refer to PART 2. For details of setting items, refer to Section 5.2 "List of parameters".


\footnotetext{
() : Always set
: Set as required
\(\times\) : Setting not possible
\(\triangle\) : Setting restricted
- : Setting not required. (This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.)
}

(O): Always set

O: Set as required
-: Setting not required (This is an irrelevant item, so the setting value will be ignored. If the value is the default value or within the setting range, there is no problem.)

Checking the positioning parameters Pr. 1 to Pr. 42 are checked with the following timing.
(1) When the "PLC READY signal [Y0]" output from the CPU module to the QD75 changes from OFF to ON
(2) When the test operation button is turned ON in the test mode using GX Configurator-QP
(3) When an error check is carried out with GX Configurator-QP

\section*{REMARK}
- "High-level positioning control" is carried out in combination with the "major positioning control".
Refer to the "major positioning control" parameter settings for details on the parameters required for "high-level positioning control".

\subsection*{5.1.3 Setting items for OPR parameters}

When carrying out "OPR control", the "OPR parameters" must be set. The setting items for the "OPR parameters" are shown below.
The "OPR parameters" are set commonly for each axis.
Refer to CHAPTER 8 "OPR CONTROL" for details on the "OPR control", and to Section 5.2 "List of parameters" for details on each setting item.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{|l|l|}
\hline OPR parameters & OPR control \\
\hline
\end{tabular}} & \multicolumn{6}{|c|}{Machine OPR control} & Fast \\
\hline \multirow{6}{*}{} & Pr. 43 & OPR method &  &  &  &  &  &  & \multirow{15}{*}{\(\bigcirc\)} \\
\hline & Pr. 44 & OPR direction & (0) & ( & ( & ( & ( & (0) & \\
\hline & Pr. 45 & OP address & ( & ( & ( ) & ( ) & ( ) & () & \\
\hline & Pr. 46 & OPR speed & (0) & ( & (0) & (0) & ( \()\) & (0) & \\
\hline & Pr. 47 & Creep speed & ( & ( & (0) & ( ) & ( ) & (0) & \\
\hline & Pr. 48 & OPR retry & R & R & R & - & R & R & \\
\hline \multirow{9}{*}{} & Pr. 49 & OPR dwell time & - & ( ) & - & - & - & - & \\
\hline & Pr. 50 & Setting for the movement amount after nearpoint dog ON & - & - & - & - & (0) & ( ) & \\
\hline & Pr. 51 & OPR acceleration time selection & ( & ( & (0) & ( ) & © & (0) & \\
\hline & Pr. 52 & OPR deceleration time selection & (0) & (0) & (0) & (0) & (0) & () & \\
\hline & Pr. 53 & OP shift amount & S & S & S & S & S & s & \\
\hline & Pr. 54 & OPR torque limit value & - & ( & (0) & (0) & - & - & \\
\hline & Pr. 55 & Deviation counter clear signal output time & C & C & C & C & c & - & \\
\hline & Pr. 56 & Speed designation during OP shift & S & S & S & S & S & S & \\
\hline & Pr. 57 & Dwell time during OPR retry & R & R & R & - & R & R & \\
\hline
\end{tabular}
© : Always set
O : Preset parameters are used for machine OPR control.
- : Setting not required (This is an irrelevant item, so the setting value will be ignored. If the value is the default value or within the setting range, there is no problem.)
R: Set when using the "12.2.1 OPR retry function".
S: Set when using the "12.2.2 OP shift function".
C: Set the deviation counter clear signal output time.
Checking the OPR parameters.
Pr. 43 to Pr. 57 are checked with the following timing.
(1) When the "PLC READY signal [Y0]" output from the CPU module to the QD75 changes from OFF to ON
(2) When the test operation button is turned ON in the test mode using GX Configurator-QP
(3) When an error check is carried out with GX Configurator-QP

\subsection*{5.1.4 Setting items for positioning data}

Positioning data must be set for carrying out any "major positioning control". The table below lists the items to be set for producing the positioning data.
One to 600 positioning data items can be set for each axis.
For details of the major positioning controls, refer to CHAPTER 9 "MAJOR
POSITIONING CONTROL". For details of the individual setting items, refer to Section 5.3 "List of positioning data".


\footnotetext{
(o) : Always set
: Set as required
\(X\) :Setting not possible
- : Setting not required.
(This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.)
* :Two control systems are available: the absolute (ABS) system and incremental (INC) system.
}

Checking the positioning data
The items Da. 1 to Da. 10 are checked at the following timings:
(1) Startup of a positioning operation
(2) Error check performed by GX Configurator-QP

\subsection*{5.1.5 Setting items for block start data}

The "block start data" must be set when carrying out "high-level positioning control". The setting items for the " block start data" are shown below. Up to 50 points of " block start data" can be set for each axis.
Refer to CHAPTER 10 "HIGH-LEVEL POSITIONING CONTROL" for details on the "high-level positioning control", and to Section 5.4 "List of block start data" for details on each setting item.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & Block start (Normal start) & Condition start & Wait start & Simultaneous start & Repeated start (FOR loop) & Repeated start (FOR condition) \\
\hline Da. 11 & Shape (end/continue) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Da. 12 & Start data No. & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Da. 13 & Special start instruction & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Da. 14 & Parameter & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

O: Set as required
- : Setting not required (This is an irrelevant item, so the setting value will be ignored. If the value is the default value or within the setting range, there is no problem.)

Checking the block start data
Da. 11 to Da. 14 are checked with the following timing.
(1) When the "Block start data" starts
(2) When an error check is carried out with GX Configurator-QP

\subsection*{5.1.6 Setting items for condition data}

When carrying out "high-level positioning control" or using the JUMP instruction in the "major positioning control", the "condition data" must be set as required. The setting items for the "condition data" are shown below.
Up to 10 "condition data" items can be set for each axis.
For the "high-level positioning control", JUMP instruction, and setting items, refer to the following.
- "High-level positioning control" Refer to CHAPTER 10 "HIGH-LEVEL POSITIONING CONTROL"
- JUMP instruction..........................Refer to Section 9.2.21 "JUMP instruction".
- Setting items ...............................Refer to Section 5.5 "List of condition data".
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{Major positioning control} & \multicolumn{6}{|c|}{High-level positioning control} \\
\hline & & Other than JUMP instruction & JUMP instruction & Block start (Normal start ) & Condition start & Wait start & Simultaneous start & Repeated start (FOR loop) & Repeated start (FOR condition) \\
\hline Da. 15 & Condition target & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline Da. 16 & Condition operator & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline Da. 17 & Address & - & \(\triangle\) & - & \(\triangle\) & \(\triangle\) & - & - & \(\triangle\) \\
\hline Da. 18 & Parameter 1 & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\triangle\) & - & \(\bigcirc\) \\
\hline Da. 19 & Parameter 2 & - & \(\triangle\) & - & \(\triangle\) & \(\triangle\) & \(\triangle\) & - & \(\triangle\) \\
\hline
\end{tabular}
\(O\) : Set as required
\(\triangle\) : Setting limited
- : Setting not required (This is an irrelevant item, so the setting value will be ignored. If the value is the default value or within the setting range, there is no problem.)

Checking the condition data
Da. 15 to Da. 19 are checked with the following timing.
(1) When the " Block start data" starts
(2) When "JUMP instruction" starts
(3) When an error check is carried out with GX Configurator-QP

\subsection*{5.1.7 Types and roles of monitor data}

The monitor data area in the buffer memory stores data relating to the operating state of the positioning system, which are monitored as required while the positioning system is operating.
The following data are available for monitoring.
- System monitoring:

Monitoring of the QD75 configuration and operation history (through the system monitor data Md. 1 through, Md. 19 Md.50 through Md.52 *1) *1: Md.50 through Md.52 are for the QD75P \(\square\) N/QD75D \(\square\) N only.
- Axis operation monitoring:

Monitoring of the current position and speed, and other data related to the movements of axes (through the axis monitor data Md.20 through Md.48*2)
*2: The axis monitor data are refreshed every 0.9 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 1.8ms (QD75P \(\square\) QD75D \(\square\) ). Note that " Md. 21 Machine feed value", " Md. 22 Feedrate", " Md. 28 Axis feedrate" and " Md. 30 External input/output signal" of QD75P \(\square /\) QD75D \(\square\) are refreshed every 56.8 ms . Also, " Md. 23 Valid M code", is updated when the "M code ON signal [ \(\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6\), X7]" turns ON.

\section*{[1] Monitoring the system}

Monitoring the positioning system operation history
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Monitoring details} & \multicolumn{3}{|c|}{Corresponding item} \\
\hline \multicolumn{3}{|l|}{Whether the system is in the test mode or not} & Md. 1 & \multicolumn{2}{|l|}{In test mode flag} \\
\hline \multirow{8}{*}{History of data that started an operation} & \multicolumn{2}{|l|}{Start information} & Md. 3 & \multicolumn{2}{|l|}{Start information} \\
\hline & \multicolumn{2}{|l|}{Start No.} & Md. 4 & \multicolumn{2}{|l|}{Start No.} \\
\hline & \multirow{4}{*}{Start} & Year:month (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) & Md. 50 & \multicolumn{2}{|l|}{Start (Year:month)} \\
\hline & & \[
\begin{array}{|l|}
\hline \text { Day:hour } \\
\text { (QD75P } \square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N} \\
\hline
\end{array}
\] & Md. 5 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Start (Day:hour)}} \\
\hline & & \begin{tabular}{l}
Hour \\
(QD75P \(\square\) QD75D \(\square\) )
\end{tabular} & & & \\
\hline & & Minute:second & Md. 6 & \multicolumn{2}{|l|}{Start (Minute:second)} \\
\hline & \multicolumn{2}{|l|}{Error upon starting} & Md. 7 & \multicolumn{2}{|l|}{Error judgment} \\
\hline & \multicolumn{2}{|l|}{Pointer No. next to the pointer No. where the latest history is stored} & Md. 8 & \multicolumn{2}{|l|}{Start history pointer} \\
\hline \multirow{7}{*}{History of all errors} & \multicolumn{2}{|l|}{Axis in which the error occurred} & Md. 9 & \multicolumn{2}{|l|}{Axis in which the error occurred} \\
\hline & \multicolumn{2}{|l|}{Axis error No.} & Md. 10 & \multicolumn{2}{|l|}{Axis error No.} \\
\hline & \multirow{4}{*}{Axis error occurrence} & \[
\begin{aligned}
& \text { Year:month } \\
& \text { (QD75P } \square \mathrm{N} / \text { QD75D } \square \mathrm{N}
\end{aligned}
\] & Md. 51 & Axis error occurrence & (Year:month) \\
\hline & & \[
\begin{aligned}
& \hline \text { Day:hour } \\
& \text { (QD75P } \square \mathrm{N} / \text { QD75D } \square \mathrm{N} \\
& \hline
\end{aligned}
\] & Md. 11 & \multirow[t]{2}{*}{Axis error occurrence} & \multirow[t]{2}{*}{(Day:hour)} \\
\hline & & \[
\begin{aligned}
& \text { Hour } \\
& \text { (QD75P } \square \text { QD75D } \square \text { ) } \\
& \hline
\end{aligned}
\] & & & \\
\hline & & Minute:second & Md. 12 & Axis error occurrence & (Minute:second) \\
\hline & \multicolumn{2}{|l|}{Pointer No. next to the pointer No. where the latest history is stored} & Md. 13 & \multicolumn{2}{|l|}{Error history pointer} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Monitoring details} & \multicolumn{2}{|r|}{Corresponding item} \\
\hline \multirow{6}{*}{History of all warnings} & \multicolumn{2}{|l|}{Axis in which the warning occurred} & Md. 14 & Axis in which the warning occurred \\
\hline & \multicolumn{2}{|l|}{Axis warning No.} & Md. 15 & Axis warning No. \\
\hline & \multirow{4}{*}{Axis warning occurrence} & Year:month (QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) & Md. 52 & Axis warning occurrence (Year:month) \\
\hline & & \[
\begin{aligned}
& \text { Day:hour } \\
& \text { (QD75P } \square \mathrm{N} / \text { QD75D } \square \mathrm{N} \\
& \hline
\end{aligned}
\] & d. 1 & Axis warning occurrence (Day-hour) \\
\hline & & Hour (QD75P \(\square\) QD75D \(\square\) ) & & Axis warning occurrence (Day.hour) \\
\hline & & Minute:second & Md. 17 & Axis warning occurrence (Minute:second) \\
\hline \multirow[t]{2}{*}{Number of write accesses to the flash ROM after the power is switched ON} & \multicolumn{2}{|l|}{Pointer No. next to the pointer No. where the latest history is stored} & Md. 18 & Warning history pointer \\
\hline & \multicolumn{2}{|l|}{Number of write accesses to flash ROM} & Md. 19 & No. of write accesses to flash ROM \\
\hline
\end{tabular}

\section*{[2] Monitoring the axis operation state}

Monitoring the position
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Monitor details } & \multicolumn{1}{c|}{ Corresponding item } \\
\hline Monitor the current machine feed value & Md.21
\end{tabular} Machine feed value

Monitoring the speed
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Monitor details } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Monitor the \\
current speed
\end{tabular}} & \begin{tabular}{l} 
During independent axis control \\
During \\
interpola- \\
tion \\
control
\end{tabular} & \begin{tabular}{l} 
When "0: \\
Composite speed" \\
is set for " Pr.20 \\
Interpolation speed \\
designation method"
\end{tabular} & \begin{tabular}{l} 
Indicates the \\
speed of each \\
axis
\end{tabular} \\
\cline { 2 - 3 } \begin{tabular}{l} 
When "1: \\
Reference axis speed" \\
is set for " Pr.20 \\
Interpolation speed \\
designation method"
\end{tabular} & \begin{tabular}{l} 
Indicates the \\
composite \\
speed
\end{tabular} & \begin{tabular}{l} 
Indicates the \\
reference axis \\
speed
\end{tabular} & Md.22 Feedrate \\
\hline
\end{tabular}

Monitoring the state
\begin{tabular}{|c|c|}
\hline Monitor details & Corresponding item \\
\hline Monitor the axis operation state & Md. 26 Axis operation status \\
\hline Monitor the latest error code that occurred with the axis & Md. 23 Axis error No. \\
\hline Monitor the latest warning code that occurred with the axis & Md. 24 Axis warning No. \\
\hline Monitor the external input/output signal and flag & Md. 30 External input/output signal Md. 31 Status \\
\hline Monitor the valid M codes & Md. 25 Valid M code \\
\hline Monitor whether the speed is being limited & Md. 39 In speed limit flag \\
\hline Monitor whether the speed is being changed & Md.40 In speed change processing flag \\
\hline Monitor the "start data" point currently being executed & Md. 43 Start data pointer being executed \\
\hline Monitor the "positioning data No." currently being executed & Md. 44 Positioning data No. being executed \\
\hline Monitor the remaining No. of repetitions (special start) & Md. 41 Special start repetition counter \\
\hline Monitor the remaining No. of repetitions (control system) & Md. 42 Control system repetition counter \\
\hline Monitor the block No. & Md. 45 Block No. being executed \\
\hline Monitor the current torque limit value & Md. 35 Torque limit stored value \\
\hline Monitor the "instruction code" of the special start data when using special start & Md. 36 Special start data instruction code setting value \\
\hline Monitor the "instruction parameter" of the special start data when using special start & setting value \\
\hline Monitor the "start data No." of the special start data when using special start & Md. 38 Start positioning data No. setting value \\
\hline Monitor the "positioning data No." executed last & Md. 46 Last executed positioning data No. \\
\hline Monitor the positioning data currently being executed & Md. 47 Positioning data being executed \\
\hline Monitor the movement amount after the current position control switching when using "speed-position switching control (INC mode)" & Md. 29 Speed-position switching control positioning amount \\
\hline Monitor switching from the constant speed status or acceleration status to the deceleration status during position control whose operation pattern is "Positioning complete" & Md. 48 Deceleration start flag \\
\hline
\end{tabular}

\subsection*{5.1.8 Types and roles of control data}

Operation of the positioning system is achieved through the execution of necessary controls. (Data required for controls are given through the default values when the power is switched ON, which can be modified as required by the sequence program.) Controls are performed over system data or machine operation.
- Controlling the system data :

Performs write/initialization, etc. of the QD75 "setting data". (the system control data Cd. 1 and Cd.2)
- Controlling the operation :

Setting operation parameters, changing speed during operation, interrupting or restarting operation (the system control data Cd. 41 and Cd. 42 , and the axis control data Cd. 3 to Cd. 40 )

\section*{[1] Controlling the system data}

Setting and resetting the setting data
\begin{tabular}{|l|cc|}
\hline \multicolumn{1}{|c|}{ Control details } & \multicolumn{1}{c|}{ Controlled data item } \\
\hline Write setting data from buffer memory to flash ROM & Cd.1 & Flash ROM write request \\
\hline Reset (initialize) parameters & Cd.2 & Parameter initialization request \\
\hline
\end{tabular}

\section*{[2] Controlling the operation}

Controlling the operation
\begin{tabular}{|c|c|c|}
\hline Control details & \multicolumn{2}{|r|}{Corresponding item} \\
\hline Set which positioning to execute (start No.) & Cd. 3 & Positioning start No. \\
\hline Clear (reset) the axis error (Md.23) and warning (Md.24) & Cd. 5 & Axis error reset \\
\hline Issue instruction to restart (When axis operation is stopped) & Cd. 6 & Restart command \\
\hline End current positioning (deceleration stop), and start next positioning & Cd. 37 & Skip command \\
\hline Set start point No. for executing block start & Cd. 4 & Positioning starting point No. \\
\hline Stop continuous control & Cd. 18 & Continuous operation interrupt request \\
\hline \multirow{4}{*}{Set start data Nos. for axes that start up simultaneously} & Cd. 30 & Simultaneous starting axis start data No. (axis 1 start data No.) \\
\hline & Cd. 31 & Simultaneous starting axis start data No. (axis 2 start data No.) \\
\hline & Cd. 32 & Simultaneous starting axis start data No. (axis 3 start data No.) \\
\hline & Cd. 33 & Simultaneous starting axis start data No. (axis 4 start data No.) \\
\hline Specify write destination for teaching results & Cd. 38 & Teaching data selection \\
\hline Specify data to be taught & Cd. 39 & Teaching positioning data No. \\
\hline
\end{tabular}

Controlling operation per step
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Control details } & \multicolumn{1}{c|}{ Corresponding item } \\
\hline Stop positioning operation after each operation & Cd.35
\end{tabular} Step valid flag \begin{tabular}{|l|c|}
\hline Set unit to carry out step & Cd.34
\end{tabular} Step mode \begin{tabular}{l} 
Issue instruction to continue operation after a step is finished \\
\hline
\end{tabular}

Controlling the speed
\begin{tabular}{|c|c|}
\hline Control details & Corresponding item \\
\hline Set new speed when changing speed during operation & Cd. 14 New speed value \\
\hline Issue instruction to change speed in operation to Cd. 14 value (Only during positioning operation and JOG operation) & Cd. 15 Speed change request \\
\hline Change positioning operation speed between 1 and 300\% range & Cd. 13 Positioning operation speed override \\
\hline Set inching movement amount & Cd. 16 Inching movement amount \\
\hline Set JOG speed & Cd. 17 JOG speed \\
\hline When changing acceleration time during speed change, set new acceleration time & Cd. 10 New acceleration time value \\
\hline When changing deceleration time during speed change, set new deceleration time & Cd. 11 New deceleration time value \\
\hline Set acceleration/deceleration time validity during speed change & \(\qquad\) Acceleration/deceleration time change during speed change, enable/disable selection \\
\hline
\end{tabular}

Making settings related to operation
\begin{tabular}{|c|c|c|}
\hline Control details & \multicolumn{2}{|r|}{Corresponding item} \\
\hline Turn M code ON signal OFF & Cd. 7 & M code OFF request \\
\hline Set new value when changing current value & Cd. 9 & New current value \\
\hline Validate speed-position switching signal from external source & Cd. 24 & Speed-position switching enable flag \\
\hline Change movement amount for position control during speed-position switching control (INC mode) & Cd. 23 & Speed-position switching control movement amount change register \\
\hline Validate external position-speed switching signal & Cd. 26 & Position-speed switching enable flag \\
\hline Change speed for speed control during position-speed switching control & Cd. 25 & Position-speed switching control speed change register \\
\hline Set up a flag when target position is changed during positioning & Cd. 29 & Target position change request flag \\
\hline Set new positioning address when changing target position during positioning & Cd. 27 & Target position change value(new address) \\
\hline Set new speed when changing target position during positioning & Cd. 28 & Target position change value(new speed) \\
\hline Set absolute (ABS) moving direction in degrees & Cd. 40 & ABS direction in degrees \\
\hline Set manual pulse generator operation validity & Cd. 21 & Manual pulse generator enable flag \\
\hline Set scale per pulse of No. of input pulses from manual pulse generator & Cd. 20 & Manual pulse generator 1 pulse input magnification \\
\hline Change OPR request flag from "ON to OFF" & Cd. 19 & OPR request flag OFF request \\
\hline Validate external command signal & Cd. 8 & External command valid \\
\hline Change " Md. 35 Torque limit stored value" & Cd. 22 & New torque value \\
\hline Set whether " Md. 48 Deceleration start flag" is valid or invalid & Cd. 41 & Deceleration start flag valid \\
\hline Set the stop command processing for deceleration stop function (deceleration curve re-processing/deceleration curve continuation) & Cd. 42 & Stop command processing for deceleration stop selection \\
\hline
\end{tabular}

\subsection*{5.2 List of parameters}

\subsection*{5.2.1 Basic parameters 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Item}} & \multicolumn{2}{|r|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \multicolumn{2}{|r|}{\multirow{4}{*}{Pr. 1 Unit setting}} & 0 : mm & 0 & \multirow{4}{*}{3} & \multirow{4}{*}{0} & \multirow{4}{*}{150} & \multirow{4}{*}{300} & \multirow{4}{*}{450} \\
\hline & & 1 : inch & 1 & & & & & \\
\hline & & 2 : degree & 2 & & & & & \\
\hline & & 3 : pulse & 3 & & & & & \\
\hline \multirow{9}{*}{} & & & 1 to 65535 & & & & & \\
\hline & Pr.2 & & \[
1 \text { to } 32767
\] & & & & & \\
\hline & \begin{tabular}{l}
No. of pulses per rotation (Ap) \\
(Unit : pulse)
\end{tabular} & 1 to 65535 & :Set as a decimal 32768 to 65535 :Convert into hexadecimal and set & 20000 & 1 & 151 & 301 & 451 \\
\hline & \begin{tabular}{l}
\[
\begin{array}{|l|}
\hline \text { Pr. } 3 \\
\hline
\end{array}
\] \\
Movement amount per
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs according to the " Pr. 1 Unit setting". \\
Here, the value within the [Table 1] range is set.
\end{tabular}} & \multirow[t]{2}{*}{20000} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{152} & \multirow[t]{2}{*}{302} & \multirow[t]{2}{*}{452} \\
\hline & rotation (AI) & \multicolumn{2}{|l|}{[Table 1] on next page} & & & & & \\
\hline & & 1:1-fold & 1 & \multirow{4}{*}{1} & \multirow{4}{*}{3} & \multirow{4}{*}{153} & \multirow{4}{*}{303} & \multirow{4}{*}{453} \\
\hline & Pr. 4 & 10: 10-fold & 10 & & & & & \\
\hline & \multirow[t]{2}{*}{Unit magnification (Am)} & 100: 100-fold & 100 & & & & & \\
\hline & & 1000 : 1000-fold & 1000 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 1 Unit setting}

Set the unit used for defining positioning operations. Choose from the following units depending on the type of the control target: \(\quad \mathrm{mm}\), inch, degree, or pulse. Different units can be defined for different axes (axis 1 to 4).
(Example) Different units ( mm , inch, degree, and pulse) are applicable to different systems:
mm or inch..... \(\mathrm{X}-\mathrm{Y}\) table, conveyor (Select mm or inch depending on the machine specifications.)
degree ........... Rotating body (360 degrees/rotation)
pulse. . X - Y table, conveyor
* When you change the unit, note that the values of other parameters and data will not be changed automatically.
After changing the unit, check if the parameter and data values are within the allowable range.
Set "degree" to exercise speed-position switching control (ABS mode).

Pr. 2 to Pr. 4 Movement amount per pulse
These parameters define the amount of movement achieved by each single pulse within a pulse train output by the QD75.
The following paragraphs explain how to set the individual parameters Pr.2. Pr. 3 , and Pr. 4 assuming that the unit " mm " is selected with Pr. 1.
The movement amount per pulse is given by the following expression:
Movement amount per pulse \(=\frac{\text { Movement amount per rotation (Al) }}{\text { No. of pulses per rotation (Ap) }}\)
* Due to the mechanical tolerance, the actual movement amount may differ slightly from the instructed movement amount. The error can be compensated by adjusting the movement amount per pulse defined here.
(Refer to Section 12.3.2 "Electronic gear function".)

\section*{POINT}

If the movement amount per pulse is less than 1 , command frequency variations will occur. Smaller setting will increase variations and may cause machine vibration. If the movement amount per pulse becomes less than 1 , also use the electronic gear function of the drive unit and make setting so that the movement amount per pulse is 1 or greater.
[Table 1]
\begin{tabular}{|c|l|l|}
\hline Pr. 1 setting value & \begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular} & \begin{tabular}{c} 
Value set with sequence program \\
(unit) \(*\)
\end{tabular} \\
\hline \(0: \mathrm{mm}\) & 0.1 to \(6553.5(\mu \mathrm{~m})\) & 1 to \(65535\left(\times 10^{-1} \mu \mathrm{~m}\right)\) \\
\hline \(1:\) inch & 0.00001 to 0.65535 (inch) & 1 to \(65535\left(\times 10^{-5} \mathrm{inch}\right)\) \\
\hline \(2:\) degree & 0.00001 to 0.65535 (degree) & 1 to \(65535\left(\times 10^{-5}\right.\) degree) \\
\hline \(3:\) pulse & 1 to 65535 (pulse) & 1 to 65535 (pulse) \\
\hline
\end{tabular}
* 1 to 32767 : Set as a decimal

32768 to 65535 : Convert into hexadecimal and set

\section*{Pr. 2 No. of pulses per rotation (Ap)}

Set the number of pulses required for a complete rotation of the motor shaft.
If you are using the Mitsubishi servo amplifier, set the value given as the
"resolution per servomotor rotation" in the speed/position detector specifications.
No. of pulses per rotation \((A p)=\) Resolution per servomotor rotation
* When the "Resolution per servomotor revolution" of Mitsubishi servo amplifier exceeds 65535 pulses, make setting after referring to the Servo Amplifier Instruction Manual.

\section*{Pr. 3 Movement amount per rotation (AI), Pr. 4 Unit magnification (Am)}

The amount how the workpiece moves with one motor rotation is determined by the mechanical structure.
If the worm gear lead ( \(\mathrm{mm} / \mathrm{rev}\) ) is PB and the deceleration rate is \(1 / \mathrm{n}\), then
\[
\text { Movement amount per rotation }(\mathrm{AL})=\mathrm{PB} \times 1 / \mathrm{n}
\]

However, the maximum value that can be set for this "movement amount per rotation (AI)" parameter is \(6553.5 \mu \mathrm{~m}\) (approx. 6.5 mm ). Set the "movement amount per rotation (Al)" as shown below so that the "movement amount per rotation (AL)" does not exceed this maximum value.
```

Movement amount per rotation (AL)
$=P B \times 1 / n$
$=$ Movement amount per rotation (AI) $\times$ Unit magnification (Am)

```

Note) The unit magnification (Am) is a value of \(1,10,100\) or 1000 . If the "PB \(\times\) \(1 / \mathrm{n}\) " value exceeds \(6553.5 \mu \mathrm{~m}\), adjust with the unit magnification so that the "movement amount per rotation (Al) " does not exceed \(6553.5 \mu \mathrm{~m}\).

\section*{Example 1)}

When movement amount per rotation \((A L)=P B \times 1 / n=6000.0 \mu m(=6 m m)\)
Movement amount per rotation (AL)
\(=\) Movement amount per rotation (AI) \(\times\) Unit magnification (Am)
\(=\quad 6000.0 \mu \mathrm{~m} \times \quad 1\) time

\section*{Example 2)}

When movement amount per rotation (AL) \(=\mathrm{PB} \times 1 / \mathrm{n}=60000.0 \mu \mathrm{~m}(=60 \mathrm{~mm})\)
Movement amount per rotation (AL)
\(\begin{array}{lrc}=\text { Movement amount per rotation }(\mathrm{Al}) \times & \text { Unit magnification }(\mathrm{Am}) \\ = & 6000.0 \mu \mathrm{~m} \times & 10 \text { times }\end{array}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \multirow{4}{*}{Pr.5} & 0 : PULSE/SIGN mode & 0 & \multirow{4}{*}{1} & \multirow{4}{*}{4} & \multirow{4}{*}{154} & \multirow{4}{*}{304} & \multirow{4}{*}{454} \\
\hline & 1 : CW/CCW mode & 1 & & & & & \\
\hline & 2 : A phase/B phase (multiple of 4) & 2 & & & & & \\
\hline & 3 : A phase/B phase (multiple of 1) & 3 & & & & & \\
\hline Pr. 6 & 0 : Current value increment with & 0 & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{155} & \multirow[t]{2}{*}{305} & \multirow[t]{2}{*}{455} \\
\hline Rotation direction setting & 1 : Current value increment with reverse run pulse output & 1 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 5 Pulse output mode}

Set the pulse output mode to match the servo amplifier being used.

\section*{IMPORTANT}

The only valid value of the " Pr. 5 Pulse output mode" is the value at the moment when the PLC READY signal [YO] turns from OFF to ON for the first time after the power is switched ON or the CPU module is reset. Once the PLC READY signal [Y0] has been turned ON, the value will not be reset even if another value is set to the parameter and the PLC READY signal [YO] is turned from OFF to ON.

Use " Pr. 23 Output signal logic selection" to choose between the positive logic (pulse rising edge detection) and negative logic (pulse falling edge detection).
For the output specifications of each pulse output mode, refer to Section 3.4.1, (2) "Output specifications".
An example of the pulse output mode for positive and negative logic is shown below.

\section*{(1) PULSE/SIGN mode}


\section*{(2) \(\mathrm{CW} / \mathrm{CCW}\) mode}

During forward run, the forward run feed pulse (PULSE F) will be output.
During reverse run, the reverse run feed pulse (PULSE R) will be output.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Positive logic} & \multicolumn{3}{|c|}{Negative logic} \\
\hline \multicolumn{3}{|l|}{CW \(\square\) AITHETE} & \multicolumn{3}{|l|}{CW ปปปปปปป} \\
\hline \multirow[t]{2}{*}{CCW} & & tutut & \multirow[t]{2}{*}{CCW} & & ปปปปปปปป \\
\hline & Forward run & \[
\xrightarrow{\begin{array}{l}
\text { Reverse } \\
\text { run }
\end{array}}
\] & & Forward
run & \(\xrightarrow{\substack{\text { Reverse } \\ \text { run }}}\) \\
\hline
\end{tabular}

\section*{(3) A phase/B phase mode}

Forward run and reverse run are controlled with the phase difference of the \(A\) phase ( \(A \varnothing\) ) and \(B\) phase ( \(B \varnothing\) ).
- When the B phase is \(90^{\circ}\) behind the A phase, the motor will forward run.
- When the B phase is \(90^{\circ}\) ahead of the A phase, the motor will reverse run.
1) For multiple of 1 setting
\begin{tabular}{|c|c|}
\hline Positive logic & Negative logic \\
\hline  &  \\
\hline
\end{tabular}

Example) When the command 1 pulse output is 1 pulse/s, the pulse rises and falls by four times per second.
2) For multiple of 4 setting
\begin{tabular}{|c|c|}
\hline Positive logic & Negative logic \\
\hline  &  \\
\hline
\end{tabular}

Example) When the command 1 pulse output is 1 pulse/s, the pulse rises and falls by one times per second.

\section*{Pr. 6 Rotation direction setting}

Set the relation of the positioning direction (Md.20 Current feed value increment direction/decrement direction) and the pulse output. For the relation of "Forward run pulse output, Reverse run pulse output" and "CW/A phase/PULSE signal, CCW/B phase/SIGN signal", refer to " Pr. 5 Pulse output mode".

\section*{[Example]}

The following figure shows the pulse outputs of when " Pr. 5 Pulse output mode" is set to CW/CCW mode and the positioning with current feed value (increment direction)/(decrement direction) is executed.


When "0: Current value increment with forward run pulse output" is set


When "1: Current value increment with reverse run pulse output" is set

\begin{tabular}{|c|c|}
\hline POINT & \\
\hline When Pr. 6 has been changed from "0" to "1", check that the upper and lower \\
limit switches operate properly by JOG operation. \\
If any malfunction is identified, check and correct the wiring.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 7 & \multicolumn{2}{|l|}{The setting range differs depending on the " Pr. 1 Unit setting". Here, the value within the [Table 1] range is set.} & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{6
7} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 156 \\
& 157
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 306 \\
& 307
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 456 \\
& 457
\end{aligned}
\]} \\
\hline Bias speed at start & \multicolumn{2}{|l|}{[-⿸厂 [Table 1] on next page} & & & & & \\
\hline
\end{tabular}

\section*{Pr. 7 Bias speed at start}

Set the bias speed (minimum speed) upon starting. The bias speed has to be defined to allow the motor to start smoothly especially when a stepping motor is used. (A stepping motor will not start smoothly if a low rotation speed is instructed at the beginning.)
The specified "bias speed at start" will be valid during the following operations:
- Positioning operation
- OPR operation
- JOG operation

Note that the bias speed should not exceed " Pr. 8 Speed limit value".
Precautions for using a stepping motor
(1) For the system that uses a stepping motor, executing the S-curve acceleration/deceleration may cause step-out.
Before using the S-curve acceleration/deceleration, confirm that step-out does not occur.
(2) In the system that uses a stepping motor, the circular interpolation control cannot be carried out.
Although setting the bias speed at start is required by the characteristics of the stepping motor, the setting of the bias speed at start is disabled for circular interpolation control.
Ensure to use a servomotor for both 2 axes when the circular interpolation control is carried out.

\subsection*{5.2.2 Basic parameters 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 8 & \multicolumn{2}{|l|}{The setting range differs depending on the " Pr. 1 Unit setting". Here, the value within the [Table 2] range is set.} & \multirow[t]{2}{*}{200000} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 10 \\
& 11
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 160 \\
& 161
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 310 \\
& 311
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 460 \\
& 461
\end{aligned}
\]} \\
\hline Speed limit value & \multicolumn{2}{|l|}{[Table 2] on next page} & & & & & \\
\hline \begin{tabular}{l}
\(\square\) \\
Acceleration time 0
\end{tabular} & 1 to 8388608 (ms) & 1 to 8388608 (ms) & 1000 & \[
\begin{aligned}
& 12 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 162 \\
& 163
\end{aligned}
\] & \[
\begin{aligned}
& 312 \\
& 313
\end{aligned}
\] & \[
\begin{aligned}
& 462 \\
& 463
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\[
\begin{array}{|l|}
\hline \text { Pr. } 10 \\
\hline
\end{array}
\] \\
Deceleration time 0
\end{tabular} & 1 to 8388608 (ms) & 1 to 8388608 (ms) & 1000 & \[
\begin{aligned}
& 14 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 164 \\
& 165
\end{aligned}
\] & \[
\begin{aligned}
& 314 \\
& 315
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& 465
\end{aligned}
\] \\
\hline
\end{tabular}
[Table 1]
\begin{tabular}{|c|l|l|}
\hline Pr. 1 setting value & \multicolumn{1}{|c|}{ Value set with peripheral device (unit) } & \multicolumn{1}{|c|}{ Value set with sequence program (unit) } \\
\hline \(0: \mathrm{mm}\) & 0 to \(20000000.00(\mathrm{~mm} / \mathrm{min})\) & 0 to \(2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)\) \\
\hline \(1:\) inch & 0 to \(2000000.000(\mathrm{inch} / \mathrm{min})\) & 0 to \(2000000000\left(\times 10^{-3 \mathrm{i}} \mathrm{inch} / \mathrm{min}\right)\) \\
\hline \(2:\) degree & 0 to \(2000000.000(\) degree \(/ \mathrm{min})\) & 0 to \(2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)\) \\
\hline & & \begin{tabular}{l}
{\([\) QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}]\)} \\
0 to \(4000000(\mathrm{pulse} / \mathrm{s})\) \\
{\([Q D 75 P \square / Q D 75 D \square]\)} \\
0 to 1000000 (pulse/s)
\end{tabular} \\
\hline \(3:\) pulse & 0 to 1000000 (pulse/s) \(* 1\) & \\
& & \\
\hline
\end{tabular}
[Table 2]
\begin{tabular}{|c|c|c|}
\hline Pr. 1 setting value & Value set with peripheral device (unit) & Value set with sequence program (unit) \\
\hline 0 : mm & 0.01 to 20000000.00 ( \(\mathrm{mm} / \mathrm{min}\) ) & 1 to \(2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)\) \\
\hline 1 : inch & 0.001 to 2000000.000 (inch/min) & 1 to 2000000000 ( \(\times 10^{-3} \mathrm{inch} / \mathrm{min}\) ) \\
\hline 2: degree & 0.001 to 2000000.000 (degree/min) & 1 to 2000000000 ( \(\times 10^{-3}\) degree/min) \\
\hline 3 : pulse & [Select type \(* 2\) is QD75P \(\square]\) 1 to 200000 (pulse/s) \(* 1\) [Select type \(* 2\) is QD75D \(\square\) ] 1 to 1000000 (pulse/s) *1 & \[
\begin{aligned}
& \text { [QD75P } \square \text { N/QD75D } \square \text { N] } \\
& 1 \text { to 4000000 (pulse/s) } \\
& \text { [QD75P } \square / \text { QD75D } \square \text { ] } \\
& 1 \text { to } 1000000 \text { (pulse/s) }
\end{aligned}
\] \\
\hline
\end{tabular}
*1: In GX Configurator-QP, the QD75P \(\square\) N/QD75D \(\square \mathrm{N}\) are recognized as the QD75P \(\square / Q D 75 D \square\). Therefore, the setting ranges are the same as those of the QD75P \(\square / Q D 75 D \square\). To set a value outside a setting range in GX Configurator-QP, set it through a sequence program or GX Works2. The setting ranges in GX Works2 are the same as those in sequence programs. (Refer to Appendix 1.2)
*2: For Select type, refer to GX Configurator-QP Operating Manual.

\section*{Pr. 8 Speed limit value}

Set the maximum speed during positioning and OPR operations. If the specified speed exceeds speed limit value, positioning will be limited at the speed limit value. Set the speed limit value within the range of the following formula. If the speed limit value exceeds the range, the error "Out of speed limit value range" (error code: 910) will occur.
The command pulse frequency
converted from the speed limit value \(\leq\) Max. output pulse \(* 1\)
```

*1: QD75P\squareN/QD75P\square: 200kpulse/s
QD75D\squareN: 4Mpulse/s
QD75D\square: 1Mpulse/s

```

\section*{Pr. 9 Acceleration time 0, Pr. 10 Deceleration time 0}
" Pr. 9 Acceleration time 0" specifies the time for the speed to increase from zero to " Pr. 8 Speed limit value" (or " Pr. 31 JOG speed limit value" during JOG operation).
" Pr. 10 Deceleration time 0" specifies the time for the speed to decrease from
" Pr. 8 Speed limit value" (or " Pr. 31 JOG speed limit value" during JOG operation) to zero.

1) If the positioning speed is set lower than the parameter-defined speed limit value, the actual acceleration/deceleration time will be relatively short. Thus, set the maximum positioning speed equal to or only a little lower than the parameter-defined speed limit value.
2) These settings are valid for OPR, positioning and JOG operations.
3) When the positioning involves interpolation, the acceleration/deceleration time defined for the reference axis is valid.

\subsection*{5.2.3 Detailed parameters 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|l|}{Setting value, setting range} & \multirow{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \begin{tabular}{l}
Pr. 11 \\
Backlash compensation amount
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs according to the " Pr. 1 Unit setting". \\
Here, the value within the [Table 1] range is set.
\(\square\)
\end{tabular}} & 0 & 17 & 167 & 317 & 467 \\
\hline \begin{tabular}{l}
Pr. 12 \\
Software stroke limit upper limit value
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs according to the " Pr. 1 Unit setting". \\
Here, the value within the [Table 2] range is set.
\end{tabular}} & 2147483647 & \[
\begin{aligned}
& 18 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 168 \\
& 169
\end{aligned}
\] & \[
\begin{aligned}
& 318 \\
& 319
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& 469
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\[
\text { Pr. } 13
\] \\
Software stroke limit lower limit value
\end{tabular} &  & page & -2147483648 & \[
\begin{aligned}
& 20 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& 170 \\
& 171
\end{aligned}
\] & \[
\begin{aligned}
& 320 \\
& 321
\end{aligned}
\] & \[
\begin{aligned}
& 470 \\
& 471
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Pr. 14 \\
Software stroke limit selection
\end{tabular}} & 0 : Apply software stroke limit on current feed value & 0 & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{22} & \multirow[t]{2}{*}{172} & \multirow[t]{2}{*}{322} & \multirow[t]{2}{*}{472} \\
\hline & 1 : Apply software stroke limit on machine feed value & 1 & & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Pr. 15 \\
Software stroke limit valid/invalid setting
\end{tabular}} & 0 : Software stroke limit valid during JOG operation, inching operation and manual pulse generator operation & 0 & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{23} & \multirow[t]{2}{*}{173} & \multirow[t]{2}{*}{323} & \multirow[t]{2}{*}{473} \\
\hline & 1 : Software stroke limit invalid during JOG operation ,inching operation and manual pulse generator operation & 1 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 11 Backlash compensation amount}

The error that occurs due to backlash when moving the machine via gears can be compensated.
When the backlash compensation amount is set, pulses equivalent to the compensation amount will be output each time the direction changes during positioning.

1) The backlash compensation is valid after machine OPR. Thus, if the backlash compensation amount is set or changed, always carry out machine OPR once.
2) The backlash compensation amount setting range is 0 to 65535 , but it should be set to 255 or less by using the following expression.
\[
0 \leq \frac{\text { Backlash compensation amount }}{\text { Movement amount per pulse }} \leq 255
\]
[Table 1]
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Pr. 1 \\
setting value
\end{tabular} & \begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular} & \begin{tabular}{c} 
Value set with sequence program \\
(unit) \(*\)
\end{tabular} \\
\hline \(0: \mathrm{mm}\) & 0 to \(6553.5(\mu \mathrm{~m})\) & 0 to \(65535\left(\times 10^{-1} \mu \mathrm{~m}\right)\) \\
\hline \(1:\) inch & 0 to 0.65535 (inch) & 0 to \(65535\left(\times 10^{-5} \mathrm{inch}\right)\) \\
\hline \(2:\) degree & 0 to 0.65535 (degree) & 0 to \(65535\left(\times 10^{-5}\right.\) degree) \\
\hline \(3:\) pulse & 0 to 65535 (pulse) & 0 to 65535 (pulse) \\
\hline
\end{tabular}
\(* 1\) to \(32767 \quad\) : Set as a decimal
32768 to 65535 : Convert into hexadecimal and set
[Table 2]
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c} 
Pr. 1 \\
setting value
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c} 
Value set with sequence program \\
(unit)
\end{tabular}} \\
\hline \(0: \mathrm{mm}\) & -214748364.8 to \(214748364.7(\mu \mathrm{~m})\) & -2147483648 to \(2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)\) \\
\hline \(1:\) inch & -21474.83648 to 21474.83647 (inch) & -2147483648 to \(2147483647\left(\times 10^{-5} \mathrm{inch}\right)\) \\
\hline \(2:\) degree & 0 to 359.99999 (degree) & 0 to \(35999999\left(\times 10^{-5}\right.\) degree) \\
\hline \(3:\) pulse & -2147483648 to 2147483647 (pulse) & -2147483648 to 2147483647 (pulse) \\
\hline
\end{tabular}

\section*{Pr. 12 Software stroke limit upper limit value}

Set the upper limit for the machine's movement range during positioning control.

\section*{Pr. 13 Software stroke limit lower limit value}

Set the lower limit for the machine's movement range during positioning control.

1) Generally, the \(O P\) is set at the lower limit or upper limit of the stroke limit.
2) By setting the upper limit value or lower limit value of the software stroke limit, overrun can be prevented in the software. However, an emergency stop limit switch must be installed nearby outside the range.
3) To invalidate the software stroke limit, set the setting value to "upper limit value = lower limit value". (The setting value can be anything in the setting range.)
4) When the unit is "degree", the software stroke limit check is invalid during speed control (including speed-position switching control, position-speed switching control) or during manual control.

\section*{Pr. 14 Software stroke limit selection}

Set whether to apply the software stroke limit on the "current feed value" or the "machine feed value". The software stroke limit will be validated according to the set value.

\section*{Pr. 15 Software stroke limit valid/invalid setting}

Set whether to validate the software stroke limit during JOG/Inching operation and manual pulse generator operation.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 16 & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs depending on the " Pr. 1 Unit setting". \\
Here, the value within the [Table 1] range is set.
\end{tabular}} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 24 \\
& 25
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 174 \\
& 175
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 324 \\
& 325
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 474 \\
& 475
\end{aligned}
\]} \\
\hline & \multicolumn{2}{|l|}{[Table 1] on next page} & & & & & \\
\hline \begin{tabular}{l}
\[
\text { Pr. } 17
\] \\
Torque limit setting value
\end{tabular} & 1 to 500 (\%) & 1 to 500 (\%) & 300 & 26 & 176 & 326 & 476 \\
\hline Pr. 18 & 0 : WITH mode & 0 & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{27} & \multirow[b]{2}{*}{177} & \multirow[b]{2}{*}{327} & \multirow[b]{2}{*}{477} \\
\hline M code ON signal output timing & 1 : AFTER mode & 1 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 16 Command in-position width}

Set the remaining distance that turns the command in-position ON. The command in-position signal is used as a front-loading signal of the positioning complete signal. When positioning control is started, the "command in-position flag" (3rd flag from right) in " Md. 31 Status" turns OFF, and the "command in-position flag" turns ON at the set position of the command in-position signal.


\section*{Pr. 17 Torque limit setting value}

Set the maximum value of the torque generated by the servomotor as a percentage between 1 and \(500 \%\).
* The torque limit function limits the torque generated by the servomotor within the set range.
If the torque required for control exceeds the torque limit value, it is controlled with the set torque limit value.

\section*{Usage conditions}

Limits for pulse train output type
(a) A drive unit that can issue a torque limit command with the analog voltage is required.
(b) The D/A conversion module and the D/A conversion module and drive unit must be wired.
(c) The set " Pr. 17 Torque limit setting value" is set in the buffer memory " Md. 35 Torque limit stored value", so transmit that " Md. 35 Torque limit stored value" to the D/A conversion module with the sequence program.
[Table 1]
\begin{tabular}{|c|l|l|}
\hline Pr. 1 setting value & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular}} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Value set with sequence program \\
(unit)
\end{tabular}} \\
\hline \(0: \mathrm{mm}\) & 0.1 to \(214748364.7(\mu \mathrm{~m})\) & 1 to \(2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)\) \\
\hline \(1:\) inch & 0.00001 to 21474.83647 (inch) & 1 to \(2147483647\left(\times 10^{-5}\right.\) inch) \\
\hline \(2:\) degree & 0.00001 to 21474.83647 (degree) & 1 to \(2147483647\left(\times 10^{-5}\right.\) degree) \\
\hline \(3:\) pulse & 1 to 2147483647 (pulse) & 1 to 2147483647 (pulse) \\
\hline
\end{tabular}

\section*{Pr. 18 M code ON signal output timing}

This parameter sets the M code ON signal output timing.
Choose either WITH mode or AFTER mode as the M code ON signal output timing.


Note: If AFTER mode is used with speed control, an \(M\) code will not be output and the \(M\) code \(O N\) signal will not be turned ON.

An \(M\) code (Da.10) is a number between 0 and 65535 that can be assigned to each positioning data.
The sequence program can be coded to read an M code from the buffer memory address specified by " Md. 25 Valid M code" whenever the M code ON signal [X4, X5, X6, X7] turns ON so that a command for the sub work (e.g. clamping, drilling, tool change) associated with the M code can be issued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{4}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & \multicolumn{3}{|r|}{Value set with peripheral device} & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline & \multicolumn{3}{|l|}{0 : Standard speed switching mode} & 0 & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{28} & \multirow[b]{2}{*}{178} & \multirow[b]{2}{*}{328} & \multirow[b]{2}{*}{478} \\
\hline Speed switching mode & \multicolumn{3}{|l|}{1 : Front-loading speed switching mode} & 1 & & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\begin{array}{|l|}
\hline \text { Pr. } 20 \\
\hline
\end{array}
\] \\
Interpolation speed designation method
\end{tabular}} & \multicolumn{3}{|l|}{0 : Composite speed} & 0 & \multirow{2}{*}{0} & \multirow{2}{*}{29} & \multirow{2}{*}{179} & \multirow{2}{*}{329} & \multirow{2}{*}{479} \\
\hline & \multicolumn{3}{|l|}{1: Reference axis speed} & 1 & & & & & \\
\hline \multirow{3}{*}{Current feed value during speed control} & \multicolumn{3}{|l|}{0 : Do not update current feed value} & 0 & \multirow{3}{*}{0} & \multirow{3}{*}{30} & \multirow{3}{*}{180} & \multirow{3}{*}{330} & \multirow{3}{*}{480} \\
\hline & \multicolumn{3}{|l|}{1 : Update current feed value} & 1 & & & & & \\
\hline & \multicolumn{3}{|l|}{2 : Clear current feed value to zero} & 2 & & & & & \\
\hline \multirow{10}{*}{Pr.22} & b0 & Lower limit & \multirow{10}{*}{\begin{tabular}{l}
0: Negative logic \\
1: Positive logic
\end{tabular}} & \multirow{10}{*}{} & \multirow{10}{*}{0} & \multirow{10}{*}{31} & \multirow{10}{*}{181} & \multirow{10}{*}{331} & \multirow{10}{*}{481} \\
\hline & b1 & Upper limit & & & & & & & \\
\hline & b2 & Drive unit READY & & & & & & & \\
\hline & b3 & Stop signal & & & & & & & \\
\hline & b4 & External command & & & & & & & \\
\hline & b5 & Zero signal & & & & & & & \\
\hline & b6 & Near-point dog signal & & & & & & & \\
\hline & b7 & Not used & & & & & & & \\
\hline & b8 & Manual pulse generator input & & & & & & & \\
\hline &  & Not used & & & & & & & \\
\hline \multirow{6}{*}{Pr. 23 Output signal logic selection} & b0 & Command pulse signal & \multirow{6}{*}{\begin{tabular}{l}
0: Negative logic \\
1: Positive logic
\end{tabular}} & \multirow{6}{*}{\begin{tabular}{l}
 \\
the part not used.
\end{tabular}} & \multirow{6}{*}{0} & \multirow{6}{*}{32} & \multirow{6}{*}{182} & \multirow{6}{*}{332} & \multirow{6}{*}{482} \\
\hline & b1 & Not used & & & & & & & \\
\hline & b2 & Not used & & & & & & & \\
\hline & b3 & Not used & & & & & & & \\
\hline & b4 & Deviation counter clear & & & & & & & \\
\hline & \begin{tabular}{l}
b5 \\
to \\
b15
\end{tabular} & Not used & & & & & & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Pr. 24 \\
Manual pulse generator input selection
\end{tabular}} & \multicolumn{3}{|l|}{0: A-phase/B-phase multiplied by 4} & 0 & \multirow{4}{*}{0} & \multirow{4}{*}{33} & \multirow{4}{*}{-} & \multirow{4}{*}{-} & \multirow{4}{*}{-} \\
\hline & \multicolumn{3}{|l|}{1: A-phase/B-phase multiplied by 2} & 1 & & & & & \\
\hline & \multicolumn{3}{|l|}{2: A-phase/B-phase multiplied by 1} & 2 & & & & & \\
\hline & \multicolumn{3}{|l|}{3: PULSE/SIGN} & 3 & & & & & \\
\hline Pr. 150 Speed-position function & \multicolumn{3}{|l|}{0: Speed-position switching control (INC mode)} & 0 & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{34} & \multirow[b]{2}{*}{184} & \multirow[b]{2}{*}{334} & \multirow[b]{2}{*}{484} \\
\hline Speed-position function selection & \multicolumn{3}{|l|}{2: Speed-position switching control (ABS mode)} & 2 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 19 Speed switching mode}

Set whether to switch the speed switching mode with the standard switching or front-loading switching mode.
\(\qquad\) Switch the speed when executing the next positioning data.
1 : Front-loading switching........ The speed switches at the end of the positioning data currently being executed.



\section*{Pr. 20 Interpolation speed designation method}

When carrying out linear interpolation/circular interpolation, set whether to designate the composite speed or reference axis speed.
0: Composite speed .................
The movement speed for the control target is designated, and the speed for each axis is calculated by the QD75.
1: Reference axis speed The axis speed set for the reference axis is designated, and the speed for the other axis carrying out interpolation is calculated by the QD75.


<When reference axis speed is designated>

Note: Always specify the reference axis speed if the 4-axis linear interpolation or 2 to 4 axis speed control has to be performed.
If you specify the composite speed for a positioning operation that involves the 4-axis linear interpolation or 2 to 4 axis speed control, the error "Interpolation mode error" (error code 523) will be output when the positioning operation is attempted. For a positioning operation that involves the circular interpolation, specify the composite speed always.

\section*{Pr. 21 Current feed value during speed control}

Specify whether you wish to enable or disable the update of " Md.20 Current feed value" while operations are performed under the speed control (including the speed-position and position-speed switching control).
0 : The update of the current feed value is disabled
The current feed value will not change.
(The value at the beginning of the speed control will be kept.)
1: The update of the current feed value is enabled
The current feed value will be updated.
(The current feed value will change from the initial.)
2: The current feed value is cleared to zero
The current feed will be set initially to zero and change from zero while the speed control is in effect.
Note1: When the speed control is performed over two to four axes, the choice between enabling and disabling the update of " Md. 20 Current feed value" depends on how the reference axis is set.
Note2: Set "1" to exercise speed-position switching control (ABS mode).
Pr. 22 Input signal logic selection, Pr. 23 Output signal logic selection
Set the I/O signal logic that matches the signaling specification of the connected external device.
Note1: A mismatch in the signal logic will disable normal operation. Be careful of this when you change from the default value.
Note2: Set the manual pulse generator input logic selection (b8) to axis 1. (Setting of any of axes 2 to 4 is invalid.)

\section*{Pr. 24 Manual pulse generator input selection}

Set the manual pulse generator input pulse mode. (Only the value specified against the axis 1 is valid.)
0 : A-phase/B-phase; multiplied by 4
1: A-phase/B-phase; multiplied by 2
2: A-phase/B-phase; multiplied by 1
3: PULSE/SIGN

\section*{Pr. 150 Speed-position function selection}

Select the mode of speed-position switching control.
0 : INC mode
2: ABS mode
Note1: If the setting is other than 0 and 2 , operation is performed in the INC mode with the setting regarded as 0 .

\section*{MEMO}
\(\qquad\)

\subsection*{5.2.4 Detailed parameters 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|l|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 25 Acceleration time 1 & \multirow{6}{*}{1 to 8388608 (ms)} & \multirow{6}{*}{1 to 8388608 (ms)} & \multirow{6}{*}{1000} & \[
\begin{aligned}
& 36 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& 186 \\
& 187
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& 486 \\
& 487 \\
& \hline
\end{aligned}
\] \\
\hline Pr. 26 Acceleration time 2 & & & & \[
\begin{aligned}
& \hline 38 \\
& 39
\end{aligned}
\] & \[
\begin{aligned}
& 188 \\
& 189
\end{aligned}
\] & \[
\begin{aligned}
& 338 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 488 \\
& 489
\end{aligned}
\] \\
\hline Pr. 27 Acceleration time 3 & & & & 40 & 190 & 340
341 & \[
\begin{aligned}
& 490 \\
& 491 \\
& \hline
\end{aligned}
\] \\
\hline Pr. 28 Deceleration time 1 & & & & \[
\begin{aligned}
& 42 \\
& 43 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 192 \\
& 193 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
342 \\
343 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
492 \\
493 \\
\hline
\end{array}
\] \\
\hline Pr. 29 Deceleration time 2 & & & & \[
\begin{aligned}
& 44 \\
& 45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 194 \\
& 195 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
344 \\
345 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
494 \\
495 \\
\hline
\end{array}
\] \\
\hline Pr. 30 Deceleration time 3 & & & & \[
\begin{aligned}
& 46 \\
& 47
\end{aligned}
\] & \[
\begin{aligned}
& 196 \\
& 197
\end{aligned}
\] & \[
\begin{array}{r}
346 \\
347 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 496 \\
& 497
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(\square\) \\
JOG speed limit value
\end{tabular} & The setting range differs depending Here, the value within the [Table 1] r & \begin{tabular}{l}
the " Pr. 1 Unit setting". e is set. \\
next page
\end{tabular} & 20000 & \[
\begin{aligned}
& 48 \\
& 49
\end{aligned}
\] & \[
\begin{aligned}
& 198 \\
& 199
\end{aligned}
\] & \[
\begin{aligned}
& 348 \\
& 349
\end{aligned}
\] & \[
\begin{aligned}
& 498 \\
& 499
\end{aligned}
\] \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Pr. 32 \\
JOG operation acceleration time selection
\end{tabular}} & 0: Pr.9 Acceleration time 0 & 0 & \multirow{4}{*}{0} & \multirow{4}{*}{50} & \multirow{4}{*}{200} & \multirow{4}{*}{350} & \multirow{4}{*}{500} \\
\hline & 1: Pr.25 Acceleration time 1 & 1 & & & & & \\
\hline & 2: Pr. 26 Acceleration time 2 & 2 & & & & & \\
\hline & 3: Pr. 27 Acceleration time 3 & 3 & & & & & \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Pr. 33 \\
JOG operation deceleration time selection
\end{tabular}} & 0: Pr. 10 Deceleration time 0 & 0 & \multirow{4}{*}{0} & \multirow{4}{*}{51} & \multirow{4}{*}{201} & \multirow{4}{*}{351} & \multirow{4}{*}{501} \\
\hline & 1: Pr.28 Deceleration time 1 & 1 & & & & & \\
\hline & 2: Pr.29 Deceleration time 2 & 2 & & & & & \\
\hline & 3: Pr. 30 Deceleration time 3 & 3 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 25 Acceleration time 1 to Pr. 27 Acceleration time 3}

These parameters set the time for the speed to increase from zero to
" Pr. 8 Speed limit value" (or " Pr. 31 JOG speed limit value" during JOG
operation) during a positioning operation.

\section*{Pr. 28 Deceleration time 1 to Pr. 30 Deceleration time 3}

These parameters set the time for the speed to decrease from " Pr. 8 Speed limit value" (or " Pr. 31 JOG speed limit value" during JOG operation) to zero during a positioning operation.

\section*{[Table 1]}
\begin{tabular}{|c|c|c|}
\hline Pr. 1 setting value & Value set with peripheral device (unit) & Value set with sequence program (unit) \\
\hline 0 : mm & 0.01 to 20000000.00 (mm/min) & 1 to \(2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)\) \\
\hline 1 : inch & 0.001 to 2000000.000 (inch/min) & 1 to \(2000000000\left(\times 10^{-3} \mathrm{inch} / \mathrm{min}\right)\) \\
\hline 2 : degree & 0.001 to 2000000.000 (degree/min) & 1 to \(2000000000\left(\times 10^{-3}\right.\) degree \(/ \mathrm{min}\) ) \\
\hline 3 : pulse & [Select type \(* 1\) is QD75P \(\square\) ] 1 to 200000 (pulse/s) *2 [Select type \(* 1\) is QD75D \(\square\) ] 1 to 1000000 (pulse/s) \(* 2\) & \begin{tabular}{l}
[QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) ] \\
1 to 4000000 (pulse/s) \\
[QD75P \(\square /\) QD75D \(\square\) ] \\
1 to 1000000 (pulse/s)
\end{tabular} \\
\hline
\end{tabular}
*1: For Select type, refer to GX Configurator-QP Operating Manual.
*2: In GX Configurator-QP, the QD75P \(\square\) N/QD75D \(\square \mathrm{N}\) are recognized as the QD75P \(\square /\) QD75D \(\square\).
Therefore, the setting ranges are the same as those of the QD75P \(\square / Q D 75 D \square\). To set a value outside a setting range in GX Configurator-QP, set it through a sequence program or GX Works2. The setting ranges in GX Works2 are the same as those in sequence programs. (Refer to Appendix 1.2)

\section*{Pr. 31 JOG speed limit value}

Set the maximum speed for JOG operation.
Note) • Set the "JOG speed limit value" to less than " Pr. 8 Speed limit value". If the "speed limit value" is exceeded, the error "JOG speed limit value error" (error code: 956) will occur.

\section*{Pr. 32 JOG operation acceleration time selection}

Set which of "acceleration time 0 to 3 " to use for the acceleration time during JOG operation.
0 : Use value set in " Pr. 9 Acceleration time 0".
1 : Use value set in " Pr. 25 Acceleration time 1".
2 : Use value set in " Pr. 26 Acceleration time 2".
3 : Use value set in " Pr. 27 Acceleration time 3".

\section*{Pr. 33 JOG operation deceleration time selection}

Set which of "deceleration time 0 to 3 " to use for the deceleration time during JOG operation.
0 : Use value set in " Pr. 10 Deceleration time 0".
1 : Use value set in " Pr. 28 Deceleration time 1".
2 : Use value set in " Pr. 29 Deceleration time 2".
3 : Use value set in " Pr. 30 Deceleration time 3".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|l|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \begin{tabular}{l}
\[
\text { Pr. } 34
\] \\
Acceleration/deceleration
\end{tabular} & 0 : Trapezoid acceleration/deceleration process & 0 & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{52} & \multirow[t]{2}{*}{202} & \multirow[t]{2}{*}{352} & \multirow[t]{2}{*}{502} \\
\hline process selection & 1 : S-curve acceleration/deceleration process & 1 & & & & & \\
\hline \[
\begin{aligned}
& \hline \text { Pr. } 35 \\
& \text { S-curve ratio }
\end{aligned}
\] & 1 to 100 (\%) & 1 to 100 (\%) & 100 & 53 & 203 & 353 & 503 \\
\hline \begin{tabular}{l}
\[
\text { Pr. } 36
\] \\
Sudden stop deceleration time
\end{tabular} & 1 to 8388608 (ms) & 1 to 8388608 (ms) & 1000 & \[
\begin{aligned}
& 54 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 204 \\
& 205
\end{aligned}
\] & \[
\begin{aligned}
& 354 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& 504 \\
& 505
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\[
\begin{array}{|l|}
\hline \text { Pr. } 37 \\
\hline
\end{array}
\] \\
Stop group 1 sudden stop selection
\end{tabular} & 0 : Normal deceleration stop & \multirow[t]{2}{*}{0} & \multirow{3}{*}{0} & 56 & 206 & 356 & 506 \\
\hline \begin{tabular}{l}
Pr. 38 \\
Stop group 2 sudden stop selection
\end{tabular} & \multirow[b]{2}{*}{1 : Sudden stop} & & & 57 & 207 & 357 & 507 \\
\hline \begin{tabular}{l}
\[
\text { Pr. } 39
\] \\
Stop group 3 sudden stop selection
\end{tabular} & & 1 & & 58 & 208 & 358 & 508 \\
\hline
\end{tabular}

\section*{Pr. 34 Acceleration/deceleration process selection}

Set whether to use trapezoid acceleration/deceleration or S-curve acceleration/deceleration for the acceleration/deceleration process.
Note) Refer to Section 12.7.6 "Acceleration/deceleration process function" for details.

<Trapezoid acceleration/deceleration>

<S-curve acceleration/deceleration>

For the system that uses a stepping motor, executing the S-curve acceleration/deceleration may cause step-out.
Before using the S-curve acceleration/deceleration, confirm that step-out does not occur.

\section*{Pr. 35 S-curve ratio}

Set the S-curve ratio (1 to 100\%) for carrying out the S-curve acceleration/deceleration process.
The S-curve ratio indicates where to draw the acceleration/deceleration curve using the sine curve as shown below.


\section*{Pr. 36 Sudden stop deceleration time}

Set the time to reach speed 0 from " Pr. 8 Speed limit value" (or " Pr. 31 JOG speed limit value" during JOG operation) during the sudden stop.
The illustration below shows the relationships with other parameters.


\section*{Pr. 37 Stop group 1 sudden stop selection to Pr. 39 Stop group 3 sudden stop selection}

Set the method to stop when the stop causes in the following stop groups occur.
- Stop group 1 \(\qquad\) Stop with hardware stroke limit
- Stop group 2 \(\qquad\) CPU module error occurrence, PLC READY signal [YO] OFF, Fault in test mode
- Stop group 3 \(\qquad\) External stop signal Stop signal from CPU module Stop signal from peripheral device Error occurrence (excludes errors in stop groups 1 and 2: includes only the software stroke limit errors during JOG operation, speed control, speed-position switching control, and position-speed switching control)
The methods of stopping include " 0 : Normal deceleration stop" and "1: Sudden stop".
If "1: Sudden stop" is selected, the axis will suddenly decelerate to a stop when the stop cause occurs.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|r|}{Setting value, setting range} & \multirow[t]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \begin{tabular}{l}
\(\square\) \\
Positioning complete signal output time
\end{tabular} & 0 to 65535 (ms) & ```
0 to 65535 (ms)
    0 to 32767 :
        Set as a decimal
        32768 to 65535:
        Convert into hexadecimal
        and set
``` & 300 & 59 & 209 & 359 & 509 \\
\hline \begin{tabular}{l}
Pr. 41 \\
Allowable circular interpolation error width
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs depending on the " Pr. 1 Unit setting". \\
Here, the value within the [Table 1] range is set. \\
[Table 1] on next page
\end{tabular}} & 100 & \[
\begin{aligned}
& 60 \\
& 61
\end{aligned}
\] & \[
\begin{aligned}
& 210 \\
& 211
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& 510 \\
& 511
\end{aligned}
\] \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Pr. 42 \\
External command function selection
\end{tabular}} & 0: External positioning start & 0 & \multirow{4}{*}{0} & \multirow{4}{*}{62} & \multirow{4}{*}{212} & \multirow{4}{*}{362} & \multirow{4}{*}{512} \\
\hline & 1: External speed change request & 1 & & & & & \\
\hline & 2: Speed-position, positionspeed switching request & 2 & & & & & \\
\hline & 3: Skip request & 3 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 40 Positioning complete signal output time}

Set the output time of the positioning complete signal [X14, X15, X16, X17] output from the QD75.
A positioning completes when the specified dwell time has passed after the QD75 had terminated the output.
For the interpolation control, the positioning completed signal of interpolation axis is output only during the time set to the reference axis.


Positioning complete signal output time
[Table 1]
\begin{tabular}{|c|l|c|}
\hline Pr. 1 setting value & \begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular} & \begin{tabular}{c} 
Value set with sequence program \\
(unit)
\end{tabular} \\
\hline \(0: \mathrm{mm}\) & 0 to \(10000.0(\mu \mathrm{~m})\) & 0 to \(100000\left(\times 10^{-1} \mu \mathrm{~m}\right)\) \\
\hline \(1:\) inch & 0 to 1.00000 (inch) & 0 to \(100000\left(\times 10^{-5}\right.\) inch) \\
\hline \(2:\) degree & 0 to 1.00000 (degree) & 0 to \(100000\left(\times 10^{-5}\right.\) degree) \\
\hline \(3:\) pulse & 0 to 100000 (pulse) & 0 to 100000 (pulse) \\
\hline
\end{tabular}

\section*{Pr. 41 Allowable circular interpolation error width}

With the "allowable circular interpolation error width", the allowable error range of the calculated arc path and end point address is set. \(* 1\)
If the error of the calculated arc path and end point address is within the set range, circular interpolation will be carried out to the set end point address while compensating the error with spiral interpolation.
The allowable circular interpolation error width is set in the following axis buffer memory addresses.
- If axis 1 is the reference axis, set in the axis 1 buffer memory address [60, 61].
- If axis 2 is the reference axis, set in the axis 2 buffer memory address [210, 211].
- If axis 3 is the reference axis, set in the axis 3 buffer memory address [360, 361].
- If axis 4 is the reference axis, set in the axis 4 buffer memory address [510, 511].

*1: With circular interpolation control using the center point designation, the arc path calculated with the start point address and center point address and the end point address may deviate.

\footnotetext{
Pr. 42 External command function selection
Select a command with which the external command signal should be associated.
0 : External positioning start
The external command signal input is used to start a positioning operation.
1: External speed change request
The external command signal input is used to change the speed in the current positioning operation. The new speed should be set in the " Cd. 14 New speed value"
2: Speed-position, position-speed switching request
The external command signal input is used to switch from the speed control to the position control while in the speed-position switching control mode, or from the position control to the speed control while in the position-speed switching control mode.
To enable the speed-position switching control, set the
" Cd. 24 Speed-position switching enable flag" to "1".
To enable the position-speed switching control, set the
" Cd. 26 Position-speed switching enable flag" to "1".
3: Skip request
The external command signal input is used skip the current positioning operation.
}

\section*{POINT}

To enable the external command signal, set the " Cd. 8 External command enable" to "1".

\subsection*{5.2.5 OPR basic parameters}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline & 0 : Near-point dog method & 0 & \multirow{6}{*}{0} & \multirow{6}{*}{70} & \multirow{6}{*}{220} & \multirow{6}{*}{370} & \multirow{6}{*}{520} \\
\hline & 1 : Stopper method 1) & 1 & & & & & \\
\hline Pr. 43 & 2 : Stopper method 2) & 2 & & & & & \\
\hline \multirow[t]{3}{*}{OPR method} & 3 : Stopper method 3) & 3 & & & & & \\
\hline & 4 : Count method 1) & 4 & & & & & \\
\hline & 5 : Count method 2) & 5 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 43 OPR method}

Set the "OPR method" for carrying out machine OPR.
0 : Near-point dog method ........ After decelerating at the near-point dog ON, stop at the zero signal and complete the machine OPR.
1 : Stopper method 1)............... After decelerating at the near-point dog ON, stop with the stopper, and complete the machine OPR after the dwell time has passed.
2 : Stopper method 2) ............... After decelerating at the near-point dog ON, stop with the stopper, and complete the machine OPR with the zero signal.
3 : Stopper method 3)............... After starting with the creep speed, stop with the stopper, and complete the machine OPR with the zero signal.
4 : Count method 1) .................. After decelerating at the near-point dog ON, move the designated distance, and complete the machine OPR with the zero signal.
5 : Count method 2) .................. After decelerating at the near-point dog ON, move the designated distance, and complete the machine OPR.
Note) Refer to Section 8.2.2 "Machine OPR method" for details on the OPR methods.

OPR method

\section*{0 : Near-point dog method}
(1) Start machine OPR.
(Start movement at the " Pr. 46 OPR speed" in the " Pr. 44 OPR direction".)
(2) Detect the near-point dog ON, and start deceleration.
(3) Decelerate to " Pr. 47 Creep speed", and move with the creep speed.
(At this time, the near-point dog must be ON. If the nearpoint dog is OFF, the axis will decelerate to a stop.)
(4) At the first zero signal (one pulse output at one motor revolution) after the near-point dog OFF, the pulse output from the QD75 stops, and the machine OPR is completed.


1 : Stopper method 1)
(1) Start machine OPR.
(Start movement at the " Pr. 46 OPR speed" in the " Pr. 44 OPR direction".)
(2) Detect the near-point dog ON, and start deceleration.
(3) Decelerate to " Pr. 47 Creep speed", and move with the creep speed.
(At this time " Pr. 54 OPR torque limit value" is required. If the torque is not limited, the servomotor could be damaged in step (4).)
(4) The axis contacts against the stopper at " Pr. 47 Creep speed", and then stops.
(5) When the near-point dog turns ON and the " Pr. 49 OPR
 dwell time" is passed, the pulse output from the QD75 stops, and the machine OPR is completed.

\section*{2 : Stopper method 2)}
(1) Start machine OPR.
(Start movement at the " Pr. 46 OPR speed" in the
" Pr. 44 OPR direction".)
(2) Detect the near-point dog ON, and start deceleration.
(3) Decelerate to " Pr. 47 Creep speed", and move with the creep speed.
(At this time " Pr. 54 OPR torque limit value" is required. If the torque is not limited, the servomotor could be damaged in step (4).)
(4) The axis contacts against the stopper at " Pr. 47 Creep speed", and then stops.
(5) After stopping, the pulse output from the QD75 stops with the zero signal (signal that is output on detection of contact with the stopper. Input externally), and the machine OPR is completed.


3 : Stopper method 3)
(1) Start machine OPR.
(Start movement at the " Pr. 47 Creep speed" in the " Pr. 44 OPR direction". At this time " Pr. 54 OPR torque limit value" is required. If the torque is not limited, the servomotor could be damaged in step (2).)
(2) The axis contacts against the stopper at " Pr. 47 Creep speed", and then stops.
(3) After stopping, the pulse output from the QD75 stops with the zero signal (signal that is output on detection of contact with the stopper. Input externally), and the machine OPR is completed.


\section*{4 : Count method 1)}
(1) Start machine OPR.
(Start movement at the " Pr. 46 OPR speed" in the " Pr. 44 OPR direction".)
(2) Detect the near-point dog ON, and start deceleration.
(3) Decelerate to " Pr. 47 Creep speed", and move with the creep speed.
(4) After the near-point dog turns ON and the movement amount set in " Pr. 50 Setting for the movement amount after near-point dog ON" has passed, the pulse output from the QD75 stops with the first zero signal (one pulse output at one motor revolution), and the machine OPR is completed.


\section*{5 : Count method 2)}
(1) Start machine OPR.
(Start movement at the " Pr. 46 OPR speed" in the
" Pr. 44 OPR direction".)
(2) Detect the near-point dog ON, and start deceleration.
(3) Decelerate to " Pr. 47 Creep speed", and move with the creep speed.
(4) After the near-point dog turns ON and the movement amount set in " Pr. 50 Setting for the movement amount after near-point dog ON" has passed, the pulse output from
 the QD75 stops with the first zero signal, and the machine OPR is completed.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|l|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 44 & 0 : Positive direction (address increment direction) & 0 & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{71} & \multirow[t]{2}{*}{221} & \multirow[t]{2}{*}{371} & \multirow[t]{2}{*}{521} \\
\hline OPR direction & 1 : Negative direction (address decrement direction) & 1 & & & & & \\
\hline \begin{tabular}{l}
Pr. 45 \\
OP address
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs depending on the " Pr. 1 Unit setting". \\
Here, the value within the [Table 1] range is set.
\end{tabular}} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 72 \\
& 73
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 222 \\
& 223
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 372 \\
& 373
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 522 \\
& 523
\end{aligned}
\]} \\
\hline & [Table & next page & & & & & \\
\hline Pr. 46
OPR speed & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
The setting value range differs depending on the " Pr. 1 Unit setting". \\
Here, the value within the [Table 2] range is set.
\end{tabular}}} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 74 \\
& 75
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 224 \\
& 225
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 374 \\
& 375
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 524 \\
& 525
\end{aligned}
\]} \\
\hline OPR speed & & & & & & & \\
\hline
\end{tabular}

\section*{Pr. 44 OPR direction}

Set the direction to start movement when starting machine OPR.
0 : Positive direction (address increment direction)
Moves in the direction that the address increments. (Arrow 2))
1: Negative direction (address decrement direction)
Moves in the direction that the address decrements. (Arrow 1))
Normally, the OP is set near the lower limit or the upper limit, so " Pr. 44 OPR direction" is set as shown below.

[Table 1]
\begin{tabular}{|l|l|l|}
\hline Pr. 1 setting value & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular}} & \multicolumn{1}{|c|}{ Value set with sequence program(unit) } \\
\hline \(0: \mathrm{mm}\) & -214748364.8 to \(214748364.7(\mu \mathrm{~m})\) & -2147483648 to \(2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)\) \\
\hline \(1:\) inch & -21474.83648 to 21474.83647 (inch) & -2147483648 to \(2147483647\left(\times 10^{-5} \mathrm{inch}\right)\) \\
\hline \(2:\) degree & 0 to 359.99999 (degree) & 0 to \(35999999\left(\times 10^{-5}\right.\) degree) \\
\hline \(3:\) pulse & -2147483648 to 2147483647 (pulse) & -2147483648 to 2147483647 (pulse) \\
\hline
\end{tabular}
[Table 2]
\begin{tabular}{|c|l|l|}
\hline Pr. 1 setting value & \multicolumn{1}{|c|}{ Value set with peripheral device (unit) } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Value set with sequence program \\
(unit)
\end{tabular}} \\
\hline \(0: \mathrm{mm}\) & 0.01 to \(20000000.00(\mathrm{~mm} / \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-2 \mathrm{~mm} / \mathrm{min})}\right.\) \\
\hline \(1:\) inch & 0.001 to \(2000000.000(\mathrm{inch} / \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.\) \\
\hline \(2:\) degree & 0.001 to \(2000000.000(\) degree \(/ \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)\) \\
\hline \(3:\) pulse & 1 to \(1000000(\) pulse/s) \(* 1\) & \begin{tabular}{l}
{\([\) QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}]\)} \\
1 to 4000000 (pulse/s) \\
[QD75P \(\square / \mathrm{QD75D} \mathrm{\square]}\) \\
1 to 1000000 (pulse/s)
\end{tabular} \\
\hline
\end{tabular}
*1: In GX Configurator-QP, the QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) are recognized as the QD75P \(\square /\) QD75D \(\square\). Therefore, the setting ranges are the same as those of the QD75P \(\square /\) QD75D \(\square\). To set a value outside a setting range in GX Configurator-QP, set it through a sequence program or GX Works2.
The setting ranges in GX Works2 are the same as those in sequence programs. (Refer to
Appendix 1.2)

\section*{Pr. 45 OP address}

Set the address used as the reference point for positioning control (ABS system).
(When the machine OPR is completed, the stop position address is changed to the address set in " Pr. 45 OP address". At the same time, the " Pr. 45 OP address" is stored in " Md. 20 Current feed value" and " Md. 21 Machine feed value".)

\section*{Pr. 46 OPR speed}

Set the speed for OPR.
Note) Set the "OPR speed" to less than " Pr. 8 Speed limit value". If the "speed limit value" is exceeded, the error "Out of speed limit value range" (error code: 910) occurs and OPR is not performed.
The "OPR speed" should be equal to or faster than the "Pr. 7 Bias speed at start" and " Pr. 47 Creep speed".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 47 & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs depending on the "Pr. 1 Unit setting". \\
Here, the value within the [Table 1] range is set.
\end{tabular}} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 76 \\
& 77
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 226 \\
& 227
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 376 \\
& 377
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 526 \\
& 527
\end{aligned}
\]} \\
\hline & \multicolumn{2}{|r|}{[Table 1] on next page} & & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\text { Pr. } 48
\] \\
OPR retry
\end{tabular}} & 0 : Do not retry OPR with limit switch & 0 & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{78} & \multirow[t]{2}{*}{228} & \multirow[t]{2}{*}{378} & \multirow[t]{2}{*}{528} \\
\hline & 1 : Retry OPR with limit switch & 1 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 47 Creep speed}

Set the creep speed after near-point dog ON (the low speed just before stopping after decelerating from the OPR speed).
The creep speed is set within the following range.
\[
(\text { Pr. } 46 \text { OPR speed }) \geq(\text { Pr. } 47 \text { Creep speed }) \geq(\text { Pr. } 7 \text { Bias speed at start })
\]

Note) The creep speed is related to the detection error when using the OPR method with zero signal, and the size of the collision if a collision occurs during OPR method using the stopper method.

[Table 1]
\begin{tabular}{|c|l|l|}
\hline Pr. 1 setting value & \begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular} & \begin{tabular}{c} 
Value set with sequence program \\
(unit)
\end{tabular} \\
\hline \(0: \mathrm{mm}\) & 0.01 to \(20000000.00(\mathrm{~mm} / \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)\) \\
\hline \(1:\) inch & 0.001 to \(2000000.000(\mathrm{inch} / \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.\) \\
\hline \(2:\) degree & 0.001 to \(2000000.000(\) degree \(/ \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)\) \\
\hline \(3:\) pulse & 1 to 1000000 (pulse/s) \(* 1\) & \begin{tabular}{l}
{\([\mathrm{QD75P} \square \mathrm{~N} / \mathrm{QD75D} \square \mathrm{~N}]\)} \\
1 to \(4000000(\mathrm{pulse} / \mathrm{s})\) \\
[QD75P \(\square / \mathrm{QD75D} \square]\) \\
1 to \(1000000(\mathrm{pulse} / \mathrm{s})\)
\end{tabular} \\
\hline
\end{tabular}
*1: In GX Configurator-QP, the QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) are recognized as the QD75P \(\square /\) QD75D \(\square\).
Therefore, the setting ranges are the same as those of the QD75P \(\square / Q D 75 D \square\). To set a value outside a setting range in GX Configurator-QP, set it through a sequence program or GX Works2. The setting ranges in GX Works2 are the same as those in sequence programs. (Refer to Appendix 1.2)

\section*{Pr. 48 OPR retry}

Set whether to carry out OPR retry.
When the OPR retry function is validated and the machine OPR is started, first the axis will move in the OPR direction (1)). If the upper/lower limit signal turns OFF before the near-point dog signal ON is detected (2)), the axis will decelerate to a stop, and then will move in the direction opposite to the specified OPR direction (3)). If the falling edge of the near-point dog signal is detected during movement in the opposite direction, the axis will decelerate to a stop (4)), and will carry out machine OPR again (5)), (6)).

[Operation for OPR retry function]
1) Movement in the OPR direction starts with the machine OPR start.
2) The axis decelerates when the limit signal OFF is detected.
3) After stopping at detection of the limit switch signal OFF, the axis moves at the OPR speed in the direction opposite to the specified OPR direction.
4) The axis decelerates when the near-point dog signal turns OFF.
5) After stopping with the near-point dog signal OFF, start machine OPR in the OPR direction.
6) The machine begins decelerating when the near-point dog ON is detected and completes machine ORR.

\subsection*{5.2.6 OPR detailed parameters}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|l|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \[
\begin{aligned}
& \text { Pr. } 49 \\
& \text { OPR dwell time }
\end{aligned}
\] & 0 to 65535 (ms) & 0 to 65535 (ms)
0 to 32767 :
Set as a decimal
32768 to 65535 :
Convert into hexadecimal
and set & 0 & 79 & 229 & 379 & 529 \\
\hline \begin{tabular}{l}
\(\square\) \\
Setting for the movement amount after near-point dog ON
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs depending on the " Pr. 1 Unit setting". \\
Here, the value within the [Table 1] range is set. \\
[Table 1] on next page
\end{tabular}} & 0 & \[
\begin{aligned}
& 80 \\
& 81
\end{aligned}
\] & \[
\begin{aligned}
& 230 \\
& 231
\end{aligned}
\] & \[
\begin{aligned}
& 380 \\
& 381
\end{aligned}
\] & \[
\begin{aligned}
& 530 \\
& 531
\end{aligned}
\] \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Pr. 51 \\
OPR acceleration time selection
\end{tabular}} & \(0:\) Pr. 9 Acceleration time 0 & 0 & \multirow{4}{*}{0} & \multirow{4}{*}{82} & \multirow{4}{*}{232} & \multirow{4}{*}{382} & \multirow{4}{*}{532} \\
\hline & 1: Pr. 25 Acceleration time 1 & 1 & & & & & \\
\hline & 2 : Pr. 26 Acceleration time 2 & 2 & & & & & \\
\hline & 3 : Pr. 27 Acceleration time 3 & 3 & & & & & \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Pr. 52 \\
OPR deceleration time selection
\end{tabular}} & 0: Pr. 10 Deceleration time 0 & 0 & \multirow{4}{*}{0} & \multirow{4}{*}{83} & \multirow{4}{*}{233} & \multirow{4}{*}{383} & \multirow{4}{*}{533} \\
\hline & 1: Pr. 28 Deceleration time 1 & 1 & & & & & \\
\hline & 2: Pr. 29 Deceleration time 2 & 2 & & & & & \\
\hline & 3 : Pr. 30 Deceleration time 3 & 3 & & & & & \\
\hline
\end{tabular}

\section*{Pr. 49 OPR dwell time}

When stopper method 1) is set for " Pr. 43 OPR method", set the time for the machine OPR to complete after the near-point dog signal turns ON.
The setting value must be longer than the movement time from the near-point dog signal ON to stopping with the stopper.
(If the OPR method is not "stopper method 1)", the " Pr. 49 OPR dwell time"
value is irrelevant.)

\section*{Pr. 50 Setting for the movement amount after near-point dog ON}

When using the count method 1) or 2), set the movement amount to the OP after the near-point dog signal turns ON.
(The movement amount after near-point dog ON should be equal to or greater than the sum of the "distance covered by the deceleration from the OPR speed to the creep speed" and "distance of movement in 10 ms at the OPR speed".)
[Table 1]
\begin{tabular}{|c|l|l|}
\hline Pr. 1 setting value & \begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular} & \begin{tabular}{c} 
Value set with sequence program \\
(unit)
\end{tabular} \\
\hline \(0: \mathrm{mm}\) & 0 to \(214748364.7(\mu \mathrm{~m})\) & 0 to \(2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)\) \\
\hline \(1:\) inch & 0 to 21474.83647 (inch) & 0 to \(2147483647\left(\times 10^{-5} \mathrm{inch}\right)\) \\
\hline \(2:\) degree & 0 to 21474.83647 (degree) & 0 to \(2147483647\left(\times 10^{-5}\right.\) degree) \\
\hline \(3:\) pulse & 0 to 2147483647 (pulse) & 0 to 2147483647 (pulse) \\
\hline
\end{tabular}


\section*{Pr. 51 OPR acceleration time selection}

Set which of "acceleration time 0 to 3 " to use for the acceleration time during OPR.
0 : Use the value set in " Pr. 9 Acceleration time 0".
1 : Use the value set in " Pr. 25 Acceleration time 1".
2 : Use the value set in " Pr. 26 Acceleration time 2".
3 : Use the value set in " Pr. 27 Acceleration time 3".

\section*{Pr. 52 OPR deceleration time selection}

Set which of "deceleration time 0 to 3 " to use for the deceleration time during OPR.
0 : Use the value set in " Pr. 10 Deceleration time 0".
1: Use the value set in " Pr. 28 Deceleration time 1".
2 : Use the value set in " Pr. 29 Deceleration time 2".
3 : Use the value set in " Pr. 30 Deceleration time 3".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Item} & \multicolumn{2}{|r|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 53 & \multicolumn{2}{|l|}{The setting value range differs depending on the " Pr. 1 Unit setting". Here, the value within the [Table 1] range is set.} & \multirow{2}{*}{0} & \multirow{2}{*}{\[
\begin{aligned}
& 84 \\
& 85
\end{aligned}
\]} & \multirow{2}{*}{\[
\begin{aligned}
& 234 \\
& 235
\end{aligned}
\]} & \multirow{2}{*}{\[
\begin{aligned}
& 384 \\
& 385
\end{aligned}
\]} & \multirow{2}{*}{\[
\begin{aligned}
& 534 \\
& 535
\end{aligned}
\]} \\
\hline &  & [Table 1] on next page & & & & & \\
\hline \begin{tabular}{l}
\[
\text { Pr. } 54
\] \\
OPR torque limit value
\end{tabular} & 1 to 300 (\%) & 1 to 300 (\%) & 300 & 86 & 236 & 386 & 536 \\
\hline \begin{tabular}{l}
\(\square\) \\
Pr. 55 \\
Deviation counter clear signal output time
\end{tabular} & 1 to 65535 (ms) & \[
\begin{array}{|l}
1 \text { to } 65535(\mathrm{~ms}) \\
\left(\begin{array}{l}
1 \text { to } 32767 \text { : } \\
\quad \text { Set the decimal value as it is. } \\
32768 \text { to } 65535: \\
\text { Convert into hexadecimal and set. }
\end{array}\right)
\end{array}
\] & 11 & 87 & 237 & 387 & 537 \\
\hline Pr. 56 & 0 : OPR speed & 0 & \multirow{2}{*}{0} & \multirow{2}{*}{88} & \multirow{2}{*}{238} & \multirow{2}{*}{388} & \multirow{2}{*}{538} \\
\hline during OP shift & 1 : Creep speed & 1 & & & & & \\
\hline \begin{tabular}{l}
\(\square\) \\
Dwell time during OPR retry
\end{tabular} & 0 to 65535 (ms) & 0 to 65535 (ms)
0 to 32767 :
Set as a decimal
32768 to 65535 :
Convert into hexadecimal and set & 0 & 89 & 239 & 389 & 539 \\
\hline
\end{tabular}

\section*{Pr. 53 OP shift amount}

Set the amount to shift (move) from the position stopped at with machine OPR.
* The OP shift function is used to compensate the OP position stopped at with machine OPR.
If there is a physical limit to the OP position, due to the relation of the near-point dog installation position, use this function to compensate the OP to an optimum position.

[Table 1]
\begin{tabular}{|c|c|c|}
\hline Pr. 1 setting value & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c} 
Value set with sequence program \\
(unit)
\end{tabular}} \\
\hline \(0: \mathrm{mm}\) & -214748364.8 to \(214748364.7(\mu \mathrm{~m})\) & -2147483648 to \(2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)\) \\
\hline \(1:\) inch & -21474.83648 to 21474.83647 (inch) & -2147483648 to \(2147483647\left(\times 10^{-5}\right.\) inch) \\
\hline \(2:\) degree & -21474.83648 to 21474.83647 (degree) & -2147483648 to \(2147483647\left(\times 10^{-5}\right.\) degree) \\
\hline \(3:\) pulse & -2147483648 to 2147483647 (pulse) & -2147483648 to 2147483647 (pulse) \\
\hline
\end{tabular}

\section*{Pr. 54 OPR torque limit value}

Set the value to limit the servomotor torque after reaching the creep speed during machine OPR.
Refer to Section 12.4.2 "Torque limit function" for details on the torque limits.

\section*{Pr. 55 Deviation counter clear signal output time}

Set the duration of the deviation counter clear signal output during a machine OPR operation using any of the following methods: the near-point dog method, stopper methods 1) to 3), and count method 1). (For details, refer to your drive unit manual.)

\section*{Pr. 56 Speed designation during OP shift}

Set the operation speed for when a value other than "0" is set for " Pr. 53 OP shift amount". Select the setting from " Pr. 46 OPR speed" or " Pr. 47 Creep speed".
0 : Designate " Pr. 46 OPR speed" as the setting value.
1 : Designate " Pr. 47 Creep speed" as the setting value.

\section*{Pr. 57 Dwell time during OPR retry}

When OPR retry is validated (when "1" is set for Pr.48), set the stop time after decelerating in 2 ) and 4 ) in the following drawing.


\subsection*{5.3 List of positioning data}

Before explaining the positioning data setting items Da. 1 to Da.10, the configuration of the positioning data will be shown below.
The positioning data stored in the QD75 buffer memory has the following type of configuration.



The descriptions that follow relate to the positioning data set items Da. 1 to Da. 10 (The buffer memory addresses shown are those of the "positioning data No. 1" for the axes 1 to 4.)


\section*{Da. 1 Operation pattern}

The operation pattern designates whether positioning of a certain data No. is to be ended with just that data, or whether the positioning for the next data No. is to be carried out in succession.
[Operation pattern]

1) Positioning complete \(\qquad\) Set to execute positioning to the designated address, and then complete positioning.
2) Continuous positioning control Positioning is carried out successively in order of data Nos. with one start signal. The operation halts at each position indicated by a positioning data.
3) Continuous path control............... Positioning is carried out successively in order of data Nos. with one start signal. The operation does not stop at each positioning data.

\section*{Da. 2 Control system}

Set the "control system" for carrying out positioning control.
Note) - When "JUMP instruction" is set for the control system, the " Da. 9 Dwell time" and " Da. 10 M code" setting details will differ.
- In case you selected "LOOP" as the control system, the " Da. 10 M code" should be set differently from other cases.
- Refer to CHAPTER 9 "MAJOR POSITIONING CONTROL" for details on the control systems.
- If "degree" is set for " Pr. 1 Unit setting", circular interpolation control cannot be carried out. (The error "Circular interpolation not possible" (error code: 535) will occur when executed.)

\section*{Da. 3 Acceleration time No.}

Set which of "acceleration time 0 to 3 " to use for the acceleration time during positioning.
0 : Use the value set in " Pr. 9 Acceleration time 0".
1 : Use the value set in " Pr. 25 Acceleration time 1".
2 : Use the value set in " Pr. 26 Acceleration time 2".
3 : Use the value set in " Pr. 27 Acceleration time 3".

\section*{Da. 4 Deceleration time No.}

Set which of "deceleration time 0 to 3 " to use for the deceleration time during positioning.
0 : Use the value set in " Pr. 10 Deceleration time 0".
1 : Use the value set in " Pr. 28 Deceleration time 1".
2 : Use the value set in " Pr. 29 Deceleration time 2".
3 : Use the value set in " Pr. 30 Deceleration time 3".

\section*{Da. 5 Axis to be interpolated}

Set the target axis (partner axis) for operations under the 2-axis interpolation control.
0 : Selects the axis 1 as the target axis (partner axis).
1 : Selects the axis 2 as the target axis (partner axis).
2 : Selects the axis 3 as the target axis (partner axis).
3 : Selects the axis 4 as the target axis (partner axis).
Note) - Do not specify the own axis number or any number except the above. (If you do, the error "Illegal interpolation description command" (error code: 521) will occur during the program execution.)
- This item does not need to be set in case 3 or 4 -axis interpolation is selected.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \begin{tabular}{l}
Da. 6 \\
Positioning address/
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs according to the " Da. 2 Control system". \\
Here, the value within the following range of [Table 1] range is set.
\end{tabular}} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2006 \\
& 2007
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8006 \\
& 8007
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 14006 \\
& 14007
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\left.\begin{array}{|l|}
20006 \\
20007
\end{array} \right\rvert\,
\]} \\
\hline m & \multicolumn{2}{|l|}{[Table 1] on next page} & & & & & \\
\hline
\end{tabular}

\section*{Da. 6 Positioning address/movement amount}

Set the address to be used as the target value for positioning control. The setting value range differs according to the " Da. 2 Control system".
((1) to (4))
(1) Absolute (ABS) system, current value changing
- The setting value (positioning address) for the ABS system and current value changing is set with an absolute address (address from OP).

(2) Incremental (INC) system, fixed-feed 1, fixed-feed 2, fixed-feed 3, fixed-feed 4
- The setting value (movement amount) for the INC system is set as a movement amount with sign.
When movement amount is positive: Moves in the positive direction (address increment direction)
When movement amount is negative: Moves in the negative direction (address decrement direction)


\section*{[Table 1]}
- When " Pr. 1 Unit Setting" is "mm"

The table below lists the control systems that require the setting of the positioning address or movement amount and the associated setting ranges.
(With any control system excluded from the table below, neither the positioning address nor the movement amount needs to be set.)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Da. 2 setting value} & Value set with peripheral device ( \(\mu \mathrm{m}\) ) & Value set with sequence program \(* 1\)
\[
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\] \\
\hline \begin{tabular}{l}
ABS Linear 1 \\
ABS Linear 2 \\
ABS Linear 3 \\
ABS Linear 4 \\
Current value changing
\end{tabular} & \[
\begin{aligned}
& : 01 \mathrm{H} \\
& : 0 \mathrm{AH}^{2} \\
& : 15 \mathrm{H} \\
& : 1 \mathrm{H} \\
& : 81 \mathrm{H}
\end{aligned}
\] & \(\checkmark\) Set the address
-214748364.8 to 214748364.7 & \(\checkmark\) Set the address
\(\quad-2147483648\) to 2147483647 \\
\hline INC Linear 1 INC Linear 2 INC Linear 3 INC Linear 4 Fixed-feed 1 Fixed-feed 2 Fixed-feed 3 Fixed-feed 4 & \(:\) 02 \(^{2}\)
\(: 0 \mathrm{BH}_{\mathrm{H}}\)
\(: 16 \mathrm{H}\)
\(: 1 \mathrm{BH}\)
\(: 03 \mathrm{H}\)
\(: 0 \mathrm{CH}\)
\(: 17 \mathrm{H}\)
\(: 1 \mathrm{CH}\) & \(\checkmark\) Set the movement amount
-214748364.8 to 214748364.7 & \(\diamond\) Set the movement amount -2147483648 to 2147483647 \\
\hline Forward run speed/position Reverse run speed/position Forward run position/spe Reverse run position/spe & \[
\begin{aligned}
& 106 \mathrm{H} \\
& : 07 \mathrm{H} \\
& : 08 \mathrm{H} \\
& : 09 \mathrm{H} \\
& \hline
\end{aligned}
\] & \(\Delta\) Set the movement amount
0 to 214748364.7 & \(\checkmark\) Set the movement amount 0 to 2147483647 \\
\hline ABS circular sub ABS circular right ABS circular left & \[
\begin{aligned}
& : 0 \mathrm{DH}_{\mathrm{H}} \\
& : 0 \mathrm{FH} \\
& : 10 \mathrm{H} \\
& \hline
\end{aligned}
\] & \(\checkmark\) Set the address
-214748364.8 to 214748364.7 & \(\checkmark \begin{aligned} & \text { Set the address } \\ & -2147483648 \text { to } 2147483647\end{aligned}\) \\
\hline INC circular sub INC circular right INC circular left & \[
\begin{aligned}
& \hline: 0 \mathrm{E}_{\mathrm{H}} \\
& : 11 \mathrm{H} \\
& : 12 \mathrm{H}
\end{aligned}
\] & \(\checkmark\) Set the movement amount -214748364.8 to 214748364.7 & \(\diamond\) Set the movement amount -2147483648 to 2147483647 \\
\hline
\end{tabular}
*1: Set an integer because the sequence program cannot handle fractions.
(The value will be converted properly within the system.)

\section*{(3) Speed-position switching control}
- INC mode:

Set the amount of movement after the switching from speed control to position control.
- ABS mode:

Set the absolute address which will be the target value after speed control is switched to position control. (The unit is "degree" only)

(4) Position-speed switching control
- Set the amount of movement before the switching from position control to speed control.

When " Pr. 1 Unit Setting" is "degree"
The table below lists the control systems that require the setting of the positioning address or movement amount and the associated setting ranges.
(With any control system excluded from the table below, neither the positioning address nor the movement amount needs to be set.)
\begin{tabular}{|c|c|c|}
\hline Da. 2 setting value & Value set with peripheral device (degree) & Value set with sequence program \(* 1\) ( \(\times 10^{-5}\) degree) \\
\hline \begin{tabular}{|ll|}
\hline ABS Linear 1 & \(: 01 \mathrm{H}\) \\
ABS Linear 2 & \(: 0\) Ан \\
ABS Linear 3 & \(: 15 \mathrm{H}\) \\
ABS Linear 4 & \(: 1\) Ан \\
Current value changing & \(: 81 \mathrm{H}\) \\
\hline
\end{tabular} & \(\Delta\) Set the address
0 to 359.99999 & Set the address
0 to 35999999 \\
\hline \begin{tabular}{|ll|}
\hline INC Linear 1 & \(: 02 \mathrm{H}\) \\
INC Linear 2 & \(: 0 \mathrm{BH}\) \\
INC Linear 3 & \(: 16 \mathrm{H}\) \\
INC Linear 4 & \(: 1 \mathrm{BH}\) \\
Fixed-feed 1 & \(: 03 \mathrm{H}\) \\
Fixed-feed 2 & \(: 0 \mathrm{CH}_{\mathrm{H}}\) \\
Fixed-feed 3 & \(: 17 \mathrm{H}\) \\
Fixed-feed 4 & \(: 1 \mathrm{CH}_{\mathrm{H}}\) \\
\hline
\end{tabular} & \(\checkmark\) Set the movement amount
-21474.83648 to 21474.83647 & \(\diamond\) Set the movement amount -2147483648 to 2147483647 \\
\hline Forward run speed/position: 06H Reverse run speed/position: 07H & \begin{tabular}{l}
In INC mode \\
\(\checkmark\) Set the movement amount 0 to 21474.83647 \\
In ABS mode \\
\(\checkmark\) Set the address 0 to 359.99999
\end{tabular} & \begin{tabular}{l}
In INC mode \\
\(\diamond\) Set the movement amount 0 to 2147483647 \\
In ABS mode \\
\(\checkmark\) Set the address 0 to 35999999
\end{tabular} \\
\hline Forward run position/speed: 08H Reverse run position/speed: 09н & \(\diamond\) Set the movement amount
0 to 21474.83647 & \(\diamond\) Set the movement amount
0 to 2147483647 \\
\hline
\end{tabular}
*1: Set an integer because the sequence program cannot handle fractions.
(The value will be converted properly within the system.)

When " Pr. 1 Unit Setting" is "pulse"
The table below lists the control systems that require the setting of the positioning address or movement amount and the associated setting ranges.
(With any control system excluded from the table below, neither the positioning address nor the movement amount needs to be set.)
\begin{tabular}{|c|c|c|}
\hline Da. 2 setting value & Value set with peripheral device (pulse) & Value set with sequence program \(* 1\) (pulse) \\
\hline \begin{tabular}{|ll|}
\hline ABS Linear 1 & \(: 01 \mathrm{H}\) \\
ABS Linear 2 & \(: 0 \mathrm{AH}\) \\
ABS Linear 3 & \(: 15 \mathrm{H}\) \\
ABS Linear 4 & \(: 1 \mathrm{AH}\) \\
Current value changing & \(: 81 \mathrm{H}\) \\
\hline
\end{tabular} & \(\diamond\) Set the address
-2147483648 to 2147483647 & \(\diamond\) Set the address
\[
-2147483648 \text { to } 2147483647
\] \\
\hline \begin{tabular}{|ll|}
\hline INC Linear 1 & \(: 02 \mathrm{H}\) \\
INC Linear 2 & \(: 0 \mathrm{BH}\) \\
INC Linear 3 & \(: 16 \mathrm{H}\) \\
INC Linear 4 & \(: 1 \mathrm{BH}\) \\
Fixed-feed 1 & \(: 03 \mathrm{H}\) \\
Fixed-feed 2 & \(: 0 \mathrm{CH}\) \\
Fixed-feed 3 & \(: 17 \mathrm{H}\) \\
Fixed-feed 4 & \(: 1 \mathrm{CH}\) \\
\hline
\end{tabular} & \(\diamond\) Set the movement amount
-2147483648 to 2147483647 & \(\diamond\) Set the movement amount -2147483648 to 2147483647 \\
\hline Forward run speed/position: 06H Reverse run speed/position: 07н Forward run position/speed: 08H Reverse run position/speed: 09н & \(\diamond\) Set the movement amount 0 to 2147483647 & \(\diamond\) Set the movement amount 0 to 2147483647 \\
\hline \begin{tabular}{|ll|}
\hline ABS circular sub & \(:\) 0Dн \\
ABS circular right & \(: 0 \mathrm{~F}_{\mathrm{H}}\) \\
ABS circular left & \(: 10 \mathrm{H}\) \\
\hline
\end{tabular} & \(\checkmark\) Set the address
\[
-2147483648 \text { to } 2147483647
\] & \(\diamond\) Set the address -2147483648 to 2147483647 \\
\hline \begin{tabular}{|lc|}
\hline INC circular sub & \(: 0\) Ен \\
INC circular right & \(: 11 \mathrm{H}\) \\
INC circular left & \(: 12 \mathrm{H}\) \\
\hline
\end{tabular} & \(\diamond\) Set the movement amount -2147483648 to 2147483647 & \(\bigcirc\) Set the movement amount -2147483648 to 2147483647 \\
\hline
\end{tabular}

When " Pr. 1 Unit Setting" is "inch"
The table below lists the control systems that require the setting of the positioning address or movement amount and the associated setting ranges.
(With any control system excluded from the table below, neither the positioning address nor the movement amount needs to be set.)
\begin{tabular}{|c|c|c|}
\hline Da. 2 setting value & Value set with peripheral device (inch) & Value set with sequence program *1 ( \(\times 10^{-5}\) inch) \\
\hline \begin{tabular}{|ll|}
\hline ABS Linear 1 & \(: 01 \mathrm{H}\) \\
ABS Linear 2 & \(: 0\) Ан \\
ABS Linear 3 & \(: 15 \mathrm{H}\) \\
ABS Linear 4 & \(: 1\) Ан \\
Current value changing & \(: 81 \mathrm{H}\) \\
\hline
\end{tabular} & \(\checkmark\) Set the address
-21474.83648 to 21474.83647 & \(\bigcirc\) Set the address
\[
-2147483648 \text { to } 2147483647
\] \\
\hline \begin{tabular}{|lc|}
\hline INC Linear 1 & \(: 02 \mathrm{H}\) \\
INC Linear 2 & \(: 0 \mathrm{BH}\) \\
INC Linear 3 & \(: 16 \mathrm{H}\) \\
INC Linear 4 & \(: 1 \mathrm{BH}\) \\
Fixed-feed 1 & \(: 03 \mathrm{H}\) \\
Fixed-feed 2 & \(: 0 \mathrm{CH}_{\mathrm{H}}\) \\
Fixed-feed 3 & \(: 17 \mathrm{H}\) \\
Fixed-feed 4 & \(: 1 \mathrm{C}_{\mathrm{H}}\) \\
\hline
\end{tabular} & \(\checkmark\) Set the movement amount
-21474.83648 to 21474.83647 & \(\diamond\) Set the movement amount -2147483648 to 2147483647 \\
\hline Forward run speed/position: 06H Reverse run speed/position: 07H Forward run position/speed: 08н Reverse run position/speed: 09H & \(\diamond\) Set the movement amount
0 to 21474.83647 & \(\diamond\) Set the movement amount 0 to 2147483647 \\
\hline \begin{tabular}{|ll|}
\hline ABS circular sub & \(: 0 \mathrm{DH}_{\mathrm{H}}\) \\
ABS circular right & \(: 0 \mathrm{FH}_{\mathrm{H}}\) \\
ABS circular left & \(: 10 \mathrm{H}\) \\
\hline
\end{tabular} & \(\checkmark\) Set the address
-21474.83648 to 21474.83647 & \(\bigcirc\) Set the address
\[
-2147483648 \text { to } 2147483647
\] \\
\hline \begin{tabular}{|ll|}
\hline INC circular sub & \(: 0 \mathrm{EH}\) \\
INC circular right & \(: 11 \mathrm{H}\) \\
INC circular left & \(: 12 \mathrm{H}\) \\
\hline
\end{tabular} & \(\checkmark\) Set the movement amount
-21474.83648 to 21474.83647 & \(\diamond\) Set the movement amount -2147483648 to 2147483647 \\
\hline
\end{tabular}
*1: Set an integer because the sequence program cannot handle fractions.
(The value will be converted properly within the system.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{2}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & Value set with peripheral device & Value set with sequence program & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Da. 7 & \multicolumn{2}{|l|}{\begin{tabular}{l}
The setting value range differs according to the " \(\square\) Control system". \\
Here, the value within the [Table 1] range is set.
\end{tabular}} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2008 \\
& 2009
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8008 \\
& 8009
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 14008 \\
& 14009
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\left|\begin{array}{l}
20008 \\
20009
\end{array}\right|
\]} \\
\hline & \multicolumn{2}{|l|}{[Table 1] on next page} & & & & & \\
\hline
\end{tabular}

\section*{Da. 7 Arc address}

The arc address is data required only when carrying out circular interpolation control.
(1) When carrying out circular interpolation with sub point designation, set the sub point (passing point) address as the arc address.
(2) When carrying out circular interpolation with center point designation, set the center point address of the arc as the arc address.

<(1) Circular interpolation with sub point designation>

<(2) Circular interpolation with center point designation>

When not carrying out circular interpolation control, the value set in " Da. 7 Arc address" will be invalid.

\section*{[Table 1]}

When " Pr. 1 Unit Setting" is "mm"
The table below lists the control systems that require the setting of the arc address and shows the setting range.
(With any control system excluded from the table below, the arc address does not need to be set.)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Da. 2 setting value} & Value set with peripheral device ( \(\mu \mathrm{m}\) ) & Value set with sequence program \(* 1\)
\[
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\] \\
\hline ABS circular sub ABS circular right ABS circular left & \[
\begin{aligned}
& : \text { 0DH } \\
& : 0 \mathrm{FH} \\
& : 10 \mathrm{H}
\end{aligned}
\] & Set the address
-214748364.8 to 214748364.7 & \(\bigcirc \begin{aligned} & \text { Set the address } \\ & -2147483648 \text { to } 2147483647\end{aligned}\) \\
\hline INC circular sub INC circular right INC circular left & \[
\begin{aligned}
& \hline: 0 \mathrm{EH} \\
& : 11 \mathrm{H} \\
& : 12 \mathrm{H}
\end{aligned}
\] & \(\checkmark\) Set the movement amount
-214748364.8 to 214748364.7 & \(\checkmark\) Set the movement amount -2147483648 to 2147483647 \\
\hline
\end{tabular}
*1: Set an integer because the sequence program cannot handle fractions.
(The value will be converted properly within the system.)
*2: Note that the maximum radius that circular interpolation control is possible is 536870912 , although the setting value can be input within the range shown in the above table, as an arc address.
\(\square\) When " Pr. 1 Unit Setting" is "degree"
No control system requires the setting of the arc address by "degree".
\(\square\) When " Pr. 1 Unit Setting" is "pulse"
The table below lists the control systems that require the setting of the arc address and shows the setting range.
(With any control system excluded from the table below, the arc address does not need to be set.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Da. 2 setting value} & & Value set with peripheral device (pulse) & Value set with sequence program \(* 1\) (pulse) \\
\hline ABS circular sub ABS circular right ABS circular left & \[
\begin{aligned}
& : \text { ODH } \\
& : 0 \mathrm{FH} \\
& : 10 \mathrm{H} \\
& \hline
\end{aligned}
\] & & Set the address
\[
-2147483648 \text { to } 2147483647
\] & \(\checkmark\) Set the address
\[
-2147483648 \text { to } 2147483647
\] \\
\hline INC circular sub INC circular right INC circular left & \[
\begin{aligned}
& \hline: \text { 0Ен } \\
& : 11 \mathrm{H} \\
& : 12 \mathrm{H}
\end{aligned}
\] & \(\bigcirc\) & Set the movement amount -2147483648 to 2147483647 & \(\diamond\) Set the movement amount -2147483648 to 2147483647 \\
\hline
\end{tabular}
*1: Set an integer because the sequence program cannot handle fractions.
(The value will be converted properly within the system.)
*2: Note that the maximum radius that circular interpolation control is possible is 536870912 , although the setting value can be input within the range shown in the above table, as an arc address.

When " Pr. 1 Unit Setting" is "inch"
The table below lists the control systems that require the setting of the arc address and shows the setting range.
(With any control system excluded from the table below, the arc address does not need to be set.)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Da. 2 setting value} & Value set with peripheral device (inch) & Value set with sequence program \(* 1\) ( \(\times 10^{-5}\) inch) \\
\hline ABS circular sub ABS circular right ABS circular left & \[
\begin{aligned}
& \hline: 0 \mathrm{DH}_{\mathrm{H}} \\
& : 0 \mathrm{FH} \\
& : 10 \mathrm{H}
\end{aligned}
\] & \(\checkmark\) Set the address
-21474.83648 to 21474.83647 & \(\bigcirc\) Set the address
\[
-2147483648 \text { to } 2147483647
\] \\
\hline INC circular sub INC circular right INC circular left & \[
\begin{aligned}
& \hline: \text { OEH } \\
& : 11 \mathrm{H} \\
& : 12 \mathrm{H}
\end{aligned}
\] & \(\diamond\) Set the movement amount -21474.83648 to 21474.83647 & \(\diamond\) Set the movement amount -2147483648 to 2147483647 \\
\hline
\end{tabular}
*1: Set an integer because the sequence program cannot handle fractions.
(The value will be converted properly within the system.)
*2: Note that the maximum radius that circular interpolation control is possible is 536870912 , although the setting value can be input within the range shown in the above table, as an arc address.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Item}} & \multicolumn{3}{|c|}{Setting value, setting range} & \multirow[b]{2}{*}{Default value} & \multicolumn{4}{|l|}{Setting value buffer memory address} \\
\hline & & Value set with peripheral device & Value set with sequ program & uence & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{\begin{tabular}{l}
\[
\begin{array}{|l|}
\hline \text { Da. } 8 \\
\hline
\end{array}
\] \\
Command speed
\end{tabular}}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
The setting value range differs depending on the " Pr. 1 Unit setting". \\
Here, the value within the [Table 1] range is set.
\end{tabular}} & \multirow{3}{*}{0} & \multirow{3}{*}{\[
\begin{aligned}
& 2004 \\
& 2005
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& 8004 \\
& 8005
\end{aligned}
\]} & \multirow{3}{*}{\[
\left|\begin{array}{l}
14004 \\
14005
\end{array}\right|
\]} & \multirow{3}{*}{\[
\left.\begin{array}{|l|}
20004 \\
20005
\end{array} \right\rvert\,
\]} \\
\hline & & \multicolumn{3}{|l|}{[Table 1] on next page} & & & & & \\
\hline & & -1: Current speed (Speed set for previous positioning data No.) & \[
-1
\] & & & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Da. 9 \\
Dwell time
\end{tabular}} & Dwell time & \multicolumn{3}{|l|}{\begin{tabular}{l}
The setting value range differs according to the " \(\square\) Da. 2 Control system". \\
Here, the value within the [Table 2] range is set.
\end{tabular}} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{2002} & \multirow[t]{2}{*}{8002} & \multirow[t]{2}{*}{14002} & \multirow[t]{2}{*}{20002} \\
\hline & JUMP destination positioning data No. &  & on next page & \(\square\) & & & & & \\
\hline \multirow{3}{*}{\[
\begin{array}{|l|}
\hline \text { Da. } 10 \\
\hline \text { M code }
\end{array}
\]} & M code & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
The setting value range differs according to the " Da. 2 Control system". \\
Here, the value within the [Table 3] range is set. \\
[Table 3] on next page
\end{tabular}}} & \multirow{3}{*}{0} & \multirow{3}{*}{2001} & \multirow{3}{*}{8001} & \multirow{3}{*}{14001} & \multirow{3}{*}{20001} \\
\hline & Condition data No. & & & & & & & & \\
\hline & No. of LOOP to LEND repetitions & & & & & & & & \\
\hline
\end{tabular}

\section*{Da. 8 Command speed}

Set the command speed for positioning.
(1) If the set command speed exceeds " Pr. 8 Speed limit value", positioning will be carried out at the speed limit value.
(2) If " -1 " is set for the command speed, the current speed (speed set for previous positioning data No.) will be used for positioning control. Use the current speed for uniform speed control, etc. If "-1" is set for continuing positioning data, and the speed is changed, the following speed will also change.
(Note that when starting positioning, if the " -1 " speed is set for the positioning data that carries out positioning control first, the error "No command speed" (error code: 503) will occur, and the positioning will not start. Refer to Section 15.3 "List of errors" for details on the errors.)

\section*{Da. 10 M code (or condition data No./No. of LOOP to LEND repetitions)}

Set an "M code", a "condition data No. ", or the "number of LOOP to LEND repetitions" depending on how the " Da. 2 Control system" is set.
- If a method other than "JUMP instruction" and "LOOP" is selected as the
" Da. 2 Control system"
Set an " M code".
If no "M code" needs to be output, set "0" (default value).
- If "JUMP instruction" is selected as the " Da. 2 Control system"
............... Set the "condition data No." for JUMP.
0 : Unconditional JUMP to the positioning data specified by Da. 9 .
1 to 10 : JUMP performed according to the condition data No. specified (a number between 1 and 10).
- If "LOOP" is selected as the " Da. 2 Control system"

Set the number of LOOP to LEND repetitions by a number other than "0".
The error "Control system LOOP setting error" (error code: 545) will occur if you specify " 0 ".
* The condition data specifies the condition for the JUMP instruction to be executed. (A JUMP will take place when the condition is satisfied.)
[Table 1]
\begin{tabular}{|c|l|l|}
\hline Pr. 1 setting value & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Value set with peripheral device \\
(unit)
\end{tabular}} & \begin{tabular}{c} 
Value set with sequence program \\
(unit)
\end{tabular} \\
\hline \(0: \mathrm{mm}\) & 0.01 to \(20000000.00(\mathrm{~mm} / \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)\) \\
\hline \(1:\) inch & 0.001 to \(2000000.000(\mathrm{inch} / \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.\) \\
\hline \(2:\) degree & 0.001 to \(2000000.000(\) degree \(/ \mathrm{min})\) & 1 to \(2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)\) \\
\hline \(3:\) pulse & 1 to \(1000000(\) pulse/s) *1 & \begin{tabular}{l} 
[QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}]\) \\
1 to 4000000 (pulse/s) \\
[QD75P \(\square / \mathrm{QD75D} \square]\) \\
1 to 1000000 (pulse/s)
\end{tabular} \\
\hline
\end{tabular}
* 1: In GX Configurator-QP, the QD75P \(\square\) N/QD75D \(\square \mathrm{N}\) are recognized as the QD75P \(\square\) /QD75D \(\square\). Therefore, the setting ranges are the same as those of the QD75P \(\square / Q D 75 D \square\). To set a value outside a setting range in GX Configurator-QP, set it through a sequence program or GX Works2. The setting ranges in GX Works2 are the same as those in sequence programs. (Refer to Appendix 1.2)
[Table 2]
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Da.2 setting value } & \multicolumn{1}{|c|}{ Setting item } & \begin{tabular}{c} 
Value set with peripheral \\
device
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Value set with sequence \\
program
\end{tabular}} \\
\hline JUMP instruction: 82H & Positioning data No. & 1 to 600 & 1 to 600 \\
\hline Other than JUMP instruction & Dwell time & 0 to \(65535(\mathrm{~ms})\) & 0 to \(65535(\mathrm{~ms})\) \\
\hline
\end{tabular}
[Table 3]
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Da.2 setting value } & \multicolumn{1}{|c|}{ Setting item } & \begin{tabular}{c} 
Value set with peripheral \\
device
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Value set with sequence \\
program
\end{tabular}} \\
\hline JUMP instruction: 82н & Condition data No. & 0 to 10 & 0 to 10 \\
\hline LOOP: 83 H & Repetition count & 1 to 65535 & 1 to 65535 \\
\hline Other than the above & M code & 0 to 65535 & 0 to 65535 \\
\hline
\end{tabular}

\section*{Da. 9 Dwell time (JUMP designation positioning data No.)}

Set the "dwell time" or "positioning data No." corresponding to the
" Da. 2 Control system".
- When a method other than "JUMP instruction " is set for " Da. 2 Control system"
..... Set the "dwell time".
- When "JUMP instruction " is set for " Da. 2 Control system"
..... Set the "positioning data No." for the JUMP destination.
When the "dwell time" is set, the setting details of the "dwell time" will be as follows according to " Da. 1 Operation pattern".


\subsection*{5.4 List of block start data}

The illustrations below show the organization of the block start data stored in the QD75 buffer memory. The block start data setting items Da. 11 to Da. 14 are explained in the pages that follow.



The pages that follow explain the block start data setting items (Da.11 to Da.14).
(The buffer memory addresses shown are those of the "1st point block start data (block No. 7000)" for the axes 1 to 4 .)

\section*{REMARK}

To perform an high-level positioning control using block start data, set a number between 7000 and 7004 to the " Cd. 3 Positioning start No." and use the
" Cd. 4 Positioning starting point No." to specify a point number between 1 and 50, a position counted from the beginning of the block.
The number between 7000 and 7004 specified here is called the "block No.".
With the QD75, up to 50 "block start data" points and up to 10 "condition data" items can be assigned to each "block No.".
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Block \\
No. *
\end{tabular} & Axis & Block start data & Condition & Buffer memory & \begin{tabular}{l}
GX \\
ConfiguratorQP
\end{tabular} \\
\hline \multirow{4}{*}{7000} & Axis 1 & \multirow{4}{*}{Start block 0} & Condition data (1 to 10) & \multirow{20}{*}{Supports the settings} & \multirow{20}{*}{Supports the settings} \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline \multirow{4}{*}{7001} & Axis 1 & \multirow{4}{*}{Start block 1} & Condition data (1 to 10) & & \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline \multirow{4}{*}{7002} & Axis 1 & \multirow{4}{*}{Start block 2} & Condition data (1 to 10) & & \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline \multirow{4}{*}{7003} & Axis 1 & \multirow{4}{*}{Start block 3} & Condition data (1 to 10) & & \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline \multirow{4}{*}{7004} & Axis 1 & \multirow{4}{*}{Start block 4} & Condition data (1 to 10) & & \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline
\end{tabular}
*: Setting cannot be made when the "Pre-reading start function" is used. If you set any of Nos. 7000 to 7004 and perform the Pre-reading start function, the error "Outside start No. range" (error code: 543) will occur.
(For details, refer to Section 12.7.7 "Pre-reading start function".)


\section*{Da. 11 Shape}

Set whether to carry out only the local "block start data" and then end control, or to execute the "block start data" set in the next point.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Setting value } & \multicolumn{1}{c|}{ Setting details } \\
\hline 0 : End & Execute the designated point's "block start data", and then complete the control. \\
\hline \(1:\) Continue & \begin{tabular}{l} 
Execute the designated point's "block start data", and after completing control, execute the next \\
point's "block start data".
\end{tabular} \\
\hline
\end{tabular}

\section*{Da. 12 Start data No.}

Set the "positioning data No." designated with the "block start data".

\section*{Da. 13 Special start instruction}

Set the "special start instruction " for using "high-level positioning control". (Set how to start the positioning data set in " Da. 12 Start data No.".)
\begin{tabular}{|c|l|}
\hline Setting value & \multicolumn{1}{c|}{ Setting details } \\
\hline \begin{tabular}{c} 
00H : Block start \\
(Normal start)
\end{tabular} & Execute the random block positioning data in the set order with one start. \\
\hline 01н : Condition start & \begin{tabular}{l} 
Carry out the condition judgment set in "condition data" for the designated positioning data, and \\
when the conditions are established, execute the "block start data". If not established, ignore \\
that "block start data", and then execute the next point's "block start data".
\end{tabular} \\
\hline 02н : Wait start & \begin{tabular}{l} 
Carry out the condition judgment set in "condition data" for the designated positioning data, and \\
when the conditions are established, execute the "block start data". If not established, stop the \\
control (wait) until the conditions are established.
\end{tabular} \\
\hline \begin{tabular}{c} 
03н : Simultaneous \\
start
\end{tabular} & \begin{tabular}{l} 
Simultaneous execute (output pulses at same timing) the positioning data with the No. \\
designated for the axis designated in the "condition data". \\
Up to four axes can start simultaneously.
\end{tabular} \\
\hline \begin{tabular}{c} 
04н : Repeated start \\
(FOR loop)
\end{tabular} & \begin{tabular}{l} 
Repeat the program from the block start data with the "FOR loop" to the block start data with \\
"NEXT" for the designated No. of times.
\end{tabular} \\
\hline 05H: Repeated start \\
(FOR condition) & \begin{tabular}{l} 
Repeat the program from the block start data with the "FOR condition" to the block start data \\
with "NEXT" until the conditions set in the "condition data" are established.
\end{tabular} \\
\hline 06H : NEXT start & \begin{tabular}{l} 
Set the end of the repetition when "05H: Repetition start (FOR loop)" or "06H: Repetition start \\
(FOR condition)" is set.
\end{tabular} \\
\hline
\end{tabular}

Refer to CHAPTER 10 "HIGH-LEVEL POSITIONING CONTROL" for details on the control.

\section*{Da. 14 Parameter}

Set the value as required for " Da. 13 Special start instruction ".
\begin{tabular}{|l|c|l|}
\hline Da.13 Special start instruction & Setting value & \multicolumn{1}{|c|}{ Setting details } \\
\hline Block start (Normal start) & - & Not used. (There is no need to set.) \\
\hline Condition start & 1 to 10 & \begin{tabular}{l} 
Set the condition data No. (No. of \\
"condition data" set to perform \\
condition judgment) \\
(For details of the condition data, refer \\
to Section 5.5.)
\end{tabular} \\
\cline { 1 - 1 } Wait start & 0 to 255 & Set the No. of repetitions. \\
\hline Simultaneous start & 1 to 10 & \begin{tabular}{l} 
Set the condition data No. (No. of \\
Repeated start (FOR loop)
\end{tabular} \begin{tabular}{l} 
"condition data" set to perform \\
condition judgment) \\
(For details of the condition data, refer \\
to Section 5.5.)
\end{tabular} \\
\hline Repeated start (FOR condition) & \\
\hline
\end{tabular}

\subsection*{5.5 List of condition data}

The illustrations below show the organization of the condition data stored in the QD75 buffer memory. The condition data setting items Da.15 to Da. 19 are explained in the pages that follow.

- Up to 10 block start data points can be set (stored) for each block No. in the buffer memory addresses shown on the left.
- Items in a single unit of condition data are shown included in a bold frame. -
- Each axis has five start blocks (block Nos. 0 to 4).
* For information on the organization of the buffer memory addresses assigned to the start blocks 1 to 4, refer to Appendix 13 "List of buffer memory addresses".



The pages that follow explain the condition data setting items (Da.15 to Da.19). (The buffer memory addresses shown are those of the "condition data No. 1 (block No. 7000)" for the axes 1 to 4.)

\section*{REMARK}

To perform an high-level positioning control using block start data, set a number between 7000 and 7004 to the " Cd. 3 Positioning start No." and use the
" Cd. 4 Positioning starting point No." to specify a point number between 1 and 50, a position counted from the beginning of the block.
The number between 7000 and 7004 specified here is called the "block No.".
With the QD75, up to 50 "block start data" points and up to 10 "condition data" items can be assigned to each "block No.".
\begin{tabular}{|c|c|c|c|c|c|}
\hline Block No. * & Axis & Block start data & Condition & Buffer memory & \[
\begin{gathered}
\text { GX } \\
\text { Configurator- } \\
\text { QP }
\end{gathered}
\] \\
\hline \multirow{4}{*}{7000} & Axis 1 & \multirow{4}{*}{Start block 0} & Condition data (1 to 10) & \multirow{20}{*}{Supports the settings} & \multirow{20}{*}{Supports the settings} \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline \multirow{4}{*}{7001} & Axis 1 & \multirow{4}{*}{Start block 1} & Condition data (1 to 10) & & \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline \multirow{4}{*}{7002} & Axis 1 & \multirow{4}{*}{Start block 2} & Condition data (1 to 10) & & \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline \multirow{4}{*}{7003} & Axis 1 & \multirow{4}{*}{Start block 3} & Condition data (1 to 10) & & \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline \multirow{4}{*}{7004} & Axis 1 & \multirow{4}{*}{Start block 4} & Condition data (1 to 10) & & \\
\hline & Axis 2 & & Condition data (1 to 10) & & \\
\hline & Axis 3 & & Condition data (1 to 10) & & \\
\hline & Axis 4 & & Condition data (1 to 10) & & \\
\hline
\end{tabular}
*: Setting cannot be made when the "Pre-reading start function" is used. If you set any of Nos. 7000 to 7004 and perform the Pre-reading start function, the error "Outside start No. range" (error code: 543) will occur.
(For details, refer to Section 12.7.7 "Pre-reading start function".)


\section*{Da. 15 Condition target}

Set the condition target as required for each control.
\begin{tabular}{|c|c|}
\hline Setting value & Setting details \\
\hline 01н: Device X & \multirow[t]{2}{*}{Set the input/output signal ON/OFF of the QD75 as the conditions.} \\
\hline 02н : Device Y & \\
\hline 03н : Buffer memory (1-word) & \multirow[t]{2}{*}{\begin{tabular}{l}
Set the value stored in the buffer memory as the condition. 03н: The target buffer memory is "1-word ( 16 bits)" \\
04н: The target buffer memory is "2-word ( 32 bits)"
\end{tabular}} \\
\hline 04н : Buffer memory (2-word) & \\
\hline 05\% : Positioning data No. & Select only for "simultaneous start". \\
\hline
\end{tabular}

\section*{Da. 16 Condition operator}

Set the condition operator as required for the " Da. 15 Condition target".
\begin{tabular}{|c|c|c|}
\hline Da. 15 Condition target & Setting value & Setting details \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
01н: Device X \\
02н: Device Y
\end{tabular}} & 07н: DEV=ON & \multirow[t]{2}{*}{The state (ON/OFF) of an I/O signal is defined as the condition. Select ON or OFF as the trigger.} \\
\hline & 08н: DEV=OFF & \\
\hline \multirow{6}{*}{\begin{tabular}{l}
03н: Buffer memory (1-word) \\
04н: Buffer memory (2-word)
\end{tabular}} & 01н : **=P1 & \multirow{6}{*}{Select how to use the value (**) in the buffer memory as a part of the condition.} \\
\hline & 02н: \(* * \neq \mathrm{P} 1\) & \\
\hline & 03н : ** \(\leq\) P1 & \\
\hline & 04н : ** \({ }^{\text {P }}\) P1 & \\
\hline & 05н : P1 \(\leq * * \leq\) P2 & \\
\hline & 06H: \(* * \leq \mathrm{P} 1, \mathrm{P} 2 \leq * *\) & \\
\hline \multirow{14}{*}{05н: Positioning data No.} & 10н : Axis 1 selected & \multirow{14}{*}{If "simultaneous start" is specified, select the axis (or axes) that should start simultaneously.} \\
\hline & 20 H : Axis 2 selected & \\
\hline & 30 H : Axes 1 and 2 selected & \\
\hline & 40н : Axis 3 selected & \\
\hline & 50н : Axes 1 and 3 selected & \\
\hline & 60н : Axes 2 and 3 selected & \\
\hline & 70н : Axes 1, 2, and 3 selected & \\
\hline & 80 H : Axis 4 selected & \\
\hline & 90 H : Axes 1 and 4 selected & \\
\hline & AOH: Axes 2 and 4 selected & \\
\hline & BOH : Axes 1, 2, and 4 selected & \\
\hline & COH: Axes 3 and 4 selected & \\
\hline & D0н : Axes 1, 3, and 4 selected & \\
\hline & EOH : Axes 2, 3, and 4 selected & \\
\hline
\end{tabular}

\section*{Da. 17 Address}

Set the address as required for the " Da. 15 Condition target".
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Da.15 Condition target } & Setting value & \multicolumn{1}{c|}{ Setting details } \\
\hline 01 H : Device X & - & Not used. (There is no need to set.) \\
\hline 02 H : Device Y & - & \begin{tabular}{c} 
Value \\
\hline 03 H : Buffer memory (1-word)
\end{tabular} \\
\hline 04 H : Buffer memory (2-word) & \begin{tabular}{l} 
Set the target "buffer memory address". \\
(Buffer memory address) \\
(For 2 word, set the low-order buffer memory \\
address.)
\end{tabular} \\
\hline \(05_{\mathrm{H}}\) : Positioning data No. & - & Not used. (There is no need to set.) \\
\hline
\end{tabular}

\section*{Da. 18 Parameter 1}

Set the parameters as required for the " Da.16 Condition operator".
\begin{tabular}{|c|c|c|}
\hline Da. 16 Condition operator & Setting value & Setting details \\
\hline 01н : **=P1 & \multirow{6}{*}{Value} & \multirow{6}{*}{\begin{tabular}{l}
The value of P 1 should be equal to or smaller than the value of P2. (P1 \(\leq \mathrm{P} 2\) ) \\
If P 1 is greater than \(\mathrm{P} 2(\mathrm{P} 1>\mathrm{P} 2)\), the error "Condition data error" (error code 533) will occur.
\end{tabular}} \\
\hline 02H: ***P1 & & \\
\hline 03H : ** \(\leq\) P1 & & \\
\hline 04H : ** \(\geq\) P1 & & \\
\hline 05H: P1 \(\leq * * \leq \mathrm{P} 2\) & & \\
\hline 06H: **<P1, P2 \(\leq * *\) & & \\
\hline 07\% : DEV=ON & \multirow[t]{2}{*}{Value (bit No.)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Set the device bit No. \\
\(X: \quad 0 \mathrm{H}\) to \(1 \mathrm{H}, 4 \mathrm{H}\) to \(17 \mathrm{H} \mathrm{Y}: \quad 0,4 \mathrm{H}\) to 17 H
\end{tabular}} \\
\hline 08H: DEV=OFF & & \\
\hline 10 H : Axis 1 selected & \multirow{3}{*}{Value (positioning data No.)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Set the positioning data No. for starting axis 1 and/or axis 2. \\
Low-order 16-bit \\
: Axis 1 positioning data No. 1 to 600 ( 01 H to 258 H ) \\
High-order 16-bit \\
: Axis 2 positioning data No. 1 to 600 ( 01 H to 258 H )
\end{tabular}} \\
\hline \(\downarrow\) & & \\
\hline EOH: Axes 2, 3, and 4 selected & & \\
\hline
\end{tabular}

\section*{Da. 19 Parameter 2}

Set the parameters as required for the " Da.16 Condition operator".
\begin{tabular}{|c|c|c|}
\hline Da. 16 Condition operator & Setting value & Setting details \\
\hline 01H: **=P1 & \multirow{4}{*}{-} & \multirow{4}{*}{Not used. (No need to be set.)} \\
\hline 02H: ** + P1 & & \\
\hline 03H: ** PP1 \(^{\text {a }}\) & & \\
\hline 04H: ** \({ }^{\text {P }}\) 1 & & \\
\hline 05H: P1 \(\leq * * \leq\) P2 & \multirow[b]{2}{*}{Value} & \multirow[t]{2}{*}{The value of P 2 should be equal to or greater than the value of P1. (P1 \(\leq P 2\) ) If P 1 is greater than P 2 ( \(\mathrm{P} 1>\mathrm{P} 2\) ), the error "Condition data error" (error code 533) will occur.} \\
\hline 06H: ** P1, \(^{\text {P }}\) 2 \(\leq * *\) & & \\
\hline 07H: DEV=ON & \multirow{5}{*}{-} & \multirow{5}{*}{Not used. (No need to be set.)} \\
\hline 08H: DEV=OFF & & \\
\hline 10H: Axis 1 selected & & \\
\hline 20 H : Axis 2 selected & & \\
\hline 30 H : Axes 1 and 2 selected & & \\
\hline 40H: Axis 3 selected & \multirow{11}{*}{Value (positioning data No.)} & \multirow{11}{*}{\begin{tabular}{l}
Set the positioning data No. for starting axis 3 and/or axis 4 . \\
Low-order 16-bit \\
: Axis 3 positioning data No. 1 to 600 ( 01 H to 258 H ) \\
High-order 16-bit \\
: Axis 4 positioning data No. 1 to 600 ( 01 H to 258 H )
\end{tabular}} \\
\hline 50H: Axes 1 and 3 selected & & \\
\hline 60H: Axes 2 and 3 selected & & \\
\hline 70H: Axes 1, 2, and 3 selected & & \\
\hline 80H: Axis 4 selected & & \\
\hline 90 H : Axes 1 and 4 selected & & \\
\hline AOH: Axes 2 and 4 selected & & \\
\hline BOH : Axes 1, 2, and 4 selected & & \\
\hline COH : Axes 3 and 4 selected & & \\
\hline DOH : Axes 1, 3, and 4 selected & & \\
\hline EOH: Axes 2, 3, and 4 selected & & \\
\hline
\end{tabular}

\subsection*{5.6 List of monitor data}

\subsection*{5.6.1 System monitor data}
\begin{tabular}{|c|l|l}
\hline Storage item & & \multicolumn{1}{c|}{ Storage details } \\
\hline Md. 1 In test mode flag & \begin{tabular}{l} 
Whether the mode is the test mode from the peripheral device or not is stored. \\
\(\bullet\) When not in test mode : OFF \\
- When in test mode \(:\) ON
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{l|c|c|c|c|}
\hline & Reading the monitor value & Default value \begin{tabular}{c} 
Storage buffer \\
memory address \\
(common for axis 1 to \\
axis 4 )
\end{tabular} \\
\hline & \begin{tabular}{c} 
Monitoring is carried out with a decimal. \\
Monitor \\
value
\end{tabular} & \begin{tabular}{c} 
Storage value \\
\(0:\) Not in test mode \\
\(1:\) In test mode
\end{tabular} & 0 & 1200 \\
\hline
\end{tabular}
(Unless noted in particular, the monitor value is saved as binary data.)


Note: If a start signal is issued against an operating axis, a record relating to this event may be output before a record relating to an earlier start signal is output.



\begin{tabular}{|c|c|c|c|}
\hline & Storage item & Storage details & Reading the monitor value \\
\hline \multirow{6}{*}{} & \begin{tabular}{l}
Md. 9 \\
Axis in which the error occurred
\end{tabular} & Stores a number (Axis No.) that indicates the axis that encountered an error. & Monitoring is carried out with a decimal display. \\
\hline & \begin{tabular}{l}
Md. 10 \\
Axis error No.
\end{tabular} & Stores an axis error No. & Monitoring is carried out with a decimal display.
Monitor Error No value \(\square\) For details on the error Nos. (error codes),
refer to Section 15.3 "List of errors". "List of errors". \\
\hline & \begin{tabular}{l}
Md. 51 \\
Axis error occurrence (Year:month)
\end{tabular} & \begin{tabular}{l}
Stores the time \\
(year:month) at which an axis error was detected. (for the QD75P \(\square N / Q D 75 D \square N\) only
\end{tabular} & \begin{tabular}{l}
Monitoring is carried out with a hexadecimal display. \\
Buffer memory (stored with BCD code)
\end{tabular} \\
\hline & \begin{tabular}{l}
Md. 11 \\
Axis error occurrence (Day:hour)
\end{tabular} & \begin{tabular}{l}
The following are stored. \\
- QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) : the time (day:hour) at which an axis error was detected \\
- QD75P \(\square\) QD75D \(\square\) : the time (hour) at which an axis error was detected
\end{tabular} & \begin{tabular}{l}
Monitoring is carried out with a hexadecimal display. \\
Buffer memory (stored with BCD code) \\
*1: 00(not used) is stored for QD75Pロ/QD75Dロ.
\end{tabular} \\
\hline & \begin{tabular}{l}
Md. 12 \\
Axis error occurrence (Minute: second)
\end{tabular} & Stores the time (minute: second) at which an axis error was detected. & \(\square\) Monitoring is carried out with a hexadecimal display. Buffer memory (stored with BCD code) \\
\hline & \begin{tabular}{l}
Md. 13 \\
Error history pointer
\end{tabular} & Indicates a pointer No. that is next to the Pointer No. assigned to the latest of the existing records. & \begin{tabular}{l}
\(\square\) Monitoring is carried out with a decimal display. \\
Monitor value
\end{tabular} \\
\hline
\end{tabular}




\subsection*{5.6.2 Axis monitor data}
\begin{tabular}{|c|c|c|c|}
\hline & Storage item & Storage details & \\
\hline Md. 20 & Current feed value & \begin{tabular}{l}
The currently commanded address is stored. \\
(Different from the actual motor position during operation) \\
The current position address is stored. \\
If "degree" is selected as the unit, the addresses will have a ring structure for values between 0 and 359.99999 degrees. \\
- Update timing : 0.9 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ), 1.8 ms (QD75P \(\square /\) QD75D \(\square\) ) \\
- The OP address is stored when the machine OPR is completed. \\
- When the current value is changed with the current value changing function, the changed value is stored.
\end{tabular} & \\
\hline Md. 21 & Machine feed value & \begin{tabular}{l}
The address of the current position according to the machine coordinates will be stored. (Different from the actual motor position during operation) \\
Note that the current value changing function will not change the machine feed value. \\
Under the speed control mode, the machine feed value is constantly updated always, irrespective of the parameter setting. \\
The value will not be cleared to " 0 " at the beginning of fixed-feed control. \\
Even if "degree" is selected as the unit, the addresses will not have a ring structure for values between 0 and 359.99999 degrees. \\
- Machine coordinates: Characteristic coordinates determined with machine \\
- Update timing: 0.9 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ), 56.8 ms (QD75P \(\square / Q D 75 D \square\) )
\end{tabular} & \\
\hline Md. 22 & Feedrate & \begin{tabular}{l}
The command output speed of the operating workpiece is stored. (May be different from the actual motor speed during operation) \\
- During interpolation operation, the speed is stored in the following manner. \\
Reference axis : Composite speed or reference axis speed (Set with Pr.20) \\
Interpolation axis : 0 \\
- Update timing: 0.9 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ), 56.8 ms (QD75P \(\square / \mathrm{QD75D} \square\) )
\end{tabular} & \\
\hline Md. 23 & Axis error No. & \begin{tabular}{l}
When an axis error is detected, the error code corresponding to the error details is stored. \\
- The latest error code is always stored. (When a new axis error occurs, the error code is overwritten.) \\
- When " Cd. 5 Axis error reset" (axis control data) turns ON, the axis error No. is cleared (set to 0 ).
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Storage item & Storage details \\
\hline Md. 24 Axis warning No. & \begin{tabular}{l}
Whenever an axis warning is reported, a related warning code is stored. \\
- This area stores the latest warning code always. (Whenever an axis warning is reported, a new warning code replaces the stored warning code.) \\
- When the " Cd. 5 Axis error reset" (axis control data) is set to ON, the axis warning No. is cleared to " 0 ".
\end{tabular} \\
\hline Md. 25 Valid M code & \begin{tabular}{l}
This area stores an M code that is currently active (i.e. set to the positioning data relating to the current operation). \\
- Update timing : turning ON of the M code ON signal \\
When the PLC READY signal (YO) goes OFF, the value is set to " 0 ".
\end{tabular} \\
\hline Md. 26 Axis operation status & This area stores the axis operation status. \\
\hline Md. 27 Current speed & \begin{tabular}{l}
Da. 8 Command speed" of the positioning data currently in execution is stored. \\
- If" Da. 8 Command speed" is set to " -1 ", this area stores the command speed set by the positioning data used one step earlier. \\
- If " Da. 8 Command speed" is set to a value other than "-1", this area stores the command speed set by the current positioning data. \\
- If the speed change function is executed, " Cd. 14 New speed value" is stored. (For details of the speed change function, refer to Section 12.5.1.)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline & Storage item & Storage details & \\
\hline Md. 28 & Axis feedrate & \begin{tabular}{l}
- The speed which is actually output as a command at that time in each axis is stored. (May be different from the actual motor speed) " 0 " is stored when the axis is at a stop. \\
Update timing: 0.9 ms (QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) ), 56.8 ms (QD75P \(\square /\) QD75D \(\square\) )
\end{tabular} & \\
\hline Md. 29 & Speed-position switching control positioning amount & - The movement amount for the position control to end after changing to position control with the speed-position switching control (INC mode) is stored. When the control method is "Reverse run: position/speed", the negative value is stored. & \\
\hline Md. 30 & External input/output signal & \begin{tabular}{l}
The ON/OFF state of the external input/output signal is stored. \\
The following items are stored. \\
- Upper limit signal \\
- Lower limit signal \\
- Drive unit READY signal \\
- Stop signal \\
- External command signal \\
- Zero signal \\
- Near-point dog signal \\
- Deviation counter clear signal \\
Update timing: 0.9 ms (QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) ), 56.8 ms (QD75P \(\square / \mathrm{QD75D} \square\) )
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline & Storage item & Storage details & \\
\hline Md. 31 & Status & \begin{tabular}{l}
This area stores the states (ON/OFF) of various flags. Information on the following flags is stored. \\
In speed control flag: \\
This signal that comes ON under the speed control can be used to judge whether the operation is performed under the speed control or position control. The signal goes OFF when the power is switched ON, under the position control, and during JOG operation or manual pulse generator operation. During the speed-position or position-speed switching control, this signal comes ON only when the speed control is in effect. During the speedposition switching control, this signal goes OFF when the speed-position switching signal executes a switching over from speed control to position control. During the position-speed switching control, this signal comes ON when the position-speed switching signal executes a switching over from position control to speed control. \\
- Speed-position switching latch flag: \\
This signal is used during the speed-position switching control for interlocking the movement amount change function. During the speed-position switching control, this signal comes ON when position control takes over. This signal goes OFF when the next positioning data is processed, and during JOG operation or manual pulse generator operation. \\
- Command in-position flag: \\
This signal is ON when the remaining distance is equal to or less than the command inposition range (set by a detailed parameter). This signal remains OFF with data that specify the continuous path control (P11) as the operation pattern. The state of this signal is monitored every 0.9 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 1.8 ms (QD75P \(\square / \mathrm{QD75D} \square\) ) except when the monitoring is canceled under the speed control or while the speed control is in effect during the speed-position or position-speed switching control. While operations are performed with interpolation, this signal comes ON only in respect of the starting axis. \\
(This signal goes OFF in respect of all axes upon starting.) \\
- OPR request flag: \\
This signal comes ON when the power is switched ON, when the drive unit READY signal goes OFF, when the PLC READY signal goes ON, when a machine OPR operation starts. This signal goes OFF when a machine OPR operation completes. \\
- OPR complete flag: \\
This signal comes ON when a machine OPR operation completes normally. This signal goes OFF when the operation starts and when the drive unit READY signal goes OFF or PLC READY signal goes ON. \\
- Position-speed switching latch flag: This signal is used during the position-speed switching control for interlocking the command speed change function. During the position-speed switching control, this signal comes ON when speed control takes over. This signal goes OFF when the next positioning data is processed, and during JOG operation or manual pulse generator operation. \\
- Axis warning detection flag: \\
This signal comes ON when an axis warning is reported and goes OFF when the axis error reset signal comes ON. \\
- Speed change 0 flag: \\
This signal comes ON when a speed change request that specifies 0 as the new speed value is issued. This signal comes OFF when a speed change request that specifies a new speed value other than 0 is issued.
\end{tabular} & \\
\hline Md. 32 & Target value & \begin{tabular}{l}
This area stores the target value (Da. 6 Positioning address/movement amount) for a positioning operation. \\
- At the beginning of positioning control and current value changing \\
: Stores the value of " Da. 6 Positioning address/movement amount". \\
- At the OP shift operation of OPR control \\
: Stores the value of OP shift amount. \\
- At other times \\
: Stores "0".
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline & Storage item & Storage details & \\
\hline Md. 33 & Target speed & \begin{tabular}{ll} 
- During operation with positioning data & \begin{tabular}{l}
\(:\)\begin{tabular}{l} 
The actual target speed, considering \\
the override and speed limit value, \\
etc., is stored. "0" is stored when \\
positioning is completed.
\end{tabular} \\
- During interpolation of position control \\
\(:\)\begin{tabular}{l} 
The composite speed or reference \\
axis speed is stored in the reference \\
axis address, and "0" is stored in the \\
interpolation axis address.
\end{tabular} \\
- During interpolation of speed control \\
\(:\)\begin{tabular}{l} 
The target speeds of each axis are \\
stored in the monitor of the reference \\
axis and interpolation axis.
\end{tabular} \\
- During JOG operation \\
: The actual target speed, considering \\
the JOG speed limit value for the \\
JOG speed, is stored.
\end{tabular} \\
- During manual pulse generator operation \(: 0 "\) is stored.
\end{tabular} & \\
\hline Md. 34 & Movement amount after near-point dog ON & \begin{tabular}{l}
- "0" is stored when machine OPR starts. \\
- After machine OPR starts, the movement amount from the near-point dog ON to the machine OPR completion is stored. \\
(Movement amount: Movement amount to machine OPR completion using nearpoint dog ON as "0".) \\
- " 0 " is always stored when using the stopper method 1 ), 2 ), or 3 ).
\end{tabular} & \\
\hline Md. 35 & Torque limit stored value & \begin{tabular}{l}
The " Pr. 17 Torque limit setting value" or " Cd. 22 New torque value" is stored. \\
- During positioning start, JOG operation start, manual pulse generator operation ...The " Pr. 17 Torque limit setting value" is stored. \\
- When value other than 0 is set to " Cd. 22 New torque value" ...The " Cd. 22 New torque value" is stored.
\end{tabular} & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Reading the monitor value} & \multirow[t]{2}{*}{Default value} & \multicolumn{4}{|c|}{Storage buffer memory address} \\
\hline & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline & Monitoring is carried out with a decimal display. & 0 & 827 & 927 & 1027 & 1127 \\
\hline & \begin{tabular}{l}
Monitoring is carried out with a decimal display. \\
Monitor value
\end{tabular} & 0 & 828 & 928 & 1028 & 1128 \\
\hline & Monitoring is carried out with a decimal display. & 0 & 829 & 929 & 1029 & 1129 \\
\hline &  & 0 & 830 & 930 & 1030 & 1130 \\
\hline & Monitoring is carried out with a decimal display.
\[
\begin{array}{l:l:l}
\begin{array}{l}
\text { Monitor } \\
\text { value }
\end{array} & \begin{array}{l}
\text { Storage value } \\
0: \text { Not in speed change (OFF) } \\
1: \text { In speed change (ON) }
\end{array}
\end{array}
\] & 0 & 831 & 931 & 1031 & 1131 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Storage item & Storage details \\
\hline Md. 41 Special start repetition counter & \begin{tabular}{l}
- This area stores the remaining number of repetitions during "repetitions" specific to special starting. \\
- The count is decremented by one \((-1)\) at the loop end. \\
- The control comes out of the loop when the count reaches "0". \\
- This area stores "0" within an infinite loop.
\end{tabular} \\
\hline Md. 42 Control system repetition counter & \begin{tabular}{l}
- This area stores the remaining number of repetitions during "repetitions" specific to control system. \\
- The count is decremented by one \((-1)\) at the loop start. \\
- The loop is terminated with the positioning data of control method "LEND" after the counter becomes " 0 ".
\end{tabular} \\
\hline Md. 43 Start data pointer being executed & \begin{tabular}{l}
- This area stores a point No. (1 to 50 ) attached to the start data currently being executed. \\
- This area stores " 0 " after completion of a positioning operation.
\end{tabular} \\
\hline Md. 44 Positioning data No. being executed & \begin{tabular}{l}
- This area stores a positioning data No. attached to the positioning data currently being executed. \\
- This area stores " 0 " after completion of a positioning operation. \\
- This area stores " 0 " when the JOG/inching operation is executed.
\end{tabular} \\
\hline Md. 45 Block No. being executed & \begin{tabular}{l}
- When the operation is controlled by "block start data", this area stores a block number ( 7000 to 7004 ) attached to the block currently being executed. \\
- At other times, this area stores " 0 ". \\
- This area stores " 0 " after completion of a positioning operation.
\end{tabular} \\
\hline Md. 46 Last executed positioning data No. & \begin{tabular}{l}
- This area stores the positioning data No. attached to the positioning data that was executed last time. \\
- The value is retained until a new positioning operation is executed. \\
- This area stores "0" when the JOG/inching operation is executed.
\end{tabular} \\
\hline Md. 47 Positioning data being executed & - The addresses shown to the right store details of the positioning data currently being executed (positioning data No. given by Md. 44 ). \\
\hline Md. 48 Deceleration start flag & \begin{tabular}{l}
- "1" is stored when the constant speed status or acceleration status switches to the deceleration status during position control whose operation pattern is "Positioning complete". \\
- " 0 " is stored at the next operation start or manual pulse generator operation enable.
\end{tabular} \\
\hline
\end{tabular}


\subsection*{5.7 List of control data}

\subsection*{5.7.1 System control data}
\begin{tabular}{|c|c|}
\hline Setting item & Setting details \\
\hline Cd. 1 Flash ROM write request & - Requests writing of data (parameters, positioning data, and block start data) from the buffer memory to the flash ROM. \\
\hline Cd. 2 Parameter initialization request & \begin{tabular}{l}
- Requests initialization of setting data. \\
Initialization: Resetting of setting data to default values \\
Note: After completing the initialization of setting data, reset the CPU module or reboot the programmable controller power.
\end{tabular} \\
\hline Cd. 41 Deceleration start flag valid & Set whether " Md. 48 Deceleration start flag" is made valid or invalid. \\
\hline Cd. 42 Stop command processing for deceleration stop selection & - Set the stop command processing for deceleration stop function (deceleration curve re-processing/deceleration curve continuation). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Setting value & Default value & Storage buffer memory address (common to axes to 4) \\
\hline \begin{tabular}{l}
Set with a decimal. \\
Setting value \\
The QD75 resets the value to " 0 " automatically when the write access completes. (This indicates the completion of write operation.)
\end{tabular} & 0 & 1900 \\
\hline \begin{tabular}{l}
Set with a decimal. \\
Setting value \\
The QD75 resets the value to " 0 " automatically when the initialization completes. (This indicates the completion of parameter initialization.)
\end{tabular} & 0 & 1901 \\
\hline  & 0 & 1905 \\
\hline  & 0 & 1907 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c}
\hline Setting item & & \multicolumn{1}{c|}{ Setting details } \\
\hline & & \begin{tabular}{l} 
Select the timing to output the difference \((\triangle \ell)\) between the actual and the set \\
positioning end addresses in continuous path control, in which the difference \\
\((\triangle \ell)\) is output during the execution of the next positioning data.
\end{tabular} \\
\begin{tabular}{c} 
Cd. 43 Output timing selection of \\
near pass control
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Setting value & Default value & \[
\begin{gathered}
\text { Storage buffer } \\
\text { memory address } \\
\text { (common to axes } 1 \\
\text { to 4) }
\end{gathered}
\] \\
\hline \multicolumn{3}{|l|}{- Set with a decimal.} \\
\hline Setting value & 0 & 1934 \\
\hline
\end{tabular}

\subsection*{5.7.2 Axis control data}
\begin{tabular}{|c|c|c|}
\hline & Setting item & Setting details \\
\hline Cd. 3 & Positioning start No. & - Set the positioning start No. (Only 1 to 600 for the Pre-reading start function. For details, refer to Section 12.7.7 "Pre-reading start function".) \\
\hline Cd. 4 & Positioning starting point No. & - Set a " starting point No." (1 to 50) if block start data is used for positioning. (Handled as "1" if the value of other than 1 to 50 is set.) \\
\hline Cd. 5 & Axis error reset & \begin{tabular}{l}
- Clears the axis error detection, axis error No., axis warning detection and axis warning No. \\
- When the QD75 axis operation state is "Error", the error is cleared and the QD75 is returned to the "Standing" state.
\end{tabular} \\
\hline Cd. 6 & Restart command & - When positioning is stopped for any reason (when axis operation state is "Stopped"), set "1" in Cd.6. Positioning will be carried out again from the stopped position to the end point of the stopped positioning data. \\
\hline Cd. 7 & M code OFF request & - The M code ON signal turns OFF. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Setting value} & \multirow[t]{2}{*}{Default value} & \multicolumn{4}{|c|}{Storage buffer memory address} \\
\hline & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline  & 0 & 1500 & 1600 & 1700 & 1800 \\
\hline \begin{tabular}{l}
- Set with a decimal. \\
Setting value
\end{tabular} & 0 & 1501 & 1601 & 1701 & 1801 \\
\hline \begin{tabular}{l}
Set with a decimal. \\
Setting value \\
After the axis error reset is completed, " 0 " is stored by the QD75 automatically. (Indicates that the axis error reset is completed.)
\end{tabular} & 0 & 1502 & 1602 & 1702 & 1802 \\
\hline \begin{tabular}{l}
Set with a decimal. \\
Setting value \\
After restart acceptance is completed, "0" is stored by the QD75 automatically. (Indicates that the restart acceptance is completed.)
\end{tabular} & 0 & 1503 & 1603 & 1703 & 1803 \\
\hline \begin{tabular}{l}
Set with a decimal. \\
Setting value \\
After the M code ON signal turns OFF, "0" is stored by the QD75 automatically. (Indicates that the OFF request is completed.)
\end{tabular} & 0 & 1504 & 1604 & 1704 & 1804 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Setting value}} & \multirow[t]{2}{*}{Default value} & \multicolumn{4}{|c|}{Storage buffer memory address} \\
\hline & & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline & \begin{tabular}{l}
Set with a decimal. \\
Setting value
\end{tabular} & & \begin{tabular}{l}
mmand. \\
mmand.
\end{tabular} & 0 & 1505 & 1605 & 1705 & 1805 \\
\hline & \(\square\) Set with a decimal. & -1
-5
-5 & \begin{tabular}{l} 
len (Cd.9) \\
Unit \\
\hline\(\mu \mathrm{m}\) \\
\hline inch \\
\hline degree \\
\hline pulse \\
\hline
\end{tabular} & 0 & \[
\begin{aligned}
& 1506 \\
& 1507
\end{aligned}
\] & \[
\begin{aligned}
& 1606 \\
& 1607
\end{aligned}
\] & \[
\begin{aligned}
& 1706 \\
& 1707
\end{aligned}
\] & \[
\begin{aligned}
& 1806 \\
& 1807
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Setting item & Setting details \\
\hline Cd. 10 New acceleration time value & - When changing the acceleration time during a speed change, use this data item to specify a new acceleration time. \\
\hline Cd. 11 New deceleration time value & - When changing the deceleration time during a speed change, use this data item to specify a new deceleration time. \\
\hline Cd. 12 Acceleration/deceleration time change during speed change, enable/disable selection & - Enables or disables modifications to the acceleration/deceleration time during a speed change. \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Setting value} & \multirow[t]{2}{*}{Default value} & \multicolumn{4}{|c|}{Storage buffer memory address} \\
\hline & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline & \begin{tabular}{l}
Set with a decimal. \\
Setting value
\end{tabular} & 100 & 1513 & 1613 & 1713 & 1813 \\
\hline & \begin{tabular}{l}
Set with a decimal. \\
Example: When the "Cd. 14 New speed value" is set as " 20000.00 mm /min", the buffer memory stores "2000000".
\end{tabular} & 0 & \[
\begin{aligned}
& 1514 \\
& 1515
\end{aligned}
\] & \[
\begin{aligned}
& 1614 \\
& 1615
\end{aligned}
\] & \[
\begin{aligned}
& 1714 \\
& 1715
\end{aligned}
\] & \[
\begin{aligned}
& 1814 \\
& 1815
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Set with a decimal. \\
Setting value \\
The QD75 resets the value to " 0 " automatically when the speed change request has been processed. (This indicates the completion of speed change request.)
\end{tabular} & 0 & 1516 & 1616 & 1716 & 1816 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Setting value} & \multirow[t]{2}{*}{Default value} & \multicolumn{4}{|c|}{Storage buffer memory address} \\
\hline & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline & \begin{tabular}{l}
Set with a decimal. \\
Example: When the "Cd. 16 Inching movement amount" is set as " \(1.0 \mu \mathrm{~m}\) ", the buffer memory stores " 10 ".
\end{tabular} & 0 & 1517 & 1617 & 1717 & 1817 \\
\hline & \begin{tabular}{l}
Set with a decimal. \\
Example: When the "Cd. 17 JOG speed" is set as " 20000.00 mm /min", the buffer memory stores "2000000".
\end{tabular} & 0 & \[
\begin{aligned}
& 1518 \\
& 1519
\end{aligned}
\] & \[
\begin{aligned}
& 1618 \\
& 1619
\end{aligned}
\] & \[
\begin{aligned}
& 1718 \\
& 1719
\end{aligned}
\] & \[
\begin{aligned}
& 1818 \\
& 1819
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Set with a decimal. \\
Setting value
\end{tabular} & 0 & 1520 & 1620 & 1720 & 1820 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l}
\hline Setting item & & Setting details \\
\hline & & \\
\hline Cd.19 OPR request flag OFF \\
request & - The sequence program can use this data item to forcibly turn the OPR request \\
flag from ON to OFF.
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Setting item} & \multicolumn{9}{|c|}{Setting details} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Cd. 23 Speed-position switching control movement amount change register}} & \multicolumn{9}{|l|}{\begin{tabular}{l}
- During the speed control stage of the speed-position switching control (INC mode), it is possible to change the specification of the movement amount during the position control stage. For that, use this data item to specify a new movement amount. \\
- The new movement amount has to be set during the speed control stage of the speed-position switching control (INC mode). \\
- The value is reset to "0" when the next operation starts. \\
- Set a value within the following range:
\end{tabular}} \\
\hline & & \begin{tabular}{l}
Pr. 1 \\
Unit setting \\
Setting rang
\end{tabular} & \[
\begin{array}{l|}
\hline \text { ing } \\
\hline \text { inge }
\end{array}
\] & \[
\begin{gathered}
\mathrm{mm} \\
\left(\times 10^{-1} \mu \mathrm{~m}\right)
\end{gathered}
\] & \begin{tabular}{l}
um) \\
3647
\end{tabular} & \[
\begin{array}{r}
\text { inct } \\
\left(\times 10^{-5} \mathrm{i}\right. \\
\hline 0 \mathrm{tc} \\
21474 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { inch) } \\
& \hline \text { in } \\
& \hline 83647 \\
& \hline
\end{aligned}
\] & \begin{tabular}{r} 
degre \\
\(\times \times 10^{-5} \mathrm{deg}\) \\
\hline 0 to \\
214748
\end{tabular} &  & \begin{tabular}{|c|}
\hline pulse \\
(pulse) \\
\hline 0 to \\
2147483647 \\
\hline
\end{tabular} \\
\hline Cd. 24 & Speed-position switching enable flag & \multicolumn{9}{|l|}{- Set whether the external control signal (external command signal [CHG]: "speedposition, position-speed switching request" is selected) is enabled or not.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Cd. 25 Position-speed switching}} & \multicolumn{9}{|l|}{\begin{tabular}{l}
- During the position control stage of the position-speed switching control, it is possible to change the specification of the speed during the speed control stage. For that, use this data item to specify a new speed. \\
- The new speed has to be set during the position control stage of the positionspeed switching control. \\
- The value is reset to " 0 " when the next operation starts. \\
- Set a value within the following range:
\end{tabular}} \\
\hline & & \[
\begin{array}{|l|}
\hline \text { Pr. } 1 \\
\text { Unit setting }
\end{array}
\]
|x & \[
\left(\times 10^{-2}\right.
\] & \[
\begin{aligned}
& \mathrm{mm} \\
& 2 \mathrm{~mm} / \mathrm{min})
\end{aligned}
\] & & ch nch/min) & \[
\begin{array}{r}
\mathrm{de} \\
\left(\times 10^{-3} \mathrm{~d}\right.
\end{array}
\] & gree degree \(/ \mathrm{min}\) ) &  & \begin{tabular}{l}
pulse \\
pulse/s)
\end{tabular} \\
\hline & & Setting range & \[
200
\] & 0 to 000000 & & to 00000 & 2000 & 0 to 000000 & \[
\begin{array}{r}
\text { [QD75 } \\
0 \\
\text { [QD7 } \\
0
\end{array}
\] & \[
\begin{aligned}
& \square \mathrm{N} / \text { QD75D } \square \mathrm{N}] \\
& \text { o 4000000 } \\
& \text { P } \square \text { QD75D } \square] \\
& \text { o 1000000 }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Setting value}} & \multirow[t]{2}{*}{Default value} & \multicolumn{4}{|c|}{Storage buffer memory address} \\
\hline & & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline & Set with a decimal. &  & \begin{tabular}{|c|}
\hline Unit table (Cd.23) \\
\hline\(\mu \mathrm{m}\) \\
\hline inch \\
\hline degree \\
\hline pulse \\
\hline
\end{tabular} & 0 & \[
\begin{aligned}
& 1526 \\
& 1527
\end{aligned}
\] & \[
\begin{aligned}
& 1626 \\
& 1627
\end{aligned}
\] & \[
\begin{aligned}
& 1726 \\
& 1727
\end{aligned}
\] & \[
\begin{aligned}
& 1826 \\
& 1827
\end{aligned}
\] \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Set with a decimal. \\
Setting value \\
Speed-position switching enable flag 0 : Speed control will not be taken over by position control even when the external command signal comes ON. \\
1: Speed control will be taken over by position control when the external command signal comes ON.
\end{tabular}} & 0 & 1528 & 1628 & 1728 & 1828 \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Set with a decimal. \\
Example: If" Cd. 25 Position-speed switching control speed change register" is set as " \(2000.00 \mathrm{~mm} / \mathrm{min}\) ", the buffer memory stores "200000".'
\end{tabular}} & 0 & \[
\begin{aligned}
& 1530 \\
& 1531
\end{aligned}
\] & \[
\begin{aligned}
& 1630 \\
& 1631
\end{aligned}
\] & \[
\begin{aligned}
& 1730 \\
& 1731
\end{aligned}
\] & \[
\begin{aligned}
& 1830 \\
& 1831
\end{aligned}
\] \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline & Setting item & Setting details \\
\hline \[
\text { Cd. } 30
\] & Simultaneous starting axis start data No. (axis 1 start data No.) & \multirow{4}{*}{\begin{tabular}{l}
- Use these data items to specify a start data No. for each axis that has to start simultaneously. \\
- Set "0" to any axis that should not start simultaneously.
\end{tabular}} \\
\hline \[
\text { Cd. } 31
\] & Simultaneous starting axis start data No. (axis 2 start data No.) & \\
\hline \[
\text { Cd. } 32
\] & Simultaneous starting axis start data No. (axis 3 start data No.) & \\
\hline \[
\text { Cd. } 33
\] & Simultaneous starting axis start data No. (axis 4 start data No.) & \\
\hline Cd. 34 & Step mode & - To perform a step operation, use this data item to specify the units by which the stepping should be performed. \\
\hline Cd. 35 & Step valid flag & - This data item validates or invalidates step operations. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & Setting item & Setting details \\
\hline Cd. 36 & Step start information & - To continue the step operation when the step function is used, set "1" in this data item. \\
\hline Cd. 37 & Skip command & - To skip the current positioning operation, set "1" in this data item. \\
\hline Cd. 38 & Teaching data selection & \begin{tabular}{l}
- This data item specifies the teaching result write destination. \\
- Data are cleared to "0" when the teaching ends.
\end{tabular} \\
\hline \[
\text { Cd. } 39
\] & Teaching positioning data No. & \begin{tabular}{l}
- This data item specifies data to be produced by teaching. \\
- If a value between 1 and 600 is set, a teaching operation is done. \\
- The value is cleared to "0" when the QD75 is initialized, when a teaching operation completes, and when an illegal value (601 or higher) is entered.
\end{tabular} \\
\hline Cd. 40 & ABS direction in degrees & - This data item specifies the ABS moving direction carrying out the position control when "degree" is selected as the unit. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Setting value} & \multirow[t]{2}{*}{Default value} & \multicolumn{4}{|c|}{Storage buffer memory address} \\
\hline & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline  & 0 & 1546 & 1646 & 1746 & 1846 \\
\hline \begin{tabular}{l}
Set with a decimal. \\
Setting value
\end{tabular} & 0 & 1547 & 1647 & 1747 & 1847 \\
\hline \begin{tabular}{l}
Set with a decimal. \\
Setting value \\
Teaching data selection \\
0 : Takes the current feed value as a positioning address. \\
1: Takes the current feed value as an arc data.
\end{tabular} & 0 & 1548 & 1648 & 1748 & 1848 \\
\hline \begin{tabular}{l}
Set with a decimal. \\
Setting value \\
Teaching positioning data No.
\end{tabular} & 0 & 1549 & 1649 & 1749 & 1849 \\
\hline  & 0 & 1550 & 1650 & 1750 & 1850 \\
\hline
\end{tabular}

\section*{MEMO}
\(\qquad\)

\title{
CHAPTER 6 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL
}

\footnotetext{
The programs required to carry out positioning control with the QD75 are explained in this chapter.

The program required for control is created allowing for the "start conditions", "start time chart", "device settings" and general control configuration.
(The parameters, positioning data, block start data and condition data, etc., must be set in the QD75 according to the control to be executed, and program for setting the control data or a program for starting the various control must be created.)

The first half of this chapter explains the program configuration of general control, and the latter half explains the program details. Create the required program while referring to the various control details explained in PART 2, and to CHAPTER 5 "DATA USED FOR POSITIONING CONTROL".
}
6.1 Precautions for creating program ..... 6- 2
6.2 List of devices used ..... 6- 5
6.3 Creating a program ..... 6-11
6.3.1 General configuration of program ..... 6-11
6.3.2 Positioning control operation program ..... 6-12
6.4 Positioning program examples ..... 6-15
6.5 Program details ..... 6-24
6.5.1 Initialization program ..... 6-24
6.5.2 Start details setting program. ..... 6-25
6.5.3 Start program ..... 6-27
6.5.4 Continuous operation interrupt program ..... 6-37
6.5.5 Restart program ..... 6-39
6.5.6 Stop program ..... 6-43

\subsection*{6.1 Precautions for creating program}

The common precautions to be taken when writing data from the CPU module to the QD75 buffer memory are described below.
When diverting any of the program examples introduced in this manual to the actual system, fully verify that there are no problems in the controllability of the target system.

\section*{(1) Reading/writing the data}

Setting the data explained in this chapter (various parameters, positioning data, block start data) should be set using GX Configurator-QP.
When set with the sequence program, many sequence programs and devices must be used. This will not only complicate the program, but will also increase the scan time.
When rewriting the positioning data during continuous path control or continuous positioning control, rewrite the data four positioning data items before the actual execution. If the positioning data is not rewritten before the positioning data four items earlier is executed, the process will be carried out as if the data was not rewritten.

\section*{(2) Restrictions to speed change execution interval}

Provide an interval of 100 ms or more when changing the speed or performing override function with the QD75.
(3) Process during overrun

Overrun is prevented by the setting of the upper and lower stroke limits with the detail parameter 1.
However, this applies only when the QD75 is operating correctly.
It is recommended to create an external circuit including a boundary limit switch to ensure the whole system safety as follows: the external circuit powers OFF the motor when the boundary limit switch operates.

\section*{(4) System configuration}

Unless particularly designated, the sequence program for the following system is shown in this chapter and subsequent. In the program, the unit of " \(0(\mathrm{~mm}\) )" is set for the basic parameter 1.
Refer to Section 6.2 for the application of the devices to be used.


\section*{(5) Communication with QD75}

There are two methods for communication with QD75 using the sequence program: a method using an "intelligent function device" and a method using a FROM/TO instruction. In the sequence program in this chapter and subsequent, the program example using the "intelligent function device" is shown without using a FROM/TO instruction for communication with QD75.
When using the FROM/TO instruction for communication with QD75, change the circuit incorporating the "intelligent function device" as follows.
(a) When the circuit uses the "intelligent function device" on the destination (D) side of a MOV instruction, change the instruction to a TO instruction.

(b) When the circuit uses the "intelligent function device" on the source(s) side and the destination (D) side of a MOV instruction, change the instruction to a FROM instruction and a TO instruction.

(c) When the circuit uses the "intelligent function device" for a COMPARISON instruction, change the instruction to a FROM instruction and a COMPARISON instruction.

(d) When the circuit uses the "intelligent function device" for a WAND instruction, change the instruction to a FROM instruction and a WAND instruction.


\section*{REMARK}

Refer to QCPU (Q mode) User's Manual (Functions and Programs Basic Part) for the intelligent function devices.
Refer to QCPU (Q mode) Programming Manual (Common Commands Part) for detail commands used in those programs shown in this chapter and subsequent.

\subsection*{6.2 List of devices used}

In the sequence programs shown in this chapter and subsequent, the application of the devices used are as follows.
The I/O numbers for QD75 indicate those when QD75 is mounted in the 0-slot of the main base.
If it is mounted in the slot other than the 0 -slot of the main base, change the I/O number to that for the position where QD75 was installed.
In addition, change the external inputs, external outputs, internal relays, data resisters, and timers according to the system used.
(1) Inputs/outputs, external inputs/external outputs, and internal relays of QD75
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Device name} & \multicolumn{4}{|c|}{Device} & \multirow[b]{2}{*}{Application} & \multirow[b]{2}{*}{Details when ON} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline \multirow{12}{*}{\begin{tabular}{l|l} 
& Inpu \\
Inputs/ \\
outputs \\
of \\
QD75
\end{tabular}} & \multicolumn{4}{|c|}{X0} & QD75 READY signal & Preparation completed \\
\hline & \multicolumn{4}{|c|}{X1} & Synchronization flag & QD75 buffer memory accessible \\
\hline & X4 & X5 & X6 & X7 & M code ON signal & M code outputting \\
\hline & X8 & X9 & XA & XB & Error detection signal & Error detected \\
\hline & XC & XD & XE & XF & BUSY signal & BUSY (operating) \\
\hline & X10 & X11 & X12 & X13 & Start complete signal & Start completed \\
\hline & X14 & X15 & X16 & X17 & Positioning complete signal & Positioning completed \\
\hline & \multicolumn{4}{|c|}{Y0} & PLC READY signal & CPU module preparation completed \\
\hline & Y4 & Y5 & Y6 & Y7 & Axis stop signal & Requesting stop \\
\hline & Y8 & YA & YC & YE & Forward run JOG start signal & Starting forward run JOG \\
\hline & Y9 & YB & YD & YF & Reverse run JOG start signal & Starting reverse run JOG \\
\hline & Y10 & Y11 & Y12 & Y13 & Positioning start signal & Requesting start \\
\hline \multirow{12}{*}{External input (command)} & X20 & \multicolumn{3}{|c|}{\multirow{12}{*}{-}} & OPR request OFF command & Commanding OPR request OFF \\
\hline & X21 & & & & External command valid command & Commanding external command valid setting \\
\hline & X22 & & & & External command invalid command & Commanding external command invalid \\
\hline & X23 & & & & Machine OPR command & Commanding machine OPR \\
\hline & X24 & & & & Fast OPR command & Commanding fast OPR \\
\hline & X25 & & & & Positioning start command & Commanding positioning start \\
\hline & X26 & & & & Speed-position switching operation command & Commanding speed-position switching operation \\
\hline & X27 & & & & Speed-position switching enable command & Commanding speed-position switching enable command \\
\hline & X28 & & & & Speed-position switching prohibit command & Commanding speed-position switching prohibit \\
\hline & X29 & & & & Movement amount change command & Commanding movement amount change \\
\hline & X2A & & & & High-level positioning control start command & Commanding high-level positioning control start \\
\hline & X2B & & & & Positioning start command (dedicated instruction) & Commanding positioning start \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Device name} & \multicolumn{4}{|c|}{Device} & \multirow[b]{2}{*}{Application} & \multirow[b]{2}{*}{Details when ON} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline \multirow{27}{*}{External input (command)} & X2C & \multicolumn{3}{|c|}{\multirow{15}{*}{-}} & M code OFF command & Commanding M code OFF \\
\hline & X2D & & & & JOG operation speed setting command & Commanding JOG operation speed setting \\
\hline & X2E & & & & Forward run JOG/inching command & Commanding forward run JOG/inching operation \\
\hline & X2F & & & & Reverse run JOG/inching command & Commanding reverse run JOG/inching operation \\
\hline & X30 & & & & Manual pulse generator operation enable command & Commanding manual pulse generator operation enable \\
\hline & X31 & & & & Manual pulse generator operation disable command & Commanding manual pulse generator operation disable \\
\hline & X32 & & & & Speed change command & Commanding speed change \\
\hline & X33 & & & & Override command & Commanding override \\
\hline & X34 & & & & Acceleration/deceleration time change command & Commanding acceleration/deceleration time change \\
\hline & X35 & & & & Acceleration/deceleration time change disable command & Commanding acceleration/deceleration time change disable \\
\hline & X37 & & & & Step operation command & Commanding step operation \\
\hline & X38 & & & & Skip operation command & Commanding skip operation \\
\hline & X39 & & & & Teaching command & Commanding teaching \\
\hline & X3A & & & & Continuous operation interrupt command & Commanding continuous operation interrupt command \\
\hline & X3B & & & & Restart command & Commanding restart \\
\hline & \multicolumn{4}{|c|}{X3C} & Parameter initialization command & Commanding parameter initialization \\
\hline & \multicolumn{4}{|c|}{X3D} & Flash ROM write command & Commanding flash ROM write \\
\hline & X3E & \multicolumn{3}{|c|}{\multirow{10}{*}{-}} & Error reset command & Commanding error reset \\
\hline & X3F & & & & Stop command & Commanding stop \\
\hline & X40 & & & & Position-speed switching operation command & Commanding position-speed switching operation \\
\hline & X41 & & & & Position-speed switching enable command & Commanding position-speed switching enable \\
\hline & X42 & & & & Position-speed switching prohibit command & Commanding position-speed switching prohibit \\
\hline & X43 & & & & Speed change command & Commanding speed change \\
\hline & X44 & & & & Inching movement amount setting command & Commanding inching movement amount setting \\
\hline & X45 & & & & Target position change command & Commanding target position change \\
\hline & X4D & & & & Speed-position switching control (ABS mode) setting command & Commanding speed-position switching control (ABS mode) setting \\
\hline & X4E & & & & Positioning start command (Y start) & Positioning start command being given \\
\hline \multirow[t]{3}{*}{External input (absolute position restoration)} & X47 & \multicolumn{2}{|r|}{\multirow{3}{*}{-}} & & ABS data bit 0 & - \\
\hline & X48 & & & & ABS data bit 1 & - \\
\hline & X49 & & & & Transmission data READY flag & - \\
\hline \multirow[t]{3}{*}{External output (absolute position restoration)} & Y50 & \multicolumn{3}{|c|}{\multirow{3}{*}{-}} & Servo ON signal & - \\
\hline & Y51 & & & & ABS transmission mode & - \\
\hline & Y52 & & & & ABS request mode & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Device name} & \multicolumn{4}{|c|}{Device} & \multirow[b]{2}{*}{Application} & \multirow[b]{2}{*}{Details when ON} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline \multirow{33}{*}{Internal relay} & M0 & \multicolumn{2}{|r|}{\multirow{23}{*}{-}} & \multirow[t]{23}{*}{} & OPR request OFF command & Commanding OPR request OFF \\
\hline & M1 & & & & OPR request OFF command pulse & OPR request OFF commanded \\
\hline & M2 & & & & OPR request OFF command storage & OPR request OFF command held \\
\hline & M3 & & & & Fast OPR command & Commanding fast OPR \\
\hline & M4 & & & & Fast OPR command storage & Fast OPR command held \\
\hline & M5 & & & & Positioning start command pulse & Positioning start commanded \\
\hline & M6 & & & & Positioning start command storage & Positioning start command held \\
\hline & M7 & & & & In-JOG/Inching operation flag & Operating JOG/Inching \\
\hline & M8 & & & & Manual pulse generator operation enable command & Commanding manual pulse generator operation enable \\
\hline & M9 & & & & Manual pulse generator operating flag & Operating manual pulse generator \\
\hline & M10 & & & & Manual pulse generator operation disable command & Commanding manual pulse generator operation disable \\
\hline & M11 & & & & Speed change command pulse & Speed change commanded \\
\hline & M12 & & & & Speed change command storage & Speed change command held \\
\hline & M13 & & & & Override command & Requesting override \\
\hline & M14 & & & & Acceleration/deceleration time change command & Requesting acceleration/deceleration time change \\
\hline & M16 & & & & Step operation command pulse & Step operation commanded \\
\hline & M17 & & & & Skip command pulse & Skip commanded \\
\hline & M18 & & & & Skip command storage & Skip command held \\
\hline & M19 & & & & Teaching command pulse & Teaching commanded \\
\hline & M20 & & & & Teaching command storage & Teaching command held \\
\hline & M21 & & & & Continuous operation interrupt command & Requesting continuous operation interrupt \\
\hline & M22 & & & & Restart command & Requesting restart \\
\hline & M23 & & & & Restart command storage & Restart command held \\
\hline & & \multicolumn{3}{|l|}{M24} & Parameter initialization command pulse & Parameter initialization commanded \\
\hline & & \multicolumn{3}{|c|}{M25} & Parameter initialization command storage & Parameter initialization command held \\
\hline & & \multicolumn{3}{|l|}{M26} & Flash ROM write command pulse & Flash ROM write commanded \\
\hline & & \multicolumn{2}{|l|}{M27} & & Flash ROM write command storage & Flash ROM write command held \\
\hline & M28 & \multicolumn{3}{|c|}{\multirow{6}{*}{-}} & Error reset & Error reset completed \\
\hline & M29 & & & & Stop command pulse & Stop commanded \\
\hline & M30 & & & & Target position change command pulse & Target position change commanded \\
\hline & M31 & & & & Target position change command storage & Target position change command held \\
\hline & M32 & & & & ZP.PSTRT1 instruction complete device & ZP.PSTRT1 instruction completed \\
\hline & M33 & & & & ZP.PSTRT1 instruction error failure device & ZP.PSTRT1 instruction failed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Device name} & \multicolumn{4}{|c|}{Device} & \multirow[b]{2}{*}{Application} & \multirow[b]{2}{*}{Details when ON} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline \multirow{12}{*}{Internal relay} & M34 & & \multirow{12}{*}{-} & & ZP.TEACH1 instruction complete device & ZP.TEACH1 instruction completed \\
\hline & M35 & & & & ZP.TEACH1 instruction failure device & ZP.TEACH1 instruction failed \\
\hline & M36 & & & & ZP.PINIT instruction complete device & ZP.PINIT instruction completed \\
\hline & M37 & & & & ZP.PINIT instruction failure device & ZP.PINIT instruction failed \\
\hline & M38 & & & & ZP.PFWRT instruction complete device & ZP.PFWRT instruction completed \\
\hline & M39 & & & & ZP.PFWRT instruction failure device & ZP.PFWRT instruction failed \\
\hline & M40 & & & & Absolute position restoration instruction pulse & Absolute position restoration commanded \\
\hline & M41 & & & & Absolute position restoration instruction storage & Absolute position restoration instruction held \\
\hline & M42 & & & & Z.ABRST instruction complete device & Z.ABRST instruction completed \\
\hline & M43 & & & & Z.ABRST instruction failure device & Z.ABRST instruction failed \\
\hline & M50 & & & & Basic parameter 1 setting complete device & Basic parameter 1 setting completed \\
\hline & M51 & & & & OPR basic parameter setting complete device & OPR basic parameter setting completed \\
\hline
\end{tabular}
(2) Data resisters and timers




\subsection*{6.3 Creating a program}

The "positioning control operation program" actually used is explained in this chapter. The functions and programs explained in PART 2 are assembled into the "positioning control operation program" explained here. (To monitor the control, add the required monitor program that matches the system. Refer to Section 5.6 "List of monitor data" for details on the monitor items.)

\subsection*{6.3.1 General configuration of program}

The general configuration of the "positioning control operation program" is shown below.


\subsection*{6.3.2 Positioning control operation program}

The various programs that configure the "positioning control operation program" are shown below. When creating the program, refer to the explanation of each program and Section 6.4 "Positioning program examples", and create an operation program that matches the positioning system. (Numbers are assigned to the following programs. Configuring the program in the order of these numbers is recommended.)




\subsection*{6.4 Positioning program examples}

An example of the "Axis 1" positioning program is given in this section.
---- [No. 1] to [No. 3] parameter and data setting program
* When setting the parameters or data with the sequence program, set them in the QD75 using the TO instruction from the CPU module. (Carry out the settings while the PLC READY signal [Y0] is OFF.)
* When setting the parameters or data with GX Configurator-QP, the [No. 1] to [No. 3] program is not necessary.

* No. 2 Positioning data setting program
* (For positioning data No. 1 <axis 1>)
* <Positioning identifier>
<Positioning identifier>
Operation pattern: Positioning complete
Operation pattern: Positioning complete
Control system: 1 -axis linear control (ABS)
Acceleration time No.: 1, deceleration time No.: 2


No. 3 Block start data setting program
Block start data of start block 0 (axis 1)
For setting of points 1 to 5
(Conditions)
Shape: Continued at points 1 to 4 , ended at point 5
Special start instruction: Normal start at all of points 1 to 5
<Positioning data are already preset>
[Setting of shape and start data No.]

\llSetting of positioning identifier>




```

* No. 22 Absolute position restoration program

```
* (1) Absolute position restoration command acceptance



\subsection*{6.5 Program details}

\subsection*{6.5.1 Initialization program}
[1] OPR request OFF program
This program forcibly turns OFF the "OPR request flag" (Md.31 Status : b3) which is ON.
When using a system that does not require OPR, assemble the program to cancel the "OPR request" made by the QD75 when the power is turned ON, etc.

Data requiring setting
Set the following data to use the OPR request flag OFF request.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Cd. 19 & OPR request flag OFF request & 1 & Set to "1: Turn OPR request flag OFF". & 1521 & 1621 & 1721 & 1821 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

Time chart for OPR request OFF


Fig. 6.1 Time chart for OPR request OFF
[2] External command function valid setting program
This program is used to validate the "external command signal" beforehand when using the external command functions (external start, speed change, speedposition switching, position-speed switching, skip). (Set which function to use beforehand in " Pr. 42 External command function selection".)
Set the following data to validate the "external command signal".
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \multirow{2}{*}{\begin{tabular}{c} 
Setting \\
value
\end{tabular}} & Setting details & \multicolumn{2}{|c|}{ Buffer memory address } \\
\cline { 5 - 8 } & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Cd.8 & External command valid & 1 & Set to "1: Validate external command". & 1505 & 1605 & 1705 \\
\hline
\end{tabular}

\footnotetext{
* Refer to Section 5.7 "List of control data" for details on the setting details.
}

\subsection*{6.5.2 Start details setting program}

This program sets which control, out of "OPR", "major positioning control" or "high-level positioning control" to execute. For " high-level positioning control", "fast OPR", "speedposition switching control" and "position-speed switching control", add the respectively required sequence program.
(Refer to CHAPTER 10 for details on starting the " high-level positioning control.)
- Procedures for setting the starting details
(1) Set the "positioning start No." corresponding to the control to be started in " Cd. 3 Positioning start No.".
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting details}} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Cd. 3 & Positioning start No. & \(\rightarrow\) & 1 to 600
9001
9002
9003
9004
7000 to 7004 & \begin{tabular}{l}
: Positioning data No. \\
: Machine OPR \\
: Fast OPR \\
: Current value changing \\
: Simultaneous start \\
: Block No. \\
(For "high-level positioning control")
\end{tabular} & 1500 & 1600 & 1700 & 1800 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
(2) For " high-level positioning control", set the "positioning start point No." of the block to be started in " Cd. 4 Positioning starting point No.".
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting details}} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Cd. 4 & Positioning starting point No. & \(\rightarrow\) & 1 to 50 : & Point No. of block start data & 1501 & 1601 & 1701 & 1801 \\
\hline
\end{tabular}

Refer to Section 5.7 "List of control data" for details on the setting details.
(3) Set the following control data for "speed-position switching control (INC mode)".
(Set " Cd. 23 Speed-position switching control movement amount change register as required". Setting is not required in the ABS mode.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Cd. 23 & Speed-position switching control movement amount change register & \(\rightarrow\) & Set the new value when the position control's movement amount is to be changed during speed control. & \[
\begin{aligned}
& 1526 \\
& 1527
\end{aligned}
\] & \[
\begin{aligned}
& 1626 \\
& 1627
\end{aligned}
\] & \[
\begin{aligned}
& 1726 \\
& 1727
\end{aligned}
\] & \[
\begin{aligned}
& 1826 \\
& 1827
\end{aligned}
\] \\
\hline Cd. 24 & Speed-position switching enable flag & 1 & When "1" is set, the speed-position switching signal will be validated. & 1528 & 1628 & 1728 & 1828 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
(4) For "position-speed switching control", set the control data shown below. (As required, set the " Cd. 25 Position-speed switching control speed change resister".)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline & \multirow[t]{2}{*}{Position-speed switching control speed change resister} & \multirow[b]{2}{*}{\(\rightarrow\)} & \multirow[t]{2}{*}{Used to set a new value when speed is changed during positioning control.} & 1530 & 1630 & 1730 & 1830 \\
\hline Cd. 25 & & & & 1531 & 1631 & 1731 & 1831 \\
\hline Cd. 26 & Position-speed switching enable flag & 1 & To validate position-speed switching signal, this is set to 1 . & 1532 & 1632 & 1732 & 1832 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

\subsection*{6.5.3 Start program}

This program is used to start the control with start commands.
The control can be started with the following two methods.
[1] Starting by inputting positioning start signal [Y10, Y11, Y12, Y13]
[2] Starting by inputting external command signal

1) Set the "positioning start No." in " Cd. 3 Positioning start No." according to the control to be started.
(In the above example, set positioning data No. "1".)
2) Input the positioning start signal [Y10] or the external command signal.
3) The positioning data No. "1" will start.

Fig. 6.2 Procedures for starting control (for axis 1)

\section*{Starting conditions}

To start the control, the following conditions must be satisfied.
The necessary start conditions must be incorporated in the sequence program so that the control is not started when the conditions are not satisfied.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal name}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal state}} & \multicolumn{4}{|c|}{Device} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \multirow{8}{*}{Interface signal} & PLC READY signal & ON & CPU module preparation completed & \multicolumn{4}{|c|}{Y0} \\
\hline & QD75 READY signal & ON & QD75 preparation completed & \multicolumn{4}{|c|}{X0} \\
\hline & Synchronization flag * & ON & QD75 buffer memory Accessible & \multicolumn{4}{|c|}{X1} \\
\hline & Axis stop signal & OFF & Axis stop signal is OFF. & Y4 & Y5 & Y6 & Y7 \\
\hline & M code ON signal & OFF & M code ON signal is OFF. & X4 & X5 & X6 & X7 \\
\hline & Error detection signal & OFF & No error is present. & X8 & X9 & XA & XB \\
\hline & BUSY signal & OFF & BUSY signal is OFF. & XC & XD & XE & XF \\
\hline & Start complete signal & OFF & Start complete signal is OFF. & X10 & X11 & X12 & X13 \\
\hline \multirow{4}{*}{External signal} & Drive unit READY signal & ON & Drive unit preparation completed & \multicolumn{4}{|c|}{-} \\
\hline & Stop signal & OFF & Stop signal is OFF. & \multicolumn{4}{|c|}{-} \\
\hline & Upper limit (FLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline & Lower limit (RLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline
\end{tabular}
*: When the synchronous setting of the CPU module is made in the nonsynchronous mode, this must be provided as an interlock.
When it is made in the synchronous mode, no interlock must be provided in the program because the flag is turned ON when calculation is run on the CPU module.

\section*{[1] Starting by inputting positioning start signal}

Operation when starting
(1) When the positioning start signal turns ON , the start complete signal and BUSY signal turn ON, and the positioning operation starts. It can be seen that the axis is operating when the BUSY signal is ON.
(2) When the positioning start signal turns OFF, the start complete signal also turns OFF.
If the positioning start signal is ON even after positioning is completed, the start complete signal will remain ON.
(3) If the positioning start signal turns ON again while the BUSY signal is ON, the warning "Start during operation" (warning code: 100) will occur.
(4) The process taken when positioning is completed will differ according to case (a) and (b) below.
(a) When next positioning is not to be carried out
- If a dwell time is set, the system will wait for the set time to pass, and then positioning will be completed.
- When positioning is completed, the BUSY signal will turn OFF and the positioning complete signal will turn ON. However, when using speed control or when the positioning complete signal ON time is " 0 ", the signal will not turn ON.
- When the positioning complete signal ON time is passed, the positioning complete signal will turn OFF.
(b) When next positioning is to be carried out
- If a dwell time is set, the system will wait for the set time to pass.
- When the set dwell time is passed, the next positioning will start.


Fig. 6.3 ON/OFF timing of each signal at start of positioning

\section*{POINTS}

The BUSY signal [XC, XD, XE, XF] turns ON even when position control of movement amount 0 is executed. However, since the ON time is short, the ON status may not be detected in the sequence program.
(The ON status of the start complete signal [ \(\mathrm{X} 10, \mathrm{X} 11, \mathrm{X} 12, \mathrm{X} 13\) ], positioning complete signal [X14, \(\mathrm{X} 15, \mathrm{X} 16, \mathrm{X} 17\) ] and M code ON signal \([\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7\) ] can be detected in the sequence program.)

Starting time chart
The time chart for starting each control is shown below.
(1) Time chart for starting "machine OPR"


Fig. 6.4 Time chart for starting "machine OPR"
(2) Time chart for starting "fast OPR"


Fig. 6.5 Time chart for starting "fast OPR"
(3) Time chart for starting "major positioning control"


Fig. 6.6 Time chart for starting "major positioning control"
(4) Time chart for starting "speed-position switching control"


Fig. 6.7 Time chart for starting "speed-position switching control"
(5) Time chart for starting "position-speed switching control"


Fig. 6.8 Time chart for starting "position-speed switching control"

Machine OPR operation timing and process time


Fig. 6.9 Machine OPR operation timing and process time
Normal timing time
\begin{tabular}{|c|c|c|c|c|}
\hline Model & t 1 & t 2 & t 3 & t 4 \\
\hline QD75P \(\square \mathrm{N} / \mathrm{QD} 75 \mathrm{D} \square \mathrm{N}\) & 0.2 to 1.1 ms & 0.4 to 1.3 ms & 0 to 0.9 ms & 0 to 0.9 ms \\
\hline QD75P \(\square / \mathrm{QD} 75 \mathrm{D} \square\) & 1.0 to 1.4 ms & 2.7 to 4.4 ms & 0 to 1.8 ms & 0 to 1.8 ms \\
\hline
\end{tabular}
- The t1 timing time could be delayed depending on the operating conditions of the other axis.

Position control operation timing and process time


Fig. 6.10 Position control operation timing and process time
- When the positioning start signal turns \(O N\), if all signals marked with an asterisk ( \(*\) ) are already ON, the signals marked with an asterisk ( \(*\) ) will turn OFF when the positioning start signal turns ON.

Normal timing time
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model & t 1 & t 2 & t 3 & t 4 & t & t \\
\hline QD75P \(\square \mathrm{N} / \mathrm{QD} 75 \mathrm{D} \square \mathrm{N}\) & 0.2 to 1.1 ms & 0 to 0.9 ms & 0 to 0.9 ms & 0.4 to 1.3 ms & 0 to 0.9 ms & t6 \\
\hline Qollows \\
\hline QD75P \(\square\) QD75D \(\square\) & 1.2 to 2.3 ms & 0 to 1.8 ms & 0 to 1.8 ms & 2.7 to 4.4 ms & 0 to 1.8 ms & parameters \\
\hline
\end{tabular}
- The t1 timing time could be delayed depending on the operating conditions of the other axis.

\section*{[2] Starting by inputting external command signal}

When starting positioning control by inputting the external command signal, the start command can be directly input into the QD75. This allows the variation time equivalent to one scan time of the CPU module to be eliminated. This is an effective procedure when operation is to be started as quickly as possible with the start command or when the starting variation time is to be suppressed. To start positioning control by inputting the external command signal, set the "data required to be set" and then turn ON the external command signal.

\section*{- Restrictions}

When starting by inputting the external command signal, the start complete signal [X10, X11, X12, X13] will not turn ON.

Data required to be set
To execute positioning start with the external command signal, set parameter (Pr. 42 ) beforehand, and validate the "external command signal" with the "External command function valid setting program (program No. 5)".
\begin{tabular}{|c|l|c|l|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \multirow{2}{*}{\begin{tabular}{c} 
Setting \\
value
\end{tabular}} & \multirow{2}{*}{ Setting details } & \multicolumn{2}{|c|}{ Buffer memory address } \\
\cline { 5 - 10 } & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr.42 & \begin{tabular}{l} 
External command \\
function selection
\end{tabular} & 0 & Set to "0: External positioning start". & 62 & 212 & 362 & 512 \\
\hline Cd.8 & External command valid & 1 & Set to "1: Validate external command". & 1505 & 1605 & 1705 & 1805 \\
\hline
\end{tabular}
* Refer to CHAPTER 5 "DATA USED FOR POSITIONING CONTROL" for details on the setting details.

Starting time chart


Fig. 6.11 Time chart for starting with external start signal

\subsection*{6.5.4 Continuous operation interrupt program}

During positioning control, the control can be interrupted during continuous positioning control and continuous path control (continuous operation interrupt function). When "continuous operation interruption" is execution, the control will stop when the operation of the positioning data being executed ends. To execute continuous operation interruption, set "1: Continuous operation interrupt request" for " Cd. 18 Continuous operation interrupt request".
[1] Operation during continuous operation interruption


Fig. 6.12 Operation during continuous operation interruption

\section*{[2] Restrictions}
(1) When the "continuous operation interrupt request" is executed, the positioning will end.
Thus, after stopping, the operation cannot be "restarted".
When " Cd. 6 Restart command" is issued, a warning "Restart not possible" (warning code: 104) will occur.
(2) Even if the stop command is turned ON after executing the "continuous operation interrupt request", the "continuous operation interrupt request" cannot be canceled.
Thus, if "restart" is executed after stopping by turning the stop command ON, the operation will stop when the positioning data No. where "continuous operation interrupt request" was executed is completed.

(3) If the operation cannot be decelerated to a stop because the remaining distance is insufficient when "continuous operation interrupt request" is executed with continuous path control, the interruption of the continuous operation will be postponed until the positioning data shown below.
- Positioning data No. have sufficient remaining distance
- Positioning data No. for positioning complete (pattern: 00)
- Positioning data No. for continuous positioning control (pattern: 01)

(4) When operation is not performed (BUSY signal [XC, XD, XE, XF] is OFF), the interrupt request during continuous operation is not accepted. It is cleared to 0 at a start or restart.
[3] Control data requiring settings
Set the following data to interrupt continuous operation.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Cd. 18 & Continuous operation interrupt request & 1 & Set "1: Continuous operation interrupt request". & 1520 & 1620 & 1720 & 1820 \\
\hline
\end{tabular}

\footnotetext{
* Refer to Section 5.7 "List of control data" for details on the setting details.
}

\subsection*{6.5.5 Restart program}

When a stop factor occurs during position control and the operation stops, the positioning can be restarted from the stopped position to the position control end point by using the "restart command" (Cd. 6 Restart command).
("Restarting" is not possible when "continuous operation is interrupted.")
This instruction is efficient when performing the remaining positioning from the stopped position during position control of incremental system such as the INC Linear 1.
(Calculation of remaining distance is not required.)

\section*{[1] Restart operation}

After a deceleration stop by the stop command is completed, write " 1 " to the " Cd. 6 Restart command" with " Md. 26 Axis operation status" is "Stopped" and the positioning restarts.


Fig. 6.13 Restart operation

\section*{[2] Restrictions}
(1) Restarting can be executed only when the " Md. 26 Axis operation status" is "Stopped (the deceleration stop by stop command is completed)". If the axis operation is not "stopped", restarting is not possible.
In this case, a warning "Restart not possible" (warning code: 104) will occur, and the process at that time will be continued.
(2) Restarting can be executed even while the positioning start signal is ON. However, make sure that the positioning start signal does not change from OFF to ON while " Md. 26 Axis operation status" is "Stopped". If the signal is changed from OFF to ON while " Md. 26 Axis operation status" is "Stopped", the normal positioning (the positioning data set in
" Cd. 3 Positioning start signal") is started.
(3) If the PLC READY signal is turned ON from OFF while " Md. 26 Axis operation status" is "Stopped", the positioning cannot be restarted. If restart is requested, a warning "Restart not possible" (warning code: 104) will occur.
(4) Do not execute restart while the stop command is ON.

If restart is executed while stopped, an error "Stop signal ON at start" (error code: 106) will occur, and the " Md. 26 Axis operation status" will change to "Error".
Thus, even if the error is reset, the operation cannot be restarted.
(5) If positioning is ended with the continuous operation interrupt request, the operation cannot be restarted.
If restart is requested, a warning "Restart not possible" (warning code: 104) will occur.
(6) When stopped with interpolation operation, write "1: Restarts" into " Cd. 6 Restart command" for the reference axis, and then restart.
(7) If any of reference partner axes executes the positioning operation once, a warning "Restart not possible" (warning code: 104) will occur, and the positioning cannot restarts.
(8) When the machine OPR and fast OPR is stopped, an error "OPR restart not possible" (error code: 209) will occur and the positioning cannot restarts.

\section*{[3] Control data requiring setting}

Set the following data to execute restart.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \multirow{2}{*}{\begin{tabular}{c} 
Setting \\
value
\end{tabular}} & \multirow{2}{*}{ Setting details } & \multicolumn{3}{|c|}{ Buffer memory address } \\
\cline { 5 - 9 } & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \hline Cd.6 & Restart command & 1 & Set "1: Restarts". & 1503 & 1603 & 1703 & 1803 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

\section*{[4] Starting conditions}

The following conditions must be satisfied when restarting. (Assemble the required conditions into the sequence program as an interlock.)
(1) Operation state
" Md. 26 Axis operation status" is "1: Stopped"
(2) Signal state
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal name}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal state}} & \multicolumn{4}{|c|}{Device} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \multirow{8}{*}{Interface signal} & PLC READY signal & ON & CPU module preparation completed & \multicolumn{4}{|c|}{Y0} \\
\hline & QD75 READY signal & ON & QD75 preparation completed & \multicolumn{4}{|c|}{X0} \\
\hline & Synchronization flag * & ON & QD75 buffer memory Accessible & \multicolumn{4}{|c|}{X1} \\
\hline & Axis stop signal & OFF & Axis stop signal is OFF & Y4 & Y5 & Y6 & Y7 \\
\hline & M code ON signal & OFF & M code ON signal is OFF & X4 & X5 & X6 & X7 \\
\hline & Error detection signal & OFF & No error is present & X8 & X9 & XA & XB \\
\hline & BUSY signal & OFF & BUSY signal is OFF & XC & XD & XE & XF \\
\hline & Start complete signal & OFF & Start complete signal is OFF & X10 & X11 & X12 & X13 \\
\hline \multirow{4}{*}{External signal} & Drive unit READY signal & ON & Drive unit preparation completed & \multicolumn{4}{|c|}{-} \\
\hline & Stop signal & OFF & Stop signal is OFF & \multicolumn{4}{|c|}{-} \\
\hline & Upper limit (FLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline & Lower limit (RLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline
\end{tabular}
*: When the synchronous setting of the CPU module is made in the nonsynchronous mode, this must be provided as an interlock.
When it is made in the synchronous mode, no interlock must be provided in the program because the flag is turned ON when calculation is run on the CPU module.
(5) Time chart for restarting


Fig. 6.14 Time chart for restarting

\subsection*{6.5.6 Stop program}

The axis stop signal [Y4, Y5, Y6, Y7] or a stop signal from an external source is used to stop the control.
Create a program to turn ON the axis stop signal \([\mathrm{Y} 4, \mathrm{Y} 5, \mathrm{Y} 6, \mathrm{Y} 7]\) as the stop program.

The process for stopping control is explained below.
Each control is stopped in the following cases.
(1) When each control is completed normally.
(2) When the drive unit READY signal is turned OFF.
(3) When a CPU module error occurs
(4) When the PLC READY signal is turned OFF.
(5) When an error occurs in QD75.
(6) When control is intentionally stopped
(Stop signal from CPU module turned ON, stop signal from peripheral devices)
The stop process for the above cases is shown below.
(Excluding item (1) above "When each control is completed normally".)
[1] Stop process
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{3}{*}{Stop cause}} & \multirow[b]{3}{*}{Stop axis} & \multirow[b]{3}{*}{M code ON signal after stop} & \multirow[t]{3}{*}{\begin{tabular}{c} 
Axis \\
operation \\
status \\
\(\left(\begin{array}{c}\text { Md.26 } \\
\text { after } \\
\text { stopping }\end{array}\right.\) \\
\hline
\end{tabular}} & \multicolumn{6}{|c|}{Stop process} \\
\hline & & & & & \multicolumn{2}{|l|}{OPR control} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Major } \\
& \text { positioning } \\
& \text { control }
\end{aligned}
\]} & \multirow[b]{2}{*}{High-level positioning control} & \multicolumn{2}{|l|}{Manual control} \\
\hline & & & & & Machine OPR control & Fast OPR control & & & JOG/ Inching operation & Manual pulse generator operation \\
\hline Forced stop & Drive unit READY signal OFF & Each axis & No change & Error & \multicolumn{5}{|l|}{Immediate stop} & Deceleration stop \\
\hline Fatal stop (Stop group 1) & Hardware stroke limit upper/lower limit error occurrence & Each axis & No change & Error & \multicolumn{5}{|l|}{Deceleration stop/sudden stop
(Select with " Pr. 37 Stop group 1 sudden stop
selection".} & Deceleration stop \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Emergency stop \\
(Stop group 2)
\end{tabular}} & \begin{tabular}{|l|}
\hline CPU module \\
error occurrence \\
\hline \begin{tabular}{l} 
PLC READY \\
signal OFF
\end{tabular} \\
\hline
\end{tabular} & \multirow[t]{2}{*}{All axes} & \begin{tabular}{l}
No \\
change \\
Turns OFF
\end{tabular} & \multirow[t]{2}{*}{Error} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Delegation stop/sudden stop \\
(Select with " Pr. 38 Stop group 2 sudden stop selection".
\end{tabular}}} & \multirow[t]{2}{*}{Deceleration stop} \\
\hline & Error in test mode & & No change & & & & & & & \\
\hline \begin{tabular}{l}
Relatively safe stop \\
(Stop group 3)
\end{tabular} & Axis error detection (Error other than stop group 1 or 2) & \multirow[t]{2}{*}{Each axis} & \multirow[t]{2}{*}{No change} & \multirow[t]{2}{*}{Error} & \multicolumn{5}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{l}
Deceleration stop/sudden stop \\
(Select with " Pr. 39 Stop group 3 sudden stop selection".
\end{tabular}}} & \multirow[b]{3}{*}{Deceleration stop} \\
\hline & "Stop" input from peripheral device & & & & & & & & & \\
\hline Intentional stop (Stop group 3) & \begin{tabular}{|l|}
\hline "Stop signal" ON \\
from external \\
source \\
\hline "Axis stop signal" \\
\hline ON from CPU \\
module \\
\hline
\end{tabular} & Each axis & No change & Stopped (Standby) & & & & & & \\
\hline
\end{tabular}

\section*{[2] Types of stop processes}

The operation can be stopped with deceleration stop, sudden stop or immediate stop.
(1) Deceleration stop *1

The operation stops with "deceleration time 0 to 3" (Pr.10, Pr.28, Pr.29, Pr. 30 ).
Which time from "deceleration time 0 to 3 " to use for control is set in positioning data (Da.4).
(2) Sudden stop

The operation stops with " Pr. 36 Sudden stop deceleration time".
(3) Immediate stop

The operation does not decelerate.
The QD75 immediately stops the pulse output, but the operation will coast for the droop pulses accumulated in the drive unit's deviation counter.


Fig. 6.15 Types of stop processes

\section*{REMARK}
*1 "Deceleration stop" and "sudden stop" are selected with the details parameter 2 "stop group 1 to 3 sudden stop selection". (The default setting is "deceleration stop".)

\section*{[3] Order of priority for stop process}

The order of priority for the QD75 stop process is as follows.
Deceleration stop < Sudden stop < Immediate stop
(1) If the deceleration stop command ON (stop signal ON) or deceleration stop cause occurs during deceleration to speed 0 (including automatic deceleration), operation changes depending on the setting of " Cd. 42 Stop command processing for deceleration stop selection".
(a) Manual control

Independently of the Cd. 42 setting, a deceleration curve is re-processed from the speed at stop cause occurrence.
(b) OPR control, positioning control
- When Cd. \(42=0\) (deceleration curve re-processing): A deceleration curve is re-processed from the speed at stop cause occurrence.
- When Cd. \(42=1\) (deceleration curve continuation):

The current deceleration curve is continued after stop cause occurrence. (For details, refer to "Section 12.7.9 Stop command processing for deceleration stop function".)
(2) If the stop signal ON or stop cause specified for a sudden stop occurs during deceleration, sudden stop process will start at that point.
However, if the sudden stop deceleration time is longer than the deceleration time, the deceleration stop process will be continued even if a sudden stop cause occurs during the deceleration stop process.

(3) Operation will stop immediately if the target reaches the positioning address specified in the currently executed positioning data during deceleration of position control.
\(\qquad\)

\title{
CHAPTER 7 MEMORY CONFIGURATION AND DATA PROCESS
}

The QD75 memory configuration and data transmission are explained in this chapter.
The QD75 is configured of two memories. By understanding the configuration and roles of two memories, the QD75 internal data transmission process, such as "when the power is turned ON" or "when the PLC READY signal changes from OFF to ON" can be easily understood. This also allows the transmission process to be carried out correctly when saving or changing the data.
7.1 Configuration and roles of QD75 memory ..... 7- 2
7.1.1 Configuration and roles of QD75 memory ..... 7- 2
7.1.2 Buffer memory area configuration ..... 7- 5
7.2 Data transmission process ..... 7- 6

\subsection*{7.1 Configuration and roles of QD75 memory}

\subsection*{7.1.1 Configuration and roles of QD75 memory}

The QD75 is configured of the following two memories.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Memory configuration} & \multirow[b]{2}{*}{Role} & \multicolumn{6}{|c|}{Area configuration} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \stackrel{\stackrel{\rightharpoonup}{7}}{0} \\
& \stackrel{\rightharpoonup}{\tilde{D}}
\end{aligned}
\]} \\
\hline & &  &  &  &  &  &  & \\
\hline - Buffer memory & Area that can be directly accessed with sequence program from CPU module. & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & Not possible \\
\hline - Flash ROM & Area for backing up data required for positioning. & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & - & Possible \\
\hline
\end{tabular}

O : Setting and storage area provided, Not possible: Data is lost when power is turned OFF
- : Setting and storage area not provided, Possible: Data is held even when power is turned OFF

Details of areas
- Parameter area

Area where parameters, such as positioning parameters and OPR parameters, required for positioning control are set and stored.
(Set the items indicated with Pr. 1 to Pr.57, Pr. 150 for each axis.)
- Monitor data area

Area where positioning system or QD75 operation state is stored.
(Set the items indicated with Md.1 to Md.48, Md.50 to Md.52 *1.)
*1: Md. 50 to Md.52 are for the QD75P■N/QD75D■N only.
- Control data area

Area where data for operating and controlling positioning system is set and stored. (Set the items indicated with Cd. 1 to Cd.42.)
- Positioning data area (No. 1 to 600 )

Area where positioning data No. 1 to 600 is set and stored.
(Set the items indicated with Da. 1 to Da. 10 for each positioning data.)
- Block start data area (No. 7000 to 7004)

Area where information required only when carrying out block No. 7000 to 7004 high-level positioning is set and stored. (Set the items indicated with Da. 11 to Da.19.)
- PLC CPU memo area

Area where condition judgment values required for special positioning, etc., are set and stored.


\subsection*{7.1.2 Buffer memory area configuration}

The QD75 buffer memory is configured of the following types of areas.

*1: Use of address Nos. skipped above is prohibited. If used, the system may not operate correctly.
*2: 1440 to 1487 are not used for the QD75P \(\square\) QD75D \(\square\).

\subsection*{7.2 Data transmission process}

The data is transmitted between the QD75 memories with steps (1) to (8) shown below. *The data transmission patterns numbered (1) to (8) on the right page correspond to the numbers (1) to (8) on the left page.

(1) Transmitting data when power is turned ON or CPU module is reset
\((\square)\)
When the power is turned ON or the CPU module is reset, the "parameters", "positioning data" and "block start data" stored (backed up) in the flash ROM is transmitted to the buffer memory.
(2) Transmitting data with TO instruction from CPU module \((\square)\)
The parameters or data is written from the CPU module to the buffer memory using the TO instruction. At this time, when the "parameter area (b) \(* 1\) ", "positioning data (No. 1 to 600)", "block start data (No. 7000 to 7004)", "control data" and "PLC CPU memo area" are written into the buffer memory with the TO instruction, it is simultaneously valid.
*1 Parameter area (b) ...... Parameters validated with the next each positioning control is started.
\[
\text { (Pr. } 8 \text { to Pr. } 10, \text { Pr. } 25 \text { to Pr. } 42 \text { ) }
\]
(3) Validate parameters when PLC READY signal [YO] changes from OFF to ON
When the PLC READY signal [YO] changes from OFF to ON, the data stored in the buffer memory's "parameter area (a) \(* 2\) " is validated.
For Pr. 5 , however, only the data obtained first after the PLC READY signal [Y0] changes from OFF to ON when the power is turned ON or CPU module is reset becomes validate.
(Refer to Section 5.2 "List of parameters" for details.)
*2: Parameter area (a) .... Parameters validated when PLC READY signal [Y0] changes from OFF to ON.
(Pr.1] to Pr.7, Pr. 11 to Pr. 24 , Pr. 43 to Pr.

\section*{POINT}

The setting values of the parameters that correspond to parameter area (b) are valid when written into the buffer memory with the TO instruction.
However, the setting values of the parameters that correspond to parameter area
(a) are not validated until the PLC READY signal [YO] changes from OFF to ON.
(4) Accessing with FROM instruction from CPU module ( \(\pi 1 /\) )

The data is read from the buffer memory to the CPU module using the FROM instruction.

\section*{Peripheral device}
(5) Flash ROM write
(Set "1" in Cd. 1 with TO instruction)
(6) Flash ROM write request

(6) Flash ROM write request


\section*{(5) Flash ROM write ( \(\quad\) )}

The following transmission process is carried out by setting "1" in " Cd. 1 Flash ROM write request" (buffer memory [1900]).
1) The "parameters", "positioning data (No. 1 to 600)" and "block start data (No. 7000 to 7004)" in the buffer memory area are transmitted to the flash ROM.
The writing to the flash ROM may also be carried out using a dedicated instruction "ZP.PFWRT". (Refer to CHAPTER 14 "DEDICATED INSTRUCTIONS" for details.)
(6) Flash ROM request (writing)


The following transmission processes are carried out with the [flash ROM request] (write) from the peripheral device.
1) The "parameters", "positioning data (No. 1 to 600)" and "block start data (No. 7000 to 7004)" in the buffer memory area are transmitted to the flash ROM.
Note) This transmission process is the same as (5) above.

\section*{IMPORTANT}
(1) Do not turn the power OFF or reset the CPU module while writing to the flash ROM. If the power is turned OFF or the CPU module is reset to forcibly end the process, the data backed up in the flash ROM will be lost.
(2) Do not write the data to the buffer memory before writing to the flash ROM is completed.
(3) The number of writes to the flash ROM with the programmable controller program is 25 max. while the power is turned ON.
Writing to the flash ROM beyond 25 times will cause the error "Flash ROM write number error" (error code: 805).
Refer to Section 15.3 "List of errors" for details.

(7) Reading data from buffer memory to peripheral device


The following transmission processes are carried out with the [Read from module] from the peripheral device.
1) The "parameters", "positioning data (No. 1 to 600)" and "block start data (No. 7000 to 7004)" in the buffer memory area are transmitted to the peripheral device via the CPU module.

The following transmission processes are carried out with the [monitor] from the peripheral device.
2) The "monitor data" in the buffer memory area is transmitted to the peripheral device via the CPU module.
(8) Writing data from peripheral device to buffer memory (

The following transmission processes are carried out with the [Write to module] from the peripheral device.
1) The "parameters", "positioning data (No. 1 to 600)" and "block start data (No. 7000 to 7004)" in the peripheral device area transmitted to the buffer memory via the CPU module.

At this time, when [Flash ROM write] is set with the peripheral device, the transmission processes indicated with the following are carried out.
(5) Flash ROM write

The data transmission is carried out as shown in the previous pages, but the main method of using this data process is shown below.
(Ex.) Setting the positioning data
The following methods can be used to set the positioning data.


\section*{PART 2 CONTROL DETAILS AND SETTING}

PART 2 is configured for the following purposes (1) to (3).
(1) To understand the operation and restrictions of each control.
(2) To carry out the required settings in each control.
(3) To deal with errors.

The required settings in each control include parameter setting, positioning data setting, control data setting by a sequence program, etc.
Carry out these settings while referring to CHAPTER 5 "DATA USED FOR POSITIONING CONTROL".
Also refer to CHAPTER 6 "SEQUENCE PROGRAMS USED FOR POSITIONING CONTROL" when creating the programs required in each control, and consider the entire control program configuration when creating each program.
CHAPTER 8 OPR CONTROL 8- 1 to 8-24
CHAPTER 9 MAJOR POSITIONING CONTROL ..... 9- 1 to \(9-120\)
CHAPTER 10 HIGH-LEVEL POSITIONING CONTROL ..... 10- 1 to 10-28
CHAPTER 11 MANUAL CONTROL ..... 11- 1 to 11-34
CHAPTER 12 CONTROL SUB FUNCTIONS ..... 12- 1 to 12-110
CHAPTER 13 COMMON FUNCTIONS ..... 13- 1 to 13- 8
CHAPTER 14 DEDICATED INSTRUCTIONS ..... 14- 1 to 14-24
CHAPTER 15 TROUBLESHOOTING 15- 1 to 15-48

MEMO

\section*{CHAPTER 8 OPR CONTROL}

The details and usage of "OPR control" are explained in this chapter.

OPR control includes "machine OPR" that establish a machine OP without using address data, and "fast OPR" that store the coordinates established by the machine OPR, and carry out positioning to that position.
OPR carried out by sequence programs from the CPU module are explained in this chapter.
Refer to GX Configurator-QP Operating Manual for details on OPR using the peripheral device.
8.1 Outline of OPR control ..... 8- 2
8.1.1 Two types of OPR control ..... 8- 2
8.2 Machine OPR ..... 8- 4
8.2.1 Outline of the machine OPR operation ..... 8- 4
8.2.2 Machine OPR method ..... 8- 5
8.2.3 OPR method (1): Near-point dog method ..... 8- 7
8.2.4 OPR method (2): Stopper method 1) ..... 8- 9
8.2.5 OPR method (3): Stopper method 2) ..... 8-12
8.2.6 OPR method (4): Stopper method 3) ..... 8-15
8.2.7 OPR method (5): Count method 1) ..... 8-17
8.2.8 OPR method (6): Count method 2) ..... 8-20
8.3 Fast OPR ..... 8-23
8.3.1 Outline of the fast OPR operation ..... 8-23

\subsection*{8.1 Outline of OPR control}

\subsection*{8.1.1 Two types of OPR control}

In "OPR control" a position is established as the starting point (or "OP") when carrying out positioning control, and positioning is carried out toward that starting point.
It is used to return a machine system at any position other than the OP to the OP when the QD75 issues a "OPR request" \(*\) with the power turned ON or others, or after a positioning stop.

In the QD75, the two types of controls shown below are defined as "OPR control", following the flow of the OPR work.
These two types of OPR control can be executed by setting the "OPR parameters", setting "Positioning start No. 9001" and "Positioning start No. 9002" prepared beforehand in the QD75 to " Cd. 3 Positioning start No.", and turning ON the positioning start signal.
The ZP.PSTRT \(\square\) start numbers of the dedicated instruction can also be set to 9001 or 9002 to execute the OPR control. (For details, refer to CHAPTER 14 "DEDICATED INSTRUCTIONS".)
(1) Establish a positioning control OP
- "Machine OPR" (positioning start No. 9001)
(2) Carry out positioning toward the OP
- "Fast OPR" (positioning start No. 9002).
* The "machine OPR" in (1) above must always be carried out before executing the "fast OPR" in (2).

\section*{REMARK}

\section*{OPR request *}

The "OPR request flag" (Md.31 Status: b3) must be turned ON in the QD75, and a machine OPR must be executed in the following cases.
- When the power is turned ON
- At the ON \(\rightarrow\) OFF of the drive unit READY signal (Md.30 External input/output signal: b2).
- At the OFF \(\rightarrow\) ON of the PLC READY signal [Y0]

The address information stored in the QD75 cannot be guaranteed while the "OPR request flag" is ON.
The "OPR request flag" turns OFF and the "OPR complete flag" (Md.31 Status: b4) turns ON if the machine OPR is executed and is completed normally.

\section*{OPR sub functions}

Refer to Section 3.2.4 "Combination of QD75 main functions and sub functions" for details on "sub functions" that can be combined with OPR control. Also refer to CHAPTER 12 "CONTROL SUB FUNCTIONS" for details on each sub function.

\section*{[Remarks]}

The following two sub functions are only related to machine OPR.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Sub function name } & Machine OPR & Fast OPR & Reference \\
\hline OPR retry function & \(\triangle\) & \(\times\) & Section 12.2.1 \\
\hline OP shift function & \(\bigcirc\) & \(\times\) & Section 12.2.2 \\
\hline
\end{tabular}
\(\bigcirc\) : Combination possible, \(\triangle\) : Restricted, \(\times\) : Combination not possible

When an OPR is not required
Control can be carried out ignoring the "OPR request flag" (Md.31 Status: b3) in systems that do not require an OPR.
In this case, the "OPR parameters (Pr. 43 to Pr. 57 )" must all be set to their initial values or a value at which an error does not occur.

OPR from peripheral devices
"Machine OPR" and "fast OPR" can be executed from the test mode of the peripheral device.
Refer to GX Configurator-QP Operating Manual for details on OPR from the peripheral device.

\subsection*{8.2 Machine OPR}

\subsection*{8.2.1 Outline of the machine OPR operation}

\section*{Important}

Use the OPR retry function when the OP position is not always in the same direction from the workpiece operation area (when the OP is not set near the upper or lower limit of the machine).
*The machine OPR may not complete unless the OPR retry function is used.

\section*{Machine OPR operation}

In a machine OPR, a machine OP is established.
None of the address information stored in the QD75, CPU module, or servo is used at this time. The position mechanically established after the machine OPR is regarded as the "OP" to be the starting point for positioning control.
The method for establishing an "OP" by a machine OPR differs according to the method set in " Pr. 43 OPR method".
The following shows the operation when starting a machine OPR.
\begin{tabular}{|c|l|}
\hline 1) & The machine OPR is started. \\
\hline 2) & \begin{tabular}{l} 
The operation starts according to the speed and direction set in the OPR parameters \\
( Pr.43 to Pr.57).
\end{tabular} \\
\hline 3\()\) & \begin{tabular}{l} 
The "OP" is established by the method set in " Pr.43 OPR method", and the \\
machine stops. (Refer to Sections 8.2.2 to 8.2.8)
\end{tabular} \\
\hline 4\()\) & \begin{tabular}{l} 
If "a" is set as " Pr.45 OP address", "a" will be stored as the current position in the \\
" Md.20 Current feed value" and " Md.21 Machine feed value" which are \\
monitoring the position.
\end{tabular} \\
\hline 5\()\) & The machine OPR is completed. \\
\hline
\end{tabular}
* The " Pr. 45 OP address" is a fixed value set by the user.


Fig. 8.1 Example of a machine OPR

\subsection*{8.2.2 Machine OPR method}

The method by which the machine OP is established (method for judging the OP position and machine OPR completion) is designated in the machine OPR according to the configuration and application of the positioning method.
The following table shows the six methods that can be used for this OPR method. (The OPR method is one of the items set in the OPR parameters. It is set in " Pr. 43 OPR method" of the basic parameters for OPR.)
\begin{tabular}{|c|c|}
\hline Pr. 43 OPR method & Operation details \\
\hline Near-point dog method & \begin{tabular}{l}
Deceleration starts by the OFF \(\rightarrow\) ON of the near-point dog. (Speed is reduced to " Pr. 47 Creep speed".) \\
The operation stops at the first zero signal* after the near-point dog turns from ON \(\rightarrow\) OFF. When a "deviation counter clear output" is completed, the machine OPR is completed.
\end{tabular} \\
\hline Stopper method 1) & \begin{tabular}{l}
The stopper position is regarded as the OP. \\
After the deceleration starts by the OFF \(\rightarrow\) ON of the near-point dog, the machine presses against the stopper at the "Pr. 47 Creep speed" and stops. \\
The machine OPR is regarded as completed on completion of the deviation counter clear output provided after " Pr. 49 OPR dwell time" passed after stoppage.
\end{tabular} \\
\hline Stopper method 2) & \begin{tabular}{l}
The stopper position is regarded as the OP. \\
After the deceleration starts by the OFF \(\rightarrow\) ON of the near-point dog, the machine presses against the stopper at the "Pr. 47 Creep speed" and stops. \\
The machine OPR is regarded as completed on completion of the deviation counter clear output provided after the zero signal \(*\) is detected after stoppage.
\end{tabular} \\
\hline Stopper method 3) & \begin{tabular}{l}
The stopper position is regarded as the OP. \\
The machine starts at the " Pr. 47 Creep speed" from the beginning, then presses against the stopper at the " Pr. 47 Creep speed" and stops. \\
The machine OPR is regarded as completed on completion of the deviation counter clear output provided after the zero signal \(*\) is detected after stoppage.
\end{tabular} \\
\hline Count method 1) & \begin{tabular}{l}
The deceleration starts by the OFF \(\rightarrow\) ON of the near-point dog, and the machine moves at the " Pr. 47 Creep speed". \\
The machine stops at the zero signal \(*\) after moving the distance set in the " Pr. 50 Setting for the movement amount after near-point dog ON" from the near point dog OFF \(\rightarrow\) ON position. When a "deviation counter clear signal output" is completed, the machine OPR is regarded as completed.
\end{tabular} \\
\hline Count method 2) & \begin{tabular}{l}
The deceleration starts by the OFF \(\rightarrow\) ON of the near-point dog, and the machine moves at the " Pr. 47 Creep speed". \\
The machine moves the distance set in the "Pr. 50 Setting for the movement amount after near-point dog ON" from the near point dog OFF \(\rightarrow\) ON position, and stops at that position. The machine OPR is then regarded as completed.
\end{tabular} \\
\hline
\end{tabular}
*: The following are the signals input as the zero signals of the QD75 in the corresponding OPR methods.
Near-point dog method, count method 1): Signal that is output as a single pulse at one motor revolution (e.g. Z-phase signal output from the drive unit)
Stopper method 2), 3) : Signal that is output on detection of contact with the stopper. (Input externally)

The following shows the external I/O signals used for machine OPR.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ Pr.43 OPR method } & \multicolumn{4}{|c|}{ Signal required for control } & \multirow{2}{*}{ Torque limit } \\
\cline { 2 - 5 } & \begin{tabular}{c} 
Near-point \\
dog
\end{tabular} & Zero signal & \begin{tabular}{c} 
Upper/lower \\
limit switches
\end{tabular} & \begin{tabular}{c} 
Deviation counter \\
clear output
\end{tabular} & \multirow{1}{0}{} \\
\hline Near-point dog method & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - \\
\hline Stopper method 1) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Stopper method 2) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Stopper method 3) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Count method 1) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - \\
\hline Count method 2) & \(\bigcirc\) & - & \(\bigcirc\) & - & - \\
\hline
\end{tabular}
©: Necessary \(\bigcirc\) : Necessary as required -: Unnecessary

\section*{REMARK}

Creep speed
The stopping accuracy is poor when the machine suddenly stops from fast speeds. To improve the machine's stopping accuracy, its must change over to a slow speed before stopping. This speed is set in the " Pr. 47 Creep speed".

\subsection*{8.2.3 OPR method (1): Near-point dog method}

The following shows an operation outline of the "near-point dog method" OPR method.
Operation chart
\begin{tabular}{|c|l|}
\hline 1) & \begin{tabular}{l} 
The machine OPR is started. \\
(The machine begins the acceleration designated in " Pr.51 OPR acceleration time selection", in the direction \\
designated in " Pr.44 OPR direction". It then moves at the " Pr.46 OPR speed" when the acceleration is completed.)
\end{tabular} \\
\hline 2) & The machine begins decelerating when the near-point dog ON is detected. \\
\hline 3) & \begin{tabular}{l} 
The machine decelerates to the " Pr.47 Creep speed", and subsequently moves at that speed. \\
(At this time, the near-point dog must be ON. The workpiece will continue decelerating and stop if the near-point dog is \\
OFF.)
\end{tabular} \\
\hline 4) & \begin{tabular}{l} 
After the near-point dog turns OFF, the pulse output from the QD75 will stop at the first zero signal, outputting a \\
"deviation counter clear signal" to the drive unit. \\
(The "deviation counter clear signal output time" is set in Pr.55. \()\)
\end{tabular} \\
\hline 5) & \begin{tabular}{l} 
After a "deviation counter clear signal" is output to the drive unit, the OPR complete flag (Md.31 Status: b4) turns from \\
OFF to ON and the OPR request flag (Md.31 Status: b3) turns from ON to OFF.
\end{tabular} \\
\hline
\end{tabular}


Fig. 8.2 Near-point dog method machine OPR

\section*{Restrictions}

A pulse generator with a zero signal is required.
When using a pulse generator without a zero signal, generate a zero signal using an external signal.

\section*{Precautions during operation}
(1) An error "Start at OP (error code: 201)" will occur if another machine OPR is attempted after a machine OPR completion when the OPR retry function is not set (" 0 " is set in " Pr. 48 OPR retry").
(2) Machine OPR carried out from the near-point dog ON position will start at the " Pr. 47 Creep speed".
(3) The near-point dog must be ON during deceleration from the OPR speed " Pr. 47 Creep speed".
* The workpiece will continue decelerating and stop if the near-point dog is turned OFF before it has decelerated to the creep speed, thus causing an error "Dog detection timing fault" (error code: 203).


Fig. 8.3 Operation when the near-point dog is turned OFF before the creep speed is reached
(4) When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.

\subsection*{8.2.4 OPR method (2): Stopper method 1)}

The following shows an operation outline of the "stopper method 1)" OPR method. Operation chart
\begin{tabular}{|c|l|}
\hline 1) & \begin{tabular}{l} 
The machine OPR is started. \\
(The machine begins the acceleration designated in " Pr.51 OPR acceleration time selection", in the direction designated in \\
" Pr.44 OPR direction". It then moves at the " Pr.46 OPR speed" when the acceleration is completed.)
\end{tabular} \\
\hline 2) & The machine begins decelerating when the near-point dog ON is detected. \\
\hline 3) & \begin{tabular}{l} 
The machine decelerates to the " \\
(Torque limiting is required at this time. If the torque is not limited, the servomotor may fail in step 4).)
\end{tabular} \\
\hline 4) & The machine presses against the stopper at the creep speed and stops. \\
\hline 5) & \begin{tabular}{l} 
The pulse output from the QD75 will stop when the " Pr.49 OPR dwell time" has elapsed after the near-point dog turns ON, outputting \\
the "deviation counter clear output" to the drive unit. \\
(A "deviation counter clear signal output time" is set in the Pr.55.).)
\end{tabular} \\
\hline 6) & \begin{tabular}{l} 
After a "deviation counter clear output" is output to the drive unit, the OPR complete flag (Md.31 Status: b4) turns from OFF to ON, \\
and the OPR request flag (Md.31 Status: b3) turns from ON to OFF.
\end{tabular} \\
\hline
\end{tabular}


Fig. 8.4 Stopper method 1) machine OPR

\section*{Restrictions}

Always limit the servomotor torque after the " Pr. 47 Creep speed" is reached. If the torque is not limited, the servomotor may fail when the machine presses against the stopper. (Refer to Section 12.4.2 "Torque limit function".)

Precautions during operation
(1) Set a value in the " Pr. 49 OPR dwell time" that is equal to or higher than the movement time from the near-point dog ON to the time the machine presses against the stopper.
(2) The workpiece will continue decelerating and stop if the " Pr. 49 OPR dwell time" elapses during deceleration from the "Pr. 46 OPR speed", thus causing an error "Dwell time fault" (error code: 205).


Fig. 8.5 Operation when the dwell time elapses during deceleration from the OPR speed
(3) If the " Pr. 49 OPR dwell time" elapses before the stop at the stopper, the workpiece will stop at that position, and that position will be regarded as the OP. At this time, an error will not occur.


Fig. 8.6 Operation when the dwell time elapses before the stop at the stopper
(4) The near-point dog must be turned ON until it presses against the stopper. If any range that the near-point is turned OFF exists until it presses against the stopper, executing the machine OPR from the area leads it to be pressed against the stopper at OPR speed.
(5) Machine OPR started while the near-point dog is ON will start at the " Pr. 47 Creep speed".
(6) When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.

\subsection*{8.2.5 OPR method (3): Stopper method 2)}

The following shows an operation outline of the "stopper method 2)" OPR method.
Operation chart
\begin{tabular}{|c|c|}
\hline 1) & \begin{tabular}{l}
The machine OPR is started. \\
(The machine begins the acceleration designated in " Pr. 51 OPR acceleration time selection", in the direction designated in "Pr. 44 OPR direction". It then moves at the "Pr. 46 OPR speed" when the acceleration is completed.)
\end{tabular} \\
\hline 2) & The machine begins decelerating when the near-point dog ON is detected. \\
\hline 3) & The machine decelerates to the "Pr. 47 Creep speed", and subsequently moves at that speed. (Torque limiting is required at this time. If the torque is not limited, the servomotor may fail in step 4).) \\
\hline 4) & The machine presses against the stopper at the creep speed and stops. \\
\hline 5) & \begin{tabular}{l}
The pulse output from the QD75 will stop at the zero signal after the machine stops, outputting the "deviation counter clear output" to the drive unit. \\
(A "deviation counter clear signal output time" is set in the Pr.55.)
\end{tabular} \\
\hline 6) & After a "deviation counter clear output" is output to the drive unit, the OPR complete flag (Md.31 Status: b4) turns from OFF to ON, and the OPR request flag (Md.31 Status: b3) turns from ON to OFF. \\
\hline
\end{tabular}


Fig. 8.7 Stopper method 2) machine OPR

\section*{Restrictions}
(1) Always limit the servomotor torque after the " Pr. 47 Creep speed" is reached. If the torque is not limited, the servomotor may fail when the machine presses against the stopper. (Refer to Section 12.4.2 "Torque limit function".)
(2) Use an external input signal as the zero signal.

\section*{Precautions during operation}
(1) Input a zero signal from an external source after the machine presses against the stopper.
The workpiece will continue decelerating and stop if a zero signal is input before deceleration to the "Pr. 47 Creep speed". An error "OP detection timing fault" (error code: 204) will occur after the machine stops.


Fig. 8.8 Operation when a zero signal is input before the creep speed is reached
(2) If the zero signal is input before the workpiece stops at the stopper, the workpiece will stop at that position, and that position will be regarded as the OP.


Fig. 8.9 Operation when the zero signal is input before the stop at the stopper
(3) The near-point dog must be turned ON until it presses against the stopper.

If any range that the near-point is turned OFF exists until it presses against the stopper, executing the machine OPR from the area leads it to be pressed against the stopper at ORR speed.
(4) Machine OPR started while the near-point dog is ON will start at the " Pr. 47 Creep speed".
(5) When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.

\subsection*{8.2.6 OPR method (4): Stopper method 3)}

The following shows an operation outline of the "stopper method 3)" OPR method. The "stopper method 3)" method is effective when a near-point dog has not been installed. (Note that the operation is carried out from the start at the " Pr. 47 Creep speed", so it will take some time until the machine OPR completion.)
Operation chart
\begin{tabular}{|c|l|}
\hline 1) & \begin{tabular}{l} 
The machine OPR is started. \\
(The machine moves at the " Pr.47 Creep speed", in the direction designated in " Pr.44 OPR direction". Torque \\
limiting is required at this time. If the torque is not limited, the servomotor may fail when the machine presses against \\
the stopper in step 2.)
\end{tabular} \\
\hline 2) & The machine presses against the stopper at the " Pr.47 Creep speed" and stops. \\
\hline 3) & \begin{tabular}{l} 
The pulse output from the QD75 will stop at the zero signal after the machine stops, outputting the "deviation counter \\
clear output" to the drive unit. \\
(A "deviation counter clear signal output time" is set in the Pr.55.).)
\end{tabular} \\
\hline 4) & \begin{tabular}{l} 
After a "deviation counter clear output" is output to the drive unit, the OPR complete flag (Md.31 Status: b4) turns \\
from OFF to ON, and the OPR request flag (Md.31 Status: b3) turns from ON to OFF.
\end{tabular} \\
\hline
\end{tabular}


Fig. 8.10 Stopper method 3) machine OPR

\section*{Restrictions}
(1) Always limit the servomotor torque after the "Pr. 47 Creep speed" is reached. If the torque is not limited, the servomotor may fail when the machine presses against the stopper. (Refer to Section 12.4.2 "Torque limit function".)
(2) Use an external input signal as the zero signal.
(3) The OPR retry function cannot be used in "stopper stop method 3)".

Precautions during operation
(1) If the zero signal is input before the workpiece stops at the stopper, the workpiece will stop at that position, and that position will become the OP. At this time an error will not occur.


Fig. 8.11 When the zero signal is input before the stop at the stopper
(2) When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.

\subsection*{8.2.7 OPR method (5): Count method1)}

The following shows an operation outline of the "count method 1)" OPR method. In the "count method 1)", machine OPR can be performed even in the following situations:
- when near-point dog is ON
- after completion of a machine OPR

\section*{Operation chart}
\begin{tabular}{|c|l|}
\hline 1) & \begin{tabular}{l} 
The machine OPR is started. \\
(The machine begins the acceleration designated in " Pr.51 OPR acceleration time selection", in the direction \\
designated in " Pr.44 OPR direction". It then moves at the " Pr.46 OPR speed" when the acceleration is completed.)
\end{tabular} \\
\hline 2) & The machine begins decelerating when the near-point dog ON is detected. \\
\hline 3) & The machine decelerates to the " Pr.47 Creep speed", and subsequently moves at that speed. \\
\hline 4) & \begin{tabular}{l} 
On detection of the first zero signal after the axis has traveled the movement amount set in " Pr. 50 Setting for the \\
movement amount after near-point dog ON" after near-point dog ON, the pulse output from the QD75 stops and the \\
"deviation counter clear output" is output to the drive unit. \\
(A "deviation counter clear signal output time" is set in Pr.55.)
\end{tabular} \\
\hline 5) & \begin{tabular}{l} 
After a "deviation counter clear output" is output to the drive unit, the OPR complete flag Md.31 Status: b4) turns from \\
OFF to ON, and the OPR request flag (Md.31 Status: b3) turns from ON to OFF.
\end{tabular} \\
\hline
\end{tabular}


Fig. 8.12 Count method1) machine OPR

\section*{Restrictions}

A pulse generator with a zero signal is required.
When using a pulse generator without a zero signal, generate a zero signal using an external signal.

\section*{Precautions during operation}
(1) An error "Count method movement amount fault" (error code: 206) will occur and the operation will not start if the " Pr. 50 Setting for the movement amount after near-point dog ON" is smaller than the deceleration distance from the " Pr. 46 OPR speed" to " Pr. 47 Creep speed".
(2) If the speed is changed to a speed faster than " Pr. 46 OPR speed" by the speed change function (refer to "12.5.1 Speed change function".) during a machine OPR, the distance to decelerate to " Pr. 47 Creep speed" may not be ensured, depending on the setting value of " Pr. 50 Setting for the movement amount after near-point dog ON". In this case, the error "Count method movement amount fault" (error code: 206) occurs and the Machine OPR is stopped.
(3) The following shows the operation when a machine OPR is started while the near-point dog is ON .


Fig. 8.13 Count method 1) machine OPR on the near-point dog ON position
(4) Turn OFF the near-point dog at a sufficient distance from the OP. Although there is no harm in operation if the near-point dog is turned OFF during a machine OPR, it is recommended to leave a sufficient distance from the OP when the near-point dog is turned OFF for the following reason. If machine OPRs are performed consecutively after the near-point dog is turned OFF at the time of machine OPR completion, operation will be performed at the OPR speed until the hardware stroke limit (upper/lower limit) is reached.
If a sufficient distance cannot be kept, consider the use of the OPR retry function.
(5) When a machine OPR is stopped with the stop signal, perform a machine OPR again.
If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.

\subsection*{8.2.8 OPR method (6): Count method 2)}

The following shows an operation outline of the "method 2)" OPR method.
The "count method 2)" method is effective when a "zero signal" cannot be received. (Note that compared to the "count method 1)" method, using this method will result in more deviation in the stop position during machine OPR.) In the "count method 2)", as well as in the "count method 1)", machine OPR can be performed even in the following situations:
- when near-point dog is ON
- after completion of a machine OPR
- Operation chart
\begin{tabular}{|c|l|}
\hline 1) & \begin{tabular}{l} 
The machine OPR is started. \\
(The machine begins the acceleration designated in " Pr. 51 OPR acceleration time selection", in the \\
direction designated in " Pr.44 OPR direction". It then moves at the " Pr.46 OPR speed" when the \\
acceleration is completed.)
\end{tabular} \\
\hline 2) & The machine begins decelerating when the near-point dog ON is detected. \\
\hline 3\()\) & The machine decelerates to the " Pr.47 Creep speed", and subsequently moves at that speed. \\
\hline 4) & \begin{tabular}{l} 
The pulse output from the QD75 will stop and the machine OPR will be completed when the machine \\
moves the movement amount set in " Pr. 50 \\
from the near-point dog ON position.
\end{tabular} \\
\hline
\end{tabular}


Fig. 8.14 Count method 2) machine OPR

\section*{Restrictions}

When this method is used, a deviation will occur in the stop position (OP) compared to other OPR methods because an error of about 1 ms occurs in taking in the near-point dog ON.

\section*{Precautions during operation}
(1) An error "Count method movement amount fault" (error code: 206) will occur and the operation will not start if the " Pr. 50 Setting for the movement amount after near-point dog \(\mathrm{ON} "\) is smaller than the deceleration distance from the " Pr. 46 OPR speed" to " Pr. 47 Creep speed".
(2) If the speed is changed to a speed faster than " Pr. 46 OPR speed" by the speed change function (refer to Section 12.5.1 "Speed change function".) during a machine OPR, the distance to decelerate to " Pr. 47 Creep speed" may not be ensured, depending on the setting value of " Pr. 50 Setting for the movement amount after near-point dog ON". In this case, the error "Count method movement amount fault" (error code: 206) occurs and the Machine OPR is stopped.
(3) The following shows the operation when a machine OPR is started while the near-point dog is ON.


Fig. 8.15 Count method 2) machine OPR on the near-point dog ON position
(4) Turn OFF the near-point dog at a sufficient distance from the OP. Although there is no harm in operation if the near-point dog is turned OFF during a machine OPR, it is recommended to leave a sufficient distance from the OP when the near-point dog is turned OFF for the following reason.

If machine OPRs are performed consecutively after the near-point dog is turned OFF at the time of machine OPR completion, operation will be performed at the OPR speed until the hardware stroke limit (upper/lower limit) is reached.
If a sufficient distance cannot be kept, consider the use of the OPR retry function.
(5) When a machine OPR is stopped with the stop signal, perform a machine OPR again.
If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.

\subsection*{8.3 Fast OPR}

\subsection*{8.3.1 Outline of the fast OPR operation}

\section*{Fast OPR operation}

After establishing OP position by a machine OPR, positioning control to the OP position is executed without using a near-point dog or a zero signal.
The following shows the operation during a fast OPR start.
1) The fast OPR is started.
2) Positioning control to the OP position established by a machine OPR begins at the speed set in the OPR parameters ( \(\operatorname{Pr} .43\) to \(\operatorname{Pr.57}\) ).
3) The fast OPR is completed.


Fig. 8.16 Fast OPR

Operation timing and processing time of fast OPR
The following shows details about the operation timing and time during fast OPR.


Fig. 8.17 Operation timing and processing time of fast OPR

Normal timing time
\begin{tabular}{|c|c|c|c|}
\hline Model & t1 & t2 & t3 \\
\hline QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) & 0.2 to 1.1 ms & 0.4 to 1.3 ms & 0 to 0.9 ms \\
\hline QD75P \(\square /\) QD75D \(\square\) & 1.0 to 1.3 ms & 2.7 to 4.4 ms & 0 to 1.8 ms \\
\hline
\end{tabular}
-The t 1 timing time could be delayed by the operation state of other axes.

\section*{Operating restrictions}
(1) The fast OPR can only be executed after the OP position is established by executing the Machine OPR.
If not, the error "OPR request ON" (error code: 207) will occur. (OPR request flag (Md. 31 Status: b3) must be turned OFF.)
(2) If the fraction pulse is cleared to zero using current value changing or fixedfeed control, execute the fast OPR and an error will occur by a cleared amount.
(3) When unlimited length feed is executed by speed control and the current machine feed value overflows or underflows once, the fast OPR cannot be executed normally.
(4) The OPR complete flag (Md.31 Status: b4) is not turned ON.
(5) The axis operation status during fast OPR is "Position control".

\section*{CHAPTER 9 MAJOR POSITIONING CONTROL}

> The details and usage of the major positioning controls (control functions using the "positioning data") are explained in this chapter.
> The major positioning controls include such controls as "positioning control" in which positioning is carried out to a designated position using the address information, "speed control" in which a rotating object is controlled at a constant speed, "speed-position switching control" in which the operation is shifted from "speed control" to "position control" and "position-speed switching control" in which the operation is shifted from "position control" to "speed control".
> Carry out the required settings to match each control.
9.1 Outline of major positioning controls ..... 9- 2
9.1.1 Data required for major positioning control ..... 9- 4
9.1.2 Operation patterns of major positioning controls ..... 9- 5
9.1.3 Designating the positioning address ..... 9-16
9.1.4 Confirming the current value ..... 9-17
9.1.5 Control unit "degree" handling ..... 9-19
9.1.6 Interpolation control ..... 9-22
9.2 Setting the positioning data ..... 9-26
9.2.1 Relation between each control and positioning data ..... 9-26
9.2.2 1-axis linear control ..... 9-28
9.2.3 2-axis linear interpolation control ..... 9-30
9.2.4 3-axis linear interpolation control ..... 9-34
9.2.5 4-axis linear interpolation control ..... 9-40
9.2.6 1-axis fixed-feed control ..... 9-44
9.2.7 2-axis fixed-feed control (interpolation) ..... 9-46
9.2.8 3-axis fixed-feed control (interpolation) ..... 9-49
9.2.9 4-axis fixed-feed control (interpolation) ..... 9-54
9.2.10 2-axis circular interpolation control with sub point designation ..... 9-57
9.2.11 2-axis circular interpolation control with center point designation ..... 9- 63
9.2.12 1-axis speed control ..... 9-71
9.2.13 2 -axis speed control ..... 9-74
9.2.14 3 -axis speed control ..... 9- 77
9.2.15 4-axis speed control ..... 9-81
9.2.16 Speed-position switching control (INC mode) ..... 9- 86
9.2.17 Speed-position switching control (ABS mode) ..... 9-95
9.2.18 Position-speed switching control ..... 9-103
9.2.19 Current value changing ..... 9-110
9.2.20 NOP instruction ..... 9-115
9.2.21 JUMP instruction ..... 9-116
9.2.22 LOOP ..... 9-118
9.2.23 LEND ..... 9-119

\subsection*{9.1 Outline of major positioning controls}
"Major positioning controls" are carried out using the "positioning data" stored in the QD75.
The basic controls such as position control and speed control are executed by setting the required items in this "positioning data", and then starting that positioning data. The control system for the "major positioning controls" is set in setting item
" Da. 2 Control system" of the positioning data.
Control defined as a "major positioning control" carries out the following types of control according to the " Da. 2 Control system" setting.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Major positioning control} & Da. 2 Control system & Details \\
\hline \multirow{10}{*}{} & \multirow{4}{*}{Linear control} & 1-axis linear control & ABS Linear 1 INC Linear 1 & Positioning of a designated 1 axis is carried out from the start address (current stop position) to the designated position. \\
\hline & & 2-axis linear interpolation control * & ABS Linear 2 INC Linear 2 & Using a designated 2 axes, linear interpolation control is carried out from the start address (current stop position) to the designated position. \\
\hline & & 3-axis linear interpolation control * & ABS Linear 3 INC Linear 3 & Using a designated 3 axes, linear interpolation control is carried out from the start address (current stop position) to the designated position. \\
\hline & & 4-axis linear interpolation control * & ABS Linear 4 INC Linear 4 & Using a designated 4 axes, linear interpolation control is carried out from the start address (current stop position) to the designated position. \\
\hline & \multirow{4}{*}{Fixed-feed control} & 1-axis fixedfeed control & Fixed-feed 1 & \begin{tabular}{l}
Positioning of a designated 1 axis is carried out from the start address (current stop position). \\
(The " Md. 20 Current feed value" is set to " 0 " at the start.)
\end{tabular} \\
\hline & & 2-axis fixedfeed control * & Fixed-feed 2 & Using a designated 2 axes, linear interpolation control is carried out from the start address (current stop position). (The " Md. 20 Current feed value" is set to " 0 " at the start.) \\
\hline & & 3-axis fixedfeed control * & Fixed-feed 3 & Using a designated 3 axes, linear interpolation control is carried out from the start address (current stop position). (The " Md. 20 Current feed value" is set to "0" at the start.) \\
\hline & & 4-axis fixedfeed control * & Fixed-feed 4 & Using a designated 4 axes, linear interpolation control is carried out from the start address (current stop position). (The " Md. 20 Current feed value" is set to " 0 " at the start.) \\
\hline & \multirow[b]{2}{*}{2-axis circular interpolation control *} & Sub point designation & ABS Circular sub INC Circular sub & \\
\hline & & Center point designation & ABS Circular right ABS Circular left INC Circular right INC Circular left & designated from the start point address (current stop position), using the designated 2 axes. \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Speed control *}} & 1-axis speed control & Forward run speed 1 Reverse run speed 1 & The speed control of the designated 1 axis is carried out. \\
\hline & & 2-axis speed control * & \begin{tabular}{l}
Forward run speed 2 \\
Reverse run speed 2
\end{tabular} & The speed control of the designated 2 axes is carried out. \\
\hline & & 3-axis speed control * & \begin{tabular}{l}
Forward run speed 3 \\
Reverse run speed 3
\end{tabular} & The speed control of the designated 3 axes is carried out. \\
\hline & & 4-axis speed control * & Forward run speed 4 Reverse run speed 4 & The speed control of the 4 axes is carried out. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Major positioning control} & Da. 2 Control system & Details \\
\hline Speed-positio & ching control & Forward run speed/position Reverse run speed/position & The control is continued as position control (positioning for the designated address or movement amount) by turning ON the "speed-position switching signal" after first carrying out speed control. \\
\hline \multicolumn{2}{|l|}{Position-speed switching control} & Forward run position/speed Reverse run position/speed & The control is continued as speed control by turning ON the "position-speed switching signal" after first carrying out position control. \\
\hline \multirow{5}{*}{Other control} & NOP instruction & NOP instruction & A nonexecutable control system. When this instruction is set, the operation is transferred to the next data operation, and the instruction is not executed. \\
\hline & Current value changing & Current value changing & \begin{tabular}{l}
The current feed value ( Md .20 ) is changed to an address set in the positioning data. \\
This can be carried out by either of the following 2 methods. \\
(The machine feed value cannot be changed.) \\
- Current value changing using the control system \\
- Current value changing using the current value changing start No. (No. 9003).
\end{tabular} \\
\hline & JUMP instruction & JUMP instruction & An unconditional or conditional JUMP is carried out to a designated positioning data No. \\
\hline & LOOP & LOOP & A repeat control is carried out by repeat LOOP to LEND. \\
\hline & LEND & LEND & Control is returned to the top of the repeat control by repeat LOOP to LEND. After the repeat operation is completed specified times, the next positioning data is run. \\
\hline
\end{tabular}

\footnotetext{
* In "2-axis linear interpolation control", "3-axis linear interpolation control", "4-axis linear interpolation control", "2-axis fixed-feed control", "3-axis fixed-feed control", "4-axis fixed-feed control", "2-axis circular interpolation control", "2-axis speed control", "3-axis speed control" and "4-axis speed control", control is carried out so that linear and arc paths are drawn using a motor set in two or more axes directions. This kind of control is called "interpolation control". (Refer to Section 9.1.6 "Interpolation control" for details.)
}

\subsection*{9.1.1 Data required for major positioning control}

The following table shows an outline of the "positioning data" configuration and setting details required to carry out the "major positioning controls".
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Setting item } & \multicolumn{1}{c|}{ Setting details } \\
\hline & Da.1 & Operation pattern & \begin{tabular}{l} 
Set the method by which the continuous positioning data (Ex: positioning data No. 1, \\
No. 2, No. 3) will be controlled. (Refer to Section 9.1.2.)
\end{tabular} \\
\hline Da.2 & Control system & Set the control system defined as a "major positioning control". (Refer to Section 9.1.) \\
\hline & Da.3 & \begin{tabular}{l} 
Acceleration time \\
No.
\end{tabular} & \begin{tabular}{l} 
Select and set the acceleration time at control start. (Select one of the four values set \\
in \\
\hline Pr.9, \(, ~ P r .25, ~\) \\
\hline
\end{tabular} & Pr.26, and Pr.27 for the acceleration time.)
\end{tabular}
* The settings and setting requirement for the setting details of Da. 1 to Da. 10 differ according to the " Da. 2 Control system". (Refer to Section 9.2 "Setting the positioning data".)
- Major positioning control sub functions

Refer to Section 3.2.4 "Combination of QD75 major functions and sub functions" for details on "sub functions" that can be combined with the major positioning control.
Also refer to CHAPTER 12 "CONTROL SUB FUNCTIONS" for details on each sub function.

\section*{Major positioning control from peripheral devices}
"Major positioning control" can be executed from the peripheral device test mode. Refer to GX Configurator-QP Operating Manual for details on carrying out major positioning control from the peripheral device.

\section*{REMARK}
- 600 positioning data (positioning data No. 1 to 600 ) items can be set per axis.

\subsection*{9.1.2 Operation patterns of major positioning controls}

In "major positioning control" (high-level positioning control), " Da. 1 Operation pattern" can be set to designate whether to continue executing positioning data after the started positioning data. The "operation pattern" includes the following 3 types.
\begin{tabular}{|c|c|}
\hline - Positioning complete & (1) Independent positioning control (operation pattern: 00) \\
\hline \multirow[t]{2}{*}{-Positioning continue} & (2) Continuous positioning control (operation pattern: 01) \\
\hline & (3) Continuous path control (operation pattern: 11) \\
\hline
\end{tabular}

The following shows examples of operation patterns when "1-axis linear control (ABS linear 1)" is set in positioning data No. 1 to No. 6 of axis 1. Details of each operation pattern are shown on the following pages.
< Operation example when "1-axis linear positioning" is set in the positioning data of axis 1 >

(One motor is driven, and positioning is carried out to an addresses designated in one direction.)

\section*{POINT}

The BUSY signal [XC, XD, XE, XF] turns ON even when position control of movement amount 0 is executed. However, since the ON time is short, the ON status may not be detected in the sequence program.
[1] Independent positioning control (Positioning complete)
This control is set when executing only one designated data item of positioning. If a dwell time is designated, the positioning will complete after the designated time elapses.
This data (operation pattern [00] data) becomes the end of block data when carrying out block positioning. (The positioning stops after this data is executed.)


Fig. 9.1 Operation during independent positioning control

\section*{[2] Continuous positioning control}
(1) The machine always automatically decelerates each time the positioning is completed. Acceleration is then carried out after the QD75 command speed reaches 0 to carry out the next positioning data operation. If a dwell time is designated, the acceleration is carried out after the designated time elapses.
(2) In operation by continuous positioning control (operation pattern "01"), the next positioning No. is automatically executed. Always set operation pattern " 00 " in the last positioning data to complete the positioning. If the operation pattern is set to positioning continue ("01" or "11"), the operation will continue until operation pattern " 00 " is found. If the operation pattern " 00 " cannot be found, the operation may be carried out until the positioning data No. 600. If the operation pattern of the positioning data No. 600 is not completed, the operation will be started again from the positioning data No. 1.


Fig. 9.2 Operation during continuous positioning control
[3] Continuous path control
(1) Continuous path control
(a) The speed is changed without deceleration stop between the command speed of the running positioning data and the command speed of the positioning data that will run next.
The speed is not changed if the current speed and the next speed are equal.


Fig. 9.3 Operation during continuous path control (Standard speed switching mode)
(b) The speed will become the speed used in the previous positioning operation if the command speed is set to "-1".
(c) Dwell time will be ignored, even if set.
(d) The next positioning No. is executed automatically in operations by continuous path control (operation pattern "11"). Always complete the positioning by setting operation pattern " 00 " in the last positioning data. If the operation pattern is set to positioning continue ("01" or "11"), the operation will continue until operation pattern " 00 " is found. If the operation pattern "00" cannot be found, the operation may be carried out until the positioning data No. 600. If the operation pattern of the positioning data No. 600 is not completed, the operation will be started again from the positioning data No. 1.
(e) The speed switching patterns include the "front-loading speed switching pattern" in which the speed is changed at the end of the current positioning side, and the "standard speed switching pattern" in which the speed is at the start of the next positioning side. (Refer to " Pr. 19 Speed switching mode".)
Continuous path control \(-\quad\) Standard speed switching mode
（f）In continuous path control，the positioning may be completed before the set address／movement amount by the distance \(\triangle \ell\) ，and the data may switch to the＂positioning data that will run next＂．
The value of the distance \(\triangle \ell\) is as follows：
－QD75P \(\square N / Q D 75 D \square N\) ：
\(0 \leq \triangle \ell<\)（Moving distance in 0.9 ms at the command speed）
－QD75P \(\square /\) QD75D \(\square\) ：
\(0 \leq \triangle \ell<\)（Moving distance in 1.8 ms at the command speed）

【Acceleration／deceleration（setting）】


【Acceleration／deceleration（actual one）】


The distance \(\triangle \ell\) is output when the next positioning data is running at the specified speed．

Therefore，the execution time of the next positioning data may be longer than the set execution time．\({ }^{*}\) If this causes a control problem，take one of the following measures．

1）Use the function＂output timing selection of near pass control＂． By selecting＂At deceleration＂as an output timing，the positioning execution time of the next positioning data remains the same as it was set．（Refer to Section 12．3．4＂Output timing selection of near pass control＂．）
2）Use the＂speed change function＂．
Change speed using the speed change function instead of continuous path control．（Refer to Section 12．5．1＂Speed change function＂．）
＊1：When the command speed V1 of a positioning data and the command speed V 2 of the next positioning data is different significantly，and V1＞V2

For positioning data in which automatic deceleration is set，the positioning is completed at the set address．Therefore，in continuous path control，the address where a positioning is completed may be different from the set address．However，the address will be the specified one on completion of automatic deceleration for continuous positioning control（01）or positioning complete（00）．

\section*{POINT}

In the continuous path control，a speed variation will not occur using the near－pass function when the positioning data No．is switched（Refer to Section 12．3．3＂Near－ pass function＂）．

\section*{(2) Deceleration stop conditions during continuous path control} Deceleration stops are basically not carried out in continuous path control, but the machine will carry out a deceleration stop to speed " 0 " in the following cases (a) to (c).
(a) When the operation pattern of the positioning data currently being executed is "continuous path control: 11", and the movement direction of the positioning data currently being executed differs from that of the next positioning data. (Only for 1 -axis positioning control (Refer to the "Point" in the next page.))

(b) During operation by step operation.
(Refer to Section 12.7.1 "Step function".)
(c) When there is an error in the positioning data to carry out the next operation.

\section*{POINTS}
(1) The movement direction is not checked during interpolation operations. Thus, automatic deceleration to a stop will not be carried out even if the movement direction is changed (See the figures below).
Because of this, the interpolation axis may suddenly reverse direction.
To avoid this sudden direction reversal in the interpolation axis, set the pass point to continuous positioning control "01" instead of setting it to continuous path control "11".
[Positioning by interpolation]

[Reference axis operation]

[Interpolation axis operation]

(2) When the interpolation axis reveres direction suddenly, the command pulses from QD75 are output as shown in the figure below.


The t 1 and t 2 are calculated using the following expressions, where a command frequency is \(\mathrm{f}(\mathrm{pps})\).
\(\mathrm{t} 1=1 / 2 \mathrm{f}(\mathrm{s}) \mathrm{t} 2=1 / \mathrm{f}(\mathrm{s})\)
A time of t 1 must be maintained by the drive unit for a specified period \(\mathrm{T}(\mathrm{s})\).
( \(T\) depends on the drive unit specifications.)
If t 1 cannot be maintained for T or longer, lower the " Da. 8 Command speed" of the positioning data.
(3) When a " 0 " is set in the " Da. 6 Positioning address/movement amount" of the continuous path control positioning data, the command speed of about 0.9 ms (QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) ) or 2 ms (QD75P \(\square /\) QD75D \(\square\) ) is reduced to 0 . When a " 0 " is set in the " Da. 6 Positioning address/movement amount" to increase the number of speed change points in the future, change the " Da. 2 Control system" to the "NOP instruction" to make the control nonexecutable.
(Refer to Section 9.2.20 "NOP instruction".)
(4) In the continuous path control positioning data, assure a movement distance so that the execution time with that data is 100 ms or longer, or lower the command speed.

\section*{(3) Speed handling}
(a) Continuous path control command speeds are set with each positioning data.
The QD75 then carries out the positioning at the speed designated with each positioning data.
(b) The command speed can be set to " -1 " in continuous path control. The control will be carried out at the speed used in the previous positioning data No. if the command speed is set to " -1 ". (The "current speed" will be displayed in the command speed when the positioning data is set with a peripheral device. The current speed is the speed of the positioning control being executed currently.)
1) The speed does not need to be set in each positioning data when carrying out uniform speed control if " -1 " is set beforehand in the command speed.
2) If the speed is changed or the override function is executed in the previous positioning data when " -1 " is set in the command speed, the operation can be continued at the new speed.
3) An error "No command speed" (error code: 503) occurs and positioning cannot be started if " -1 " is set in the command speed of the first positioning data at start.
[Relation between the command speed and current speed]



The current speed is changed even if the command speed is not reached in P2.

\section*{POINTS}
(1) In the continuous path control, a speed variation will not occur using the near-pass function when the positioning data is switched (Refer to Section 12.3.3 "Near-pass function").
(2) The QD75 holds the command speed set with the positioning data, and the latest value of the speed set with the speed change request as the " Md. 27 Current speed". It controls the operation at the "current speed" when "-1" is set in the command speed.
(Depending on the relation between the movement amount and the speed, the feedrate may not reach the command speed value, but even then the current speed will be updated.)
(3) When the address for speed change is identified beforehand, generate and execute the positioning data for speed change by the continuous path control to carry out the speed change without requesting the speed change with a sequence program.

\section*{(4) Speed switching}
(Refer to " Pr. 19 Speed switching mode".)
The two modes for changing the speed are shown below.
- Standard switching \(\qquad\) Switch the speed when executing the next positioning data.
- Front-loading switching.....The speed switches at the end of the positioning data currently being executed.
(a) Standard speed switching mode
1) If the respective command speeds differ in the "positioning data currently being executed" and the "positioning data to carry out the next operation", the machine will accelerate or decelerate after reaching the positioning point set in the "positioning data currently being executed" and the speed will change over to the speed set in the "positioning data to carry out the next operation".
2) The parameters used in acceleration/deceleration to the command speed set in the "positioning data to carry out the next operation" are those of the positioning data to carry out acceleration/deceleration. Speed switching will not be carried out if the command speeds are the same.


Fig. 9.4 Operation for the standard speed switching mode
3) Speed switching condition

If the movement amount is small in regard to the target speed, the current speed may not reach the target speed even if acceleration/deceleration is carried out. In this case, the machine is accelerated/decelerated so that it nears the target speed. If the movement amount will be exceeded when automatic deceleration is required (Ex. Operation patterns "00", "01"), the machine will immediately stop at the designated positioning address, and a warning "Insufficient movement distance" (warning code: 513) will occur.
[When the speed cannot change over in P2] When the relation of the speeds is \(\mathrm{P} 1=\) P4, P2 = P3, P1 < P2.

[When the movement amount is small during automatic deceleration]
The movement amount required to carry out the automatic deceleration cannot be secured, so the machine immediately stops in a speed \(\neq 0\) status.

(b) Front-loading speed switching mode
1) If the respective command speeds differ in the "positioning data currently being executed" and the "positioning data to carry out the next operation", the speed will change over to the speed set in the "positioning data to carry out the next operation" at the end of the "positioning data currently being executed".
2) The parameters used in acceleration/deceleration to the command speed set in the "positioning data to carry out the next operation" are those of the positioning data to carry out acceleration/deceleration.
Speed switching will not be carried out if the command speeds are the same.


Fig. 9.5 Operation for the front-loading speed switching mode
3) Speed switching condition

If the movement amount is small in regard to the target speed, the current speed may not reach the target speed even if acceleration/deceleration is carried out. In this case, the machine is accelerated/decelerated so that it nears the target speed. If the movement amount will be exceeded when automatic deceleration is required (Ex. Operation patterns "00", "01"), the machine will immediately stop at the designated positioning address, and a warning "Insufficient movement distance" (warning code: 513) will occur.
[When the speed cannot change over to the P2 speed in P1]
When the relation of the speeds is \(\mathrm{P} 1=\) \(\mathrm{P} 4, \mathrm{P} 2=\mathrm{P} 3, \mathrm{P} 1<\mathrm{P} 2\).

[When the movement amount is small during automatic deceleration]
The movement amount required to carry out the automatic deceleration cannot be secured, so the machine immediately stops in a speed \(\neq 0\) status.


\subsection*{9.1.3 Designating the positioning address}

The following shows the two methods for commanding the position in control using positioning data.

Absolute system
Positioning is carried out to a designated position (absolute address) having the OP as a reference. This address is regarded as the positioning address. (The start point can be anywhere.)


Fig. 9.6 Absolute system positioning

\section*{Incremental system}

The position where the machine is currently stopped is regarded as the start point, and positioning is carried out for a designated movement amount in a designated movement direction.


Fig. 9.7 Incremental system positioning

\subsection*{9.1.4 Confirming the current value}
- Values showing the current value

The following two types of addresses are used as values to show the position in the QD75.
These addresses ("current feed value" and "machine feed value") are stored in the monitor data area, and used in monitoring the current value display, etc.
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{ Current feed value } & \begin{tabular}{l} 
- This is the value stored in " Md.20 Current feed value". \\
- This value has an address established with a "machine OPR" as a \\
reference, but the address can be changed by changing the current \\
value to a new value. \\
- This value is updated every 0.9 ms (QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) ) or 1.8 ms \\
(QD75P \(\square /\) QD75D \(\square\) ).
\end{tabular} \\
\hline Machine feed value & \begin{tabular}{l} 
- This is the value stored in " Md.21 Machine feed value". \\
- This value always has an address established with a "machine OPR" \\
as a reference. The address cannot be changed, even if the current \\
value is changed to a new value. \\
- This value is updated every 0.9 ms (QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) ) or 56.8 ms \\
(QD75P \(\square / Q D 75 D \square\) ).
\end{tabular} \\
\hline
\end{tabular}

The "current feed value" and "machine feed value" are used in monitoring the current value display, etc.


Fig. 9.8 Current feed value and machine feed value

\section*{- Restrictions}

A 0.9 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 1.8 ms (QD75P \(\square /\) QD75D \(\square\) ) error will occur in the current value update timing when the stored "current feed value" is used in the control.
A 0.9 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 56.8 ms (QD75P \(\square /\) QD75D \(\square\) ) error will occur in the current value update timing when the stored "machine feed value" is used in the control.

\section*{Monitoring the current value}

The "current feed value" and "machine feed value" are stored in the following buffer memory addresses, and can be read using a "DFRO (P) instruction" or "DMOV (P) instruction" from the CPU module.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ Buffer memory addresses } \\
\cline { 2 - 5 } & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Md.20 Current feed value & 800,801 & 900,901 & 1000,1001 & 1100,1101 \\
\hline Md.21 & Machine feed value & 802,803 & 902,903 & 1002,1003 \\
\hline
\end{tabular}
(1) The following shows the examples of programs to read out the current feed value of the axis 1 to D104 and D105 when X40 is turned ON.
(a) For the \(\mathrm{DFRO}(\mathrm{P})\) instruction

(b) For the \(\mathrm{DMOV}(\mathrm{P})\) instruction


\subsection*{9.1.5 Control unit "degree" handling}

When the control unit is set to "degree", the following items differ from when other control units are set.
[1] Current feed value and machine feed value addresses
The address of "Md.20 Current feed value" becomes a ring address from 0 to \(359.99999^{\circ}\).
But the address of " Md. 21 Machine feed value" doesn't become a ring address.

[2] Software stroke limit valid/invalid setting
With the control unit set to "degree", the software stroke limit upper and lower limit values are 0 to 359.99999 .
(a) Setting to validate software stroke limit

To validate the software stroke limit, set the software stroke limit lower limit value and the upper limit value in a clockwise direction.


(b) Setting to invalidate software stroke limit

To invalidate the software stroke limit, set the software stroke limit lower limit value equal to the software stroke limit upper limit value.
The control can be carried out irrespective of the setting of the software stroke limit.
[3] Positioning control method when the control unit is set to "degree" 1) Absolute system
(a) When the software stroke limit is invalid

Positioning is carried out in the nearest direction to the designated address, using the current value as a reference.
(This is called "shortcut control".)


To designate the positioning direction (not carrying out the shortcut control), using the " Cd. 40 ABS direction in degrees", the shortcut control can be invalidated to carry out positioning in the designated direction.
This function can be performed when the software stroke limit is invalid.
When the software stroke limit is valid, an error "lllegal setting of ABS direction in unit of degree" (error code: 546) occurs and positioning is not started.
To designate the movement direction for the ABS control, write 1 or 2 to the
" Cd. 40 ABS direction in degrees" of the buffer memory. (The initial value is 0 ).
The value written to the " Cd. 40 ABS direction in degrees" becomes valid only when the positioning control is started.
In the continuous positioning control or continuous path control, the operation is continued with the setting made at a start if the setting is changed during the operation.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Name} & \multirow{2}{*}{Function} & \multicolumn{4}{|r|}{Buffer memory address} & \multirow[t]{2}{*}{Initial value} \\
\hline & & Axis 1 & Axis 2 & Axis 3 & Axis 4 & \\
\hline Cd. 40 ABS direction in degrees & \begin{tabular}{l}
The ABS movement direction in the unit of degree is designated. \\
0 : Shortcut (direction setting ignored) \\
1: ABS clockwise \\
2: ABS counterclockwise
\end{tabular} & 1550 & 1650 & 1750 & 1850 & 0 \\
\hline
\end{tabular}

\section*{(b) When the software stroke limit is valid}

The positioning is carried out in a clockwise/counterclockwise direction depending on the software stroke limit range setting method.
Because of this, positioning with "shortcut control" may not be possible.

2) Incremental system

Positioning is carried out for a designated movement amount in a designated movement direction when in the incremental system of positioning.
The movement direction is determined by the sign (,+- ) of the movement amount.
- For a positive (+) movement direction ....Clockwise
- For a negative (-) movement direction ...Counterclockwise

\section*{POINT}

Positioning of \(360^{\circ}\) or more can be carried out with the incremental system.
At this time, set as shown below to invalidate the software stroke limit.
(Set the value with in the setting range ( \(0^{\circ}\) to \(359.99999^{\circ}\) ).)
[Software stroke limit upper limit value \(=\) Software stroke limit lower limit value]

\subsection*{9.1.6 Interpolation control}

Meaning of interpolation control
In "2-axis linear interpolation control", "3-axis linear interpolation control", "4-axis linear interpolation control", "2-axis fixed-feed control", "3-axis fixed-feed control", "4-axis fixed-feed control", "2-axis speed control", " 3 -axis speed control", "4-axis speed control", and "2-axis circular interpolation control", control is carried out so that linear and arc paths are drawn using a motor set in two to four axis directions. This kind of control is called "interpolation control".
In interpolation control, the axis in which the control system is set is defined as the "reference axis", and the other axis is defined as the "interpolation axis".
The QD75 controls the "reference axis" following the positioning data set in the "reference axis", and controls the "interpolation axis" corresponding to the reference axis control so that a linear or arc path is drawn.
The following table shows the reference axis and interpolation axis combinations.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Axis definition \\
Axis set to interpolation control in " Da. 2 Control system"
\end{tabular} & Reference axis & Interpolation axis \\
\hline 2-axis linear interpolation control, "2-axis fixed-feed control, 2-axis circular interpolation control, 2-axis speed control & \begin{tabular}{l}
Any of axes 1,2 , \\
3 , and 4
\end{tabular} & "Axes to be interpolated" set in reference axis \\
\hline \multirow{4}{*}{3-axis linear interpolation control, "3-axis fixed-feed control, 3-axis speed control} & Axis 1 & Axis 2, Axis 3 \\
\hline & Axis 2 & Axis 3, Axis 4 \\
\hline & Axis 3 & Axis 4, Axis 1 \\
\hline & Axis 4 & Axis 1, Axis 2 \\
\hline \multirow{4}{*}{4-axis linear interpolation control, "4-axis fixed-feed control, 4-axis speed control} & Axis 1 & Axis 2, Axis 3, Axis 4 \\
\hline & Axis 2 & Axis 3, Axis 4, Axis 1 \\
\hline & Axis 3 & Axis 4, Axis 1, Axis 2 \\
\hline & Axis 4 & Axis 1, Axis 2, Axis 3 \\
\hline
\end{tabular}

Setting the positioning data during interpolation control
When carrying out interpolation control, the same positioning data Nos. are set for the "reference axis" and the "interpolation axis".
The following table shows the "positioning data" setting items for the reference axis and interpolation axis.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Axis \\
Setting item
\end{tabular}} & Reference axis setting item & Interpolation axis setting item \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & ( ) & - \\
\hline & Da. 2 & Control system & \begin{tabular}{l}
Linear 2, 3, 4, Fixed-feed 2, 3, 4, \\
Circular sub, Circular right, \\
Circular left \\
Forward run speed 2, 3, 4 \\
Reverse run speed 2, 3, 4
\end{tabular} & - \\
\hline & Da. 3 & Acceleration time No. & ( & - \\
\hline & Da. 4 & Deceleration time No. & ( & - \\
\hline & Da. 5 & Axis to be interpolated. & \(\bigcirc\) * & - \\
\hline & Da. 6 & Positioning address/ movement amount & Forward run speed 2, 3, and 4. Reverse run speed 2, 3, and 4 not required. & \begin{tabular}{l}
Forward run speed 2, 3, and 4. \\
Reverse run speed 2, 3, and 4 not required.
\end{tabular} \\
\hline & Da. 7 & Arc address & (Only during circular sub, circular right, and circular left). & (Only during circular sub, circular right, and circular left). \\
\hline & Da. 8 & Command speed & © & \begin{tabular}{l}
Only during forward run speed 2, \\
3,4 and reverse run speed \(2,3,4\).
\end{tabular} \\
\hline & Da. 9 & Dwell time & \(\bigcirc\) & - \\
\hline & Da. 10 & M code & \(\bigcirc\) & - \\
\hline
\end{tabular}
© : Setting always required
O : Set according to requirements
\(\triangle\) : Setting restrictions exist
- : Setting not required (Unrelated setting item, so any setting value will be ignored. Use the initial value or a value within the setting range.)
* : For 2-axis interpolation, the partner axis is set. If the self-axis is set, an error "Illegal interpolation description command" (error code: 521) will occur. For 3 - and 4 -axis interpolation, the axis setting is not required.

Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{Starting the interpolation control}

The positioning data Nos. of the reference axis (axis in which interpolation control was set in " Da. 2 Control system") are started when starting the interpolation control. (Starting of the interpolation axis is not required.)
The following errors or warnings will occur and the positioning will not start if both reference axis and the interpolation axis are started.
- Reference axis : The error "Interpolation while interpolation axis BUSY" (error code: 519)
- Interpolation axis : The error "Control system setting error" (error code: 524), The warning "Start during operation" (warning code: 100)

Interpolation control continuous positioning
When carrying out interpolation control in which "continuous positioning control" and "continuous path control" are designated in the operation pattern, the positioning method for all positioning data from the started positioning data to the positioning data in which "positioning complete" is set must be set to interpolation control.
The number of the interpolation axes and axes to be interpolated cannot be changed from the intermediate positioning data. An error "Control system setting error" (error code: 524) will occur and the positioning will stop if setting, which changes the number of the interpolation axes and axes to be interpolated, is carried out.

\section*{Speed during interpolation control}

Either the "composite speed" or "reference axis speed" can be designated as the speed during interpolation control.
(Pr. 20 Interpolation speed designation method)
Only the "Reference axis speed" can be designated in the following interpolation control.
When a "composite speed" is set and positioning is started, the error "Interpolation mode error" (error code: 523) occurs, and the system will not start.
- 4-axis linear interpolation
- 2-axis speed control
- 3 -axis speed control
- 4-axis speed control

Cautions in interpolation control
(1) If a stepping motor is used, the circular interpolation control cannot be carried out.
Ensure to use a servomotor when the circular interpolation control is carried out.
(2) If either of the axes exceeds the " Pr. 8 Speed limit value" in the 2 to 4 axes speed control, the axis which exceeded the speed limit value is controlled by the speed limit value.
For the other axes which perform interpolation, the speed can be suppressed by the ratio of a command speed.
If the reference axis exceeds " Pr. 8 Speed limit value" during 2- to 4 -axis linear interpolation control, 2- to 4-axis fixed-feed control or 2-axis circular interpolation control, the reference axis is controlled at the speed limit value. (The speed limit does not function on the interpolation axis side.)
(3) In 2-axis interpolation, you cannot change the combination of interpolated axes midway through operation.

\section*{POINT}
- When the "reference axis speed" is set during interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".

\section*{Limits to interpolation control}

There are limits to the interpolation control that can be executed and speed (Pr.20 Interpolation speed designation method) that can be set, depending on the " Pr. 1 Unit setting" of the reference axis and interpolation axis. (For example, circular interpolation control cannot be executed if the reference axis and interpolation axis units differ.)
The following table shows the interpolation control and speed designation limits.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{" Da. 2 Control syst}} & \multirow[b]{2}{*}{\begin{tabular}{|r|}
\hline Pr. 20 Interpolation speed \\
designation method
\end{tabular}} & \multicolumn{2}{|l|}{Pr. 1 Unit setting *1} \\
\hline & & & Reference axis and interpolation axis units are the same, or a combination of "mm" and "inch". *3 & Reference axis and interpolation axis units differ \(* 3\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Linear 2 (ABS, INC) Fixed-feed 2}} & Composite speed & \(\bigcirc\) & \(\times\) \\
\hline & & Reference axis speed & \(\bigcirc\) & \(\bigcirc\) \\
\hline \multirow[t]{2}{*}{Circular sub Circular right Circular left} & (ABS, INC) & Composite speed & *2 & \(\times\) \\
\hline & \begin{tabular}{l}
(ABS, INC) \\
(ABS, INC)
\end{tabular} & Reference axis speed & \(\times\) & \(\times\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Linear 3 (ABS, INC) Fixed-feed 3}} & Composite speed & \(\bigcirc\) & \(\times\) \\
\hline & & Reference axis speed & \(\bigcirc\) & \(\bigcirc\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Linear 4 (ABS, INC) Fixed-feed 4}} & Composite speed & \(\times\) & \(\times\) \\
\hline & & Reference axis speed & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\(\bigcirc\) : Setting possible, \(\times\) : Setting not possible.
* 1 " mm " and "inch" unit mix possible.
*2 "degree" setting not possible. An error "Circular interpolation not possible" (error code: 535) will occur and the position cannot start if circular interpolation control is set when the unit is "degree". The machine will immediately stop if "degree" is set during positioning control.
*3 The unit set in the reference axis will be used for the speed unit during control if the units differ or if "mm" and "inch" are combined.

Axis operation status during interpolation control
"Interpolation" will be stored in the " Md. 26 Axis operation status" during interpolation control. "Standby" will be stored when the interpolation operation is terminated. Both the reference axis and interpolation axis will carry out a deceleration stop if an error occurs during control, and "error occurring" will be stored in the operation status.

\subsection*{9.2 Setting the positioning data}

\subsection*{9.2.1 Relation between each control and positioning data}

The setting requirements and details for the setting items of the positioning data to be set differ according to the " Da. 2 Control system".
The following table shows the positioning data setting items corresponding to the different types of control. Details and settings for the operation of each control are shown in Section 9.2.2 and subsequent sections.
(In this section, it is assumed that the positioning data setting is carried out using GX
Configurator-QP.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|c|}{Position control} & Speed control & \multirow[b]{2}{*}{Speedposition switching control} & \multirow[b]{2}{*}{Positionspeed switching control} \\
\hline & & & \begin{tabular}{l}
1-axis linear control \\
2-axis linear interpolation control 3-axis linear interpolation control 4-axis linear interpolation control
\end{tabular} & 1-axis fixed-feed control 2-axis fixed-feed control 3-axis fixed-feed control 4-axis fixed-feed control & 2-axis circular interpolation control & 1-axis, 2-axis, 3-axis, 4-axis Speed control & & \\
\hline \multirow{3}{*}{Da. 1} & \multirow{3}{*}{Operation pattern} & \[
\begin{array}{|l}
\text { Independent } \\
\text { positioning control } \\
\text { (Positioning complete) } \\
\hline
\end{array}
\] & © & © & © & © & © & © \\
\hline & & Continuous positioning control & ( & ( & ( & \(\times\) & ( & \(\times\) \\
\hline & & Continuous path control & © & \(\times\) & © & \(\times\) & \(\times\) & \(\times\) \\
\hline Da. 2 & \multicolumn{2}{|l|}{Control system} & \begin{tabular}{l}
Linear 1 \\
Linear 2 \\
Linear 3 \\
Linear 4 \\
*
\end{tabular} & \begin{tabular}{l}
Fixed-feed 1 \\
Fixed-feed 2 \\
Fixed-feed 3 \\
Fixed-feed 4
\end{tabular} & Circular sub Circular right Circular left * & \begin{tabular}{l}
Forward run speed 1 \\
Reverse run speed 1 \\
Forward run speed 2 \\
Reverse run speed 2 \\
Forward run speed 3 \\
Reverse run speed 3 \\
Forward run speed 4 \\
Reverse run speed 4
\end{tabular} & \begin{tabular}{l}
Forward run speed/position \\
Reverse run speed/position *
\end{tabular} & \begin{tabular}{l}
Forward run position/speed \\
Reverse run position/speed
\end{tabular} \\
\hline Da. 3 & \multicolumn{2}{|l|}{Acceleration time No.} & ( \()\) & ( & ( \()\) & (0) & (0) & ( \\
\hline Da. 4 & \multicolumn{2}{|l|}{Deceleration time No.} & ( ) & ( & ( \()\) & ( \()\) & ( & ( \\
\hline Da. 5 & \multicolumn{2}{|l|}{Axis to be interpolated} & \multicolumn{4}{|c|}{© 2-axis -: 1,3,4-axis} & - & - \\
\hline Da. 6 & \multicolumn{2}{|l|}{Positioning address/movement amount} & ( ) & © & ( & - & ( & © \\
\hline Da. 7 & \multicolumn{2}{|l|}{Arc address} & - & - & ( & - & - & - \\
\hline Da. 8 & \multicolumn{2}{|l|}{Command speed} & ( & ( & ( & ( \({ }^{\text {a }}\) & ( & ( \\
\hline Da.9 & \multicolumn{2}{|l|}{Dwell time} & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline Da. 10 & \multicolumn{2}{|l|}{M code} & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\footnotetext{
© : Always set
O: Set as required
\(\times\) : Setting not possible (If setting is made, an error "Continuous path control not possible" (error code: 516) will occur at a start.)
- : Setting not required (Setting value is invalid. Use the initial values or setting values within a range where no error occurs.)
* : The "ABS (absolute) system" or "INC (incremental) system" can be used for the control system.
}

\section*{REMARK}
- It is recommended that the "positioning data" be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.
\begin{tabular}{l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline
\end{tabular}
© : Always set
O : Set as required
\(\times\) : Setting not possible (If setting is made, an error "New current value not possible" (error code: 515) will occur.)
- : Setting not required (Setting value is invalid. Use the initial values or setting values within a range where no error occurs.)

\subsection*{9.2.2 1-axis linear control}

In "1-axis linear control" (" Da. 2 Control system" = ABS linear 1, INC linear 1), one motor is used to carry out position control in a set axis direction.

\section*{[1] 1-axis linear control (ABS linear 1)}

\section*{Operation chart}

In absolute system 1-axis linear control, positioning is carried out from the current stop position (start point address) to the address (end point address) set in " Da. 6 Positioning address/movement amount".


Positioning data setting example
The following table shows setting examples when "1-axis linear control (ABS linear \(1)^{\prime \prime}\) is set in positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & ABS linear 1 & Set absolute system 1-axis linear control. \\
\hline & Da. 3 & Acceleration time No. & 1 & Designate the value set in " Pr.25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required (setting value will be ignored). \\
\hline & Da. 6 & Positioning address/ movement amount & \(8000.0 \mu \mathrm{~m}\) & Set the positioning address. (Assuming "mm" is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & \(6000.00 \mathrm{~mm} / \mathrm{min}\) & Set the speed during movement to the positioning address. \\
\hline & Da. 9 & Dwell time & 500 ms & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{[2] 1-axis linear control (INC linear 1)}

\section*{Operation chart}

In incremental system 1-axis linear control, positioning of movement amount set in " Da. 6 Positioning address/movement amount" is carried out from the current stop position (start point address). The movement direction is determined by the sign of the movement amount.


Positioning data setting example
The following table shows setting examples when "1-axis linear control (INC linear \(1)\) " is set in positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & INC linear 1 & Set incremental system 1-axis linear control. \\
\hline & Da. 3 & Acceleration time No. & 1 & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required (setting value will be ignored). \\
\hline & Da. 6 & Positioning address/ movement amount & \(-7000.0 \mu \mathrm{~m}\) & Set the movement amount. (Assuming "mm" is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & \(6000.00 \mathrm{~mm} / \mathrm{min}\) & Set the speed during movement. \\
\hline & Da. 9 & Dwell time & 500ms & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}

\footnotetext{
* Refer to Section 5.3 "List of positioning data" for information on the setting details.
}

\subsection*{9.2.3 2-axis linear interpolation control}

In "2-axis linear interpolation control" (" Da.2 Control system" = ABS linear 2, INC linear 2), two motors are used to carry out position control in a linear path while carrying out interpolation for the axis directions set in each axis.
(Refer to Section 9.1.6 "Interpolation control" for details on interpolation control.)

\section*{[1] 2-axis linear interpolation control (ABS linear 2)}

\section*{■ Operation chart}

In absolute system 2-axis linear interpolation control, specified two axes are used to perform linear interpolation positioning from the current stop position (start point address) to the address set in the " Da. 6 Positioning address/movement amount" (end point address).


\section*{Restrictions}

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during a positioning control.
- If the movement amount of each axis exceeds "1073741824 \(\left(=2^{30}\right)\) " when " 0 : Composite speed" is set in " Pr. 20 Interpolation speed designation method"
... The error "Outside linear movement amount range" (error code: 504) occurs at a positioning start.
(The maximum movement amount that can be set in " Da. 6 Positioning address/movement amount" is "1073741824 (=2 \(\left.2^{30}\right)\) ".)

\section*{Positioning data setting example}
[Reference axis and interpolation axis are designated as axis 1 and axis 2, respectively.]
The following table shows setting examples when "2-axis linear interpolation control (ABS linear 2)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{\(\downarrow\) 'on eiep builuo!!!sod} & Da. 1 & Operation pattern & Positioning complete & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & ABS linear 2 & - & Set absolute system 2-axis linear interpolation control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & Axis 2 & - & Set the axis to be interpolated (partner axis). If the self-axis is set, an error will occur. \\
\hline & Da. 6 & Positioning address/ movement amount & \(10000.0 \mu \mathrm{~m}\) & \(4000.0 \mu \mathrm{~m}\) & Set the end point address. (Assuming "mm" is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & 6000.00 mm/min & - & Set the speed during movement to the end point address. \\
\hline & Da. 9 & Dwell time & 500ms & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINT}
- When the "reference axis speed" is set during 2-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".

\section*{[2] 2-axis linear interpolation control (INC linear 2)}

\section*{Operation chart}

In incremental system 2-axis linear interpolation control, designated 2 axes are used. Linear interpolation positioning of movement amount set in
" Da. 6 Positioning address/movement amount" is carried out from the current stop position (start point address). The movement direction is determined by the sign of the movement amount.


\section*{Restrictions}

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during a positioning operation.
- If the movement amount of each axis exceeds "1073741824 \(\left(=2^{30}\right)\) " when "0: Composite speed" is set in " Pr. 20 Interpolation speed designation method"
... The error "Outside linear movement amount range" (error code: 504) occurs at a positioning start.
(The maximum movement amount that can be set in " Da. 6 Positioning address/movement amount" is "1073741824 (=2 \(\left.2^{30}\right)\) ".)

\section*{Positioning data setting example}
[Reference axis and interpolation axis are designated as axis 1 and axis 2, respectively.]
The following table shows setting examples when "2-axis linear interpolation control (INC linear 2)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & INC linear 2 & - & Set incremental system 2-axis linear interpolation control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & Axis 2 & - & Set the axis to be interpolated (partner axis). If the self-axis is set, an error will occur. \\
\hline & Da. 6 & Positioning address/ movement amount & \(9000.0 \mu \mathrm{~m}\) & \(-3000.0 \mu \mathrm{~m}\) & Set the movement amount. (Assuming " mm " is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & \begin{tabular}{l}
\[
6000.00
\] \\
mm/min
\end{tabular} & - & Set the speed during movement. \\
\hline & Da. 9 & Dwell time & 500ms & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINT}
- When the "reference axis speed" is set during 2-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".

\subsection*{9.2.4 3-axis linear interpolation control}

In "3-axis linear interpolation control" (" Da. 2 Control system" = ABS linear 3, INC linear 3), three motors are used to carry out position control in a linear path while carrying out interpolation for the axis directions set in each axis.
(Refer to Section 9.1.6 "Interpolation control" for details on interpolation control.)

\section*{[1] 3-axis linear interpolation control (ABS linear 3)}

\section*{\(\square\) Operation chart}

In absolute system 3-axis linear interpolation control, 3 axes are used. Linear interpolation positioning is carried out from the current stop position (start point address) to the address (end point address) set in " Da. 6 Positioning address/movement amount".


\section*{Example}

When the start point address (current stop position) is \((1000,2000,1000)\) and the end point address (positioning address) is \((4000,8000,4000)\), positioning is carried out as follows.


\section*{Restrictions}

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during a positioning control.
- If the movement amount of each axis exceeds "1073741824 \(\left(=2^{30}\right)\) " when " 0 : Composite speed" is set in " Pr. 20 Interpolation speed designation method"
... The error "Outside linear movement amount range" (error code: 504) occurs at a positioning start.
(The maximum movement amount that can be set in " Da. 6 Positioning address/movement amount" is "1073741824 (=2 \(\left.2^{30}\right)\) ".)

\section*{Positioning data setting example}
[Reference axis is designated as axis 1.]
The following table shows setting examples when "3-axis linear interpolation control (ABS linear 3)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2 and axis 3.)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Axis
\end{tabular}} & \begin{tabular}{c} 
Axis 1 \\
(reference \\
axis) setting \\
example
\end{tabular} & \begin{tabular}{c} 
Axis 2 \\
(interpolation \\
axis) setting \\
example
\end{tabular} & \begin{tabular}{c} 
Axis 3 \\
(interpolation \\
axis) setting \\
example
\end{tabular} & \\
\hline & Setting item
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINTS}
- When the "reference axis speed" is set during 3-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".
- Refer to Section 9.1.6 "Interpolation control" for the reference axis and interpolation axis combinations.

\section*{[2] 3-axis linear interpolation control (INC linear 3)}

\section*{Operation chart}

In incremental system 3-axis linear interpolation control, designated 3 axes are used. Linear interpolation positioning of movement amount set in
" Da. 6 Positioning address/movement amount" is carried out from the current stop position (start point address). The movement direction is determined by the sign of the movement amount.


\section*{Restrictions}

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during a positioning operation.
- If the movement amount of each axis exceeds "1073741824 \(\left(=2^{30}\right)\) " when " 0 : Composite speed" is set in " Pr. 20 Interpolation speed designation method"
... The error "Outside linear movement amount range" (error code: 504) occurs at a positioning start.
(The maximum movement amount that can be set in " Da. 6 Positioning address/movement amount" is "1073741824 (=20 \()^{30}\).)

\section*{Positioning data setting example}
[Reference axis is designated as axis 1.]
The following table shows setting examples when "3-axis linear interpolation control (INC linear 3)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 and axis 3.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Axis 3 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & INC linear 3 & - & - & Set incremental system 3-axis linear interpolation control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & - & \begin{tabular}{l}
Designate the value set in \\
" Pr. 25 Acceleration time 1" as the acceleration time at start.
\end{tabular} \\
\hline & Da. 4 & Deceleration time No. & 0 & - & - & \begin{tabular}{l}
Designate the value set in \\
" Pr. 10 Deceleration time 0" as the deceleration time at deceleration.
\end{tabular} \\
\hline & Da. 5 & Axis to be interpolated & - & - & - & \begin{tabular}{l}
Setting not required (setting value will be ignored). \\
When axis 1 is used as a reference axis, the interpolation axes are axes 2 and 3.
\end{tabular} \\
\hline & Da. 6 & Positioning address/ movement amount & 10000.0رm & 5000.0رm & \(6000.0 \mu \mathrm{~m}\) & Set the movement amount. (Assuming "mm" is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & 6000.00 \(\mathrm{mm} / \mathrm{min}\) & - & - & Set the speed during movement. \\
\hline & Da. 9 & Dwell time & 500 ms & - & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}

\footnotetext{
* Refer to Section 5.3 "List of positioning data" for information on the setting details.
}

\section*{POINTS}
(1) When the "reference axis speed" is set during 3-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".
(2) Refer to Section 9.1.6 "Interpolation control" for the reference axis and interpolation axis combinations.

\subsection*{9.2.5 4-axis linear interpolation control}

In "4-axis linear interpolation control" (" Da. 2 Control system" = ABS linear 4, INC linear 4), four motors are used to carry out position control in a linear path while carrying out interpolation for the axis directions set in each axis.
(Refer to Section 9.1.6 "Interpolation control" for details on interpolation control.)
[1] 4-axis linear interpolation control (ABS linear 4)
In absolute system 4-axis linear interpolation control, 4 axes are used. Linear interpolation positioning is carried out from the current stop position (start point address) to the address (end point address) set in " Da. 6 Positioning address/movement amount".

\section*{\(\square\) Positioning data setting example}
[Reference axis is designated as axis 1.]
The following table shows setting examples when " 4 -axis linear interpolation control (ABS linear 4)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 , axis 3 and axis 4.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Setting item Axis} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Axis 3 (interpolation axis) setting example & Axis 4 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & - & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & ABS linear 4 & - & - & - & Set absolute system 4-axis linear interpolation control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & - & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & - & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & - & - & - & \begin{tabular}{l}
Setting not required (setting value will be ignored). \\
When axis 1 is used as a reference axis, the interpolation axes are axes 2,3 and 4.
\end{tabular} \\
\hline & Da. 6 & Positioning address/ movement amount & \(4000.0 \mu \mathrm{~m}\) & 8000.0رm & 4000.0 mm & \(3000.0 \mu \mathrm{~m}\) & Set the end point address. (Assuming " mm " is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & - & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & \[
6000.00
\]
\[
\mathrm{mm} / \mathrm{min}
\] & - & - & - & Set the speed during movement to the end point address. \\
\hline & Da. 9 & Dwell time & 500ms & - & - & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & - & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINTS}
(1) When the "reference axis speed" is set during 4-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".
(2) Refer to Section 9.1.6 "Interpolation control" for the reference axis and interpolation axis combinations.
[2] 4-axis linear interpolation control (INC linear 4)
Operation chart
In incremental system 4-axis linear interpolation control, designated 4 axes are used. Linear interpolation positioning of movement amount set in " Da. 6 Positioning address/movement amount" is carried out from the current stop position (start point address). The movement direction is determined by the sign of the movement amount.

\section*{Positioning data setting example}
[Reference axis is designated as axis 1.]
The following table shows setting examples when "4-axis linear interpolation control (INC linear 4)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2 , axis 3 and axis 4.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Setting item} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Axis 3 (interpolation axis) setting example & Axis 4 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & - & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & INC linear 4 & - & - & - & Set incremental system 4-axis linear interpolation control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & - & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & - & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & - & - & - & \begin{tabular}{l}
Setting not required (setting value will be ignored). \\
When axis 1 is used as a reference axis, the interpolation axes are axes 2, 3 and 4.
\end{tabular} \\
\hline & Da. 6 & Positioning address/ movement amount & \(4000.0 \mu \mathrm{~m}\) & \(8000.0 \mu \mathrm{~m}\) & \(4000.0 \mu \mathrm{~m}\) & \(3000.0 \mu \mathrm{~m}\) & \begin{tabular}{l}
Set the movement amount. (Assuming "mm" is set in \\
" Pr. 1 Unit setting".)
\end{tabular} \\
\hline & Da. 7 & Arc address & - & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & 6000.00 \(\mathrm{mm} / \mathrm{min}\) & - & - & - & Set the speed during movement. \\
\hline & Da. 9 & Dwell time & 500ms & - & - & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & - & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINTS}
(1) When the "reference axis speed" is set during 4-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the
" Pr. 8 Speed limit value".
(2) Refer to Section 9.1.6 "Interpolation control" for the reference axis and interpolation axis combinations.

\subsection*{9.2.6 1-axis fixed-feed control}

In "1-axis fixed-feed control" (" Da. 2 Control system" = fixed-feed 1), one motor is used to carry out fixed-feed control in a set axis direction.
In fixed-feed control, any remainder of the movement amount designated in the positioning data is rounded down if less than that required for control accuracy to output the same amount of pulses.

\section*{Operation chart}

In 1-axis fixed-feed control, the address (Md. 20 Current feed value) of the current stop position (start point address) is set to " 0 ". Positioning is then carried out to a position at the end of the movement amount set in " Da. 6 Positioning address/movement amount".
The movement direction is determined by the movement amount sign.


Restrictions
(1) An axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in " Da. 1 Operation pattern". ("Continuous path control" cannot be set in fixedfeed control.)
(2) "Fixed-feed" cannot be set in " Da. 2 Control system" in the positioning data when "continuous path control" has been set in " Da. 1 Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", fixed-feed control cannot be set in positioning data No. 2.) An axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.

\section*{POINT}
- When the movement amount is converted to the actual number of output pulses, a fraction appears after the decimal point, according to the movement amount per pulse. This fraction is normally retained in the QD75 and reflected at the next positioning.
For the fixed-feed control, since the movement distance is maintained constant (= the output number of pulses is maintained constant), the control is carried out after the fractional pulse is cleared to zero at start.
【Accumulation/cutoff for fractional pulses】
When movement amount per pulse is \(1.0 \mu \mathrm{~m}\) and movement for \(2.5 \mu \mathrm{~m}\) is executed two times;
\(\Rightarrow\) Conversion to output pulses: \(2.5[\mu \mathrm{~m}] \div 1.0=2.5\) pulses


Positioning data setting example
The following table shows setting examples when "1-axis fixed-feed control (fixedfeed 1)" is set in positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & Fixed-feed 1 & Set 1-axis fixed-feed control. \\
\hline & Da. 3 & Acceleration time No. & 1 & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required (setting value will be ignored). \\
\hline & Da.6 & Positioning address/ movement amount & \(8000.0 \mu \mathrm{~m}\) & Set the positioning address. (Assuming "mm" is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & \(6000.00 \mathrm{~mm} / \mathrm{min}\) & Set the speed during movement to the positioning address. \\
\hline & Da. 9 & Dwell time & 500ms & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.7 2-axis fixed-feed control (interpolation)}

In "2-axis fixed-feed control" (" Da.2 Control system" = fixed-feed 2), two motors are used to carry out fixed-feed control in a linear path while carrying out interpolation for the axis directions set in each axis.
In fixed-feed control, any remainder of the movement amount designated in the positioning data is rounded down if less than that required for control accuracy to output the same amount of pulses.
(Refer to Section 9.1.6 "Interpolation control" for details on interpolation control.)

\section*{\(\square\) Operation chart}

In incremental system 2-axis fixed-feed control, the addresses (Md.20 Current feed value) of the current stop position (start addresses) of both axes are set to "0". Linear interpolation positioning is then carried out from that position to a position at the end of the movement amount set in " Da. 6 Positioning address/movement amount". The movement direction is determined by the sign of the movement amount.


\section*{Restrictions}
(1) An axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in " Da. 1 Operation pattern". ("Continuous path control" cannot be set in fixedfeed control.)
(2) If the movement amount of each axis exceeds "1073741824 \(\left(=2^{30}\right)\) " when " 0 : Composite speed" is set in " Pr. 20 Interpolation speed designation method", the error "Outside linear movement amount range" (error code: 504) occurs at a positioning start and positioning cannot be started. (The maximum movement amount that can be set in " Da. 6 Positioning address/movement amount" is "1073741824 \(\left(=2^{30}\right)\) ".
(3) "Fixed-feed" cannot be set in " Da. 2 Control system" in the positioning data when "continuous path control" has been set in " Da. 1 Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", fixed-feed control cannot be set in positioning data No. 2.) An axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.

Positioning data setting example
[Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.]
The following table shows setting examples when " 2 -axis fixed-dimension feed control (fixed-feed 2)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2.)
\begin{tabular}{|l|l|l|l|c|l|}
\hline & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Axis \\
Setting item
\end{tabular}} & \begin{tabular}{c} 
Axis 1 \\
reference \\
axis) setting \\
example
\end{tabular} & \begin{tabular}{c} 
Axis 2 \\
(interpolation \\
axis) setting \\
example
\end{tabular} & \\
\hline & Da.1 & Operation pattern & \begin{tabular}{c} 
Positioning \\
complete
\end{tabular} & - & \begin{tabular}{l} 
Set "Positioning complete" assuming the next positioning \\
data will not be executed.
\end{tabular} \\
\hline Da.2 & Control system & Fixed-feed 2 & - & Set 2-axis fixed-feed control.
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINTS}
(1) When the movement amount is converted to the actual number of output pulses, a fraction appears after the decimal point, according to the movement amount per pulse. This fraction is normally retained in the QD75 and reflected at the next positioning.
For the fixed-feed control, since the movement distance is maintained constant (= the output number of pulses is maintained constant), the control is carried out after the fractional pulse is cleared to zero at start.
【Accumulation/cutoff for fractional pulses】
When movement amount per pulse is \(1.0 \mu \mathrm{~m}\) and movement for \(2.5 \mu \mathrm{~m}\) is executed two times;
\(\Rightarrow\) Conversion to output pulses: \(2.5[\mu \mathrm{~m}] \div 1.0=2.5\) pulses

(2) When the "reference axis speed" is set during 2-axis fixed-feed control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".

\subsection*{9.2.8 3-axis fixed-feed control (interpolation)}

In "3-axis fixed-feed control" (" Da. 2 Control system" = fixed-feed 3), three motors are used to carry out fixed-feed control in a linear path while carrying out interpolation for the axis directions set in each axis.
In fixed-feed control, any remainder of the movement amount designated in the positioning data is rounded down if less than that required for control accuracy to output the same amount of pulses.
(Refer to Section 9.1.6 "Interpolation control" for details on interpolation control.)


\section*{Restrictions}
(1) An axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in " Da. 1 Operation pattern". ("Continuous path control" cannot be set in fixedfeed control.)
(2) If the movement amount of each axis exceeds "1073741824 \(\left(=2^{30}\right)\) " when " 0 : Composite speed" is set in " Pr. 20 Interpolation speed designation method", the error "Outside linear movement amount range" (error code: 504) occurs at a positioning start and positioning cannot be started. (The maximum movement amount that can be set in " Da. 6 Positioning address/movement amount" is "1073741824 (= \(\left.2^{30}\right)\) ".
(3) "Fixed-feed" cannot be set in " Da. 2 Control system" in the positioning data when "continuous path control" has been set in " Da. 1 Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", fixed-feed control cannot be set in positioning data No. 2.) An axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.

Positioning data setting example
[Reference axis is designated as axis 1.]
The following table shows setting examples when "3-axis fixed-feed control (fixedfeed 3 )" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2 and axis 3 .)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Axis \\
Setting item
\end{tabular}} & \begin{tabular}{c} 
Axis 1 \\
(reference \\
axis) setting \\
example
\end{tabular} & \begin{tabular}{c} 
Axis 2 \\
(interpolation \\
axis) setting \\
example
\end{tabular} & \begin{tabular}{c} 
Axis 3 \\
(interpolation \\
axis) setting \\
example
\end{tabular} & \multicolumn{1}{c|}{ Setting details }
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINTS}
(1) When the movement amount is converted to the actual number of output pulses, a fraction appears after the decimal point, according to the movement amount per pulse. This fraction is normally retained in the QD75 and reflected at the next positioning.
For the fixed-feed control, since the movement distance is maintained constant (= the output number of pulses is maintained constant), the control is carried out after the fractional pulse is cleared to zero at start.

【Accumulation/cutoff for fractional pulses】
When movement amount per pulse is \(1.0 \mu \mathrm{~m}\) and movement for \(2.5 \mu \mathrm{~m}\) is executed two times;
\(\Rightarrow\) Conversion to output pulses: \(2.5[\mu \mathrm{~m}] \div 1.0=2.5\) pulses

(2) When the "reference axis speed" is set during 3-axis fixed-feed control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".
(3) Refer to Section 9.1.6 "Interpolation control" for the reference axis and interpolation axis combinations.

\subsection*{9.2.9 4-axis fixed-feed control (interpolation)}

In "4-axis fixed-feed control" (" Da. 2 Control system" = fixed-feed 4), four motors are used to carry out fixed-feed control in a linear path while carrying out interpolation for the axis directions set in each axis.
In fixed-feed control, any remainder of the movement amount designated in the positioning data is rounded down if less than that required for control accuracy to output the same amount of pulses.
(Refer to Section 9.1.6 "Interpolation control" for details on interpolation control.)

\section*{\(\square\) Operation chart}

In incremental system 4-axis fixed-feed control, the addresses (Md. 20 Current feed value) of the current stop position (start addresses) of every axes are set to "0". Linear interpolation positioning is then carried out from that position to a position at the end of the movement amount set in " Da. 6 Positioning address/movement amount". The movement direction is determined by the sign of the movement amount.

\section*{Restrictions}
(1) An axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in " Da. 1 Operation pattern". ("Continuous path control" cannot be set in fixedfeed control.)
(2) For 4-axis fixed-feed control, set "1: Reference axis speed" in
" Pr. 20 Interpolation speed designation method". An error "Interpolation mode error" (error code: 523) will occur and the operation cannot start If " 0 : Composite speed" is set.
(3) "Fixed-feed" cannot be set in " Da. 2 Control system" in the positioning data when "continuous path control" has been set in " Da. 1 Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", fixed-feed control cannot be set in positioning data No. 2.) An axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.

\section*{Positioning data setting example}
[Reference axis is designated as axis 1.]
The following table shows setting examples when " 4 -axis fixed-feed control (fixedfeed 4)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2 , axis 3 and axis 4.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\qquad\)} & Axis 1 (reference axis) setting example & Axis 2
(interpolation
axis) setting
example & \[
\begin{gathered}
\text { Axis } 3 \\
\text { (interpolation } \\
\text { axis) setting } \\
\text { example }
\end{gathered}
\] & Axis 4 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & - & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & Fixed-feed 4 & - & - & - & Set 4-axis fixed-feed control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & - & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & - & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & - & - & - & \begin{tabular}{l}
Setting not required (setting value will be ignored). \\
When axis 1 is used as a reference axis, the interpolation axes are axes 2,3 and 4.
\end{tabular} \\
\hline & Da. 6 & Positioning address/ movement amount & \(4000.0 \mu \mathrm{~m}\) & \(8000.0 \mu \mathrm{~m}\) & \(4000.0 \mu \mathrm{~m}\) & \(3000.0 \mu \mathrm{~m}\) & Set the positioning address. (Assuming "mm" is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & - & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & \[
6000.00
\]
\[
\mathrm{mm} / \mathrm{min}
\] & - & - & - & Set the speed during movement. \\
\hline & Da. 9 & Dwell time & 500 ms & - & - & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & - & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}

\footnotetext{
* Refer to Section 5.3 "List of positioning data" for information on the setting details.
}

\section*{POINTS}
(1) When the movement amount is converted to the actual number of output pulses, a fraction appears after the decimal point, according to the movement amount per pulse. This fraction is normally retained in the QD75 and reflected at the next positioning.
For the fixed-feed control, since the movement distance is maintained constant (= the output number of pulses is maintained constant), the control is carried out after the fractional pulse is cleared to zero at start.

【Accumulation/cutoff for fractional pulses】
When movement amount per pulse is \(1.0 \mu \mathrm{~m}\) and movement for \(2.5 \mu \mathrm{~m}\) is executed two times;
\(\Rightarrow\) Conversion to output pulses: \(2.5[\mu \mathrm{~m}] \div 1.0=2.5\) pulses

(2) For 4-axis fixed-feed control, set the "reference axis speed" and make setting so that the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the " Pr. 8 Speed limit value".
(3) Refer to Section 9.1.6 "Interpolation control" for the reference axis and interpolation axis combinations.

\subsection*{9.2.10 2-axis circular interpolation control with sub point designation}

In "2-axis circular interpolation control" (" Da. 2 Control system" = ABS circular sub, INC circular sub), two motors are used to carry out position control in an arc path passing through designated sub points, while carrying out interpolation for the axis directions set in each axis.
(Refer to Section 9.1.6 "Interpolation control" for details on interpolation control.)
[1] 2-axis circular interpolation control with sub point designation (ABS circular sub)

\section*{\(\square\) Operation chart}

In the absolute system, 2-axis circular interpolation control with sub point designation, positioning is carried out from the current stop position (start point address) to the address (end point address) set in " Da. 6 Positioning address/movement amount", in an arc path that passes through the sub point address set in " Da. 7 Arc address".

The resulting control path is an arc having as its center the intersection point of perpendicular bisectors of a straight line between the start point address (current stop position) and sub point address (arc address), and a straight line between the sub point address (arc address) and end point address (positioning address).


\section*{Restrictions}
(1) 2-axis circular interpolation control cannot be set in the following cases.
- When "degree" is set in " Pr. 1 Unit setting"
- When the units set in " Pr. 1 Unit setting" are different for the reference axis and interpolation axis. ("mm" and "inch" combinations are possible.)
- When "reference axis speed" is set in " Pr. 20 Interpolation speed designation method"
(2) An error will occur and the positioning start will not be possible in the following cases. The machine will immediately stop if the error is detected during positioning control.
- When the radius exceeds " \(536870912\left(=2^{29}\right)\) ". (The maximum radius for which circular interpolation control is possible is "536870912 \(\left(=2^{29}\right)\) "
... An error "Outside radius range" (error code: 544) will occur at positioning start.
- When the center point address is outside the range of "-2147483648 \(\left(-2^{31}\right)\) to \(2147483647\left(2^{31}-1\right) "\)
... An error "Sub point setting error" (error code: 525) will occur at positioning start.
- When the start point address is the same as the end point address
... An error "End point setting error" (error code: 526) will occur.
- When the start point address is the same as the sub point address
... An error "Sub point setting error" (error code: 525) will occur.
- When the end point address is the same as the sub point address
... An error "Sub point setting error" (error code: 525) will occur.
- When the start point address, sub point address, and end point address are in a straight line
... An error "Sub point setting error" (error code: 525) will occur.

\section*{Positioning data setting example}
[Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.]
The following table shows setting examples when " 2 -axis circular interpolation control with sub point designation (ABS circular sub)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & ABS circular sub & - & Set absolute system, 2-axis circular interpolation control with sub point designation. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & Designate the value set in "Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & Axis 2 & - & Set the axis to be interpolated (partner axis). If the self-axis is set, an error will occur. \\
\hline & Da. 6 & Positioning address/ movement amount & \(8000.0 \mu \mathrm{~m}\) & \(6000.0 \mu \mathrm{~m}\) & Set the positioning address. (Assuming "mm" is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & 4000.0رm & \(3000.0 \mu \mathrm{~m}\) & Set the sub point address. (Assuming that the " Pr. 1 Unit setting" is set to "mm".) \\
\hline & Da. 8 & Command speed & \[
6000.00
\]
\[
\mathrm{mm} / \mathrm{min}
\] & - & Set the speed when moving to the end point address. (Designate the composite speed in " Pr. 20 Interpolation speed designation method".) \\
\hline & Da. 9 & Dwell time & 500ms & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINT}

Set a value in " Da. 8 Command speed" so that the speed of each axis does not exceed the "Pr. 8 Speed limit value". (The speed limit does not function for the speed calculated by the QD75 during interpolation control.)
[2] 2-axis circular interpolation control with sub point designation (INC circular sub)

Operation chart
In the incremental system, 2-axis circular interpolation control with sub point designation, positioning is carried out from the current stop position (start point address) to a position at the end of the movement amount set in
" Da. 6 Positioning address/movement amount" in an arc path that passes through the sub point address set in " Da. 7 Arc address". The movement direction depends on the sign (+ or -) of the movement amount.
The resulting control path is an arc having as its center the intersection point of perpendicular bisectors of the straight line between the start point address (current stop position) and sub point address (arc address) calculated from the movement amount to the sub point, and a straight line between the sub point address (arc address) and end point address (positioning address) calculated from the movement amount to the end point.


\section*{Restrictions}
(1) 2-axis circular interpolation control cannot be set in the following cases.
- When "degree" is set in " Pr. 1 Unit setting"
- When the units set in " Pr. 1 Unit setting" are different for the reference axis and interpolation axis. ("mm" and "inch" combinations are possible.)
- When "reference axis speed" is set in " Pr. 20 Interpolation speed designation method"
(2) An error will occur and the positioning start will not be possible in the following cases. The machine will immediately stop if the error is detected during positioning control.
- When the radius exceeds "536870912 \(\left(=2^{29}\right)\) ". (The maximum radius for which circular interpolation control is possible is "536870912 \(\left(=2^{29}\right)\) "
... An error "Outside radius range" (error code: 544) will occur at positioning start.
- When the auxiliary point address is outside the range of \(-2147483648\left(-2^{31}\right)\) to \(2147483647\left(2^{31}-1\right)\).
... An error "Sub point setting error" (error code: 525) will occur.
- When the end point address is outside the range of \(-2147483648\left(-2^{31}\right)\) to 2147483647 ( \(2^{31}-1\) ).
... An error "End point setting error" (error code: 526) will occur.
- When the auxiliary point address, center point address is outside the range of " \(-2147483648\left(-2^{31}\right)\) to \(2147483647\left(2^{31}-1\right)\) "
... An error "Sub point setting error" (error code: 525) will occur at positioning start.
- When the start point address is the same as the end point address
... An error "End point setting error" (error code: 526) will occur.
- When the start point address is the same as the sub point address
... An error "Sub point setting error" (error code: 525) will occur.
- When the end point address is the same as the sub point address
... An error "Sub point setting error" (error code: 525) will occur.
- When the start point address, sub point address, and end point address are in a straight line
... An error "Sub point setting error" (error code: 525) will occur.

\section*{Positioning data setting example}
[Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.]
The following table shows setting examples when " 2 -axis circular interpolation control with sub point designation (INC circular sub)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & INC circular
sub & - & Set incremental system, 2-axis circular interpolation control with sub point designation. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & Axis 2 & - & Set the axis to be interpolated (partner axis). If the self-axis is set, an error will occur. \\
\hline & Da. 6 & Positioning address/ movement amount & \(8000.0 \mu \mathrm{~m}\) & \(6000.0 \mu \mathrm{~m}\) & Set the movement amount. (Assuming that the " Pr. 1 Unit setting" is set to "mm".) \\
\hline & Da. 7 & Arc address & \(4000.0 \mu \mathrm{~m}\) & \(3000.0 \mu \mathrm{~m}\) & \begin{tabular}{l}
Set the sub point address. (Assuming that the \\
" Pr. 1 Unit setting" is set to "mm".)
\end{tabular} \\
\hline & Da. 8 & Command speed & \[
\begin{aligned}
& 6000.00 \\
& \mathrm{~mm} / \mathrm{min}
\end{aligned}
\] & - & Set the speed during movement. (Designate the composite speed in " Pr. 20 Interpolation speed designation method".) \\
\hline & Da. 9 & Dwell time & 500ms & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINT}

Set a value in " Da. 8 Command speed" so that the speed of each axis does not exceed the "Pr. 8 Speed limit value". (The speed limit does not function for the speed calculated by the QD75 during interpolation control.)

\subsection*{9.2.11 2-axis circular interpolation control with center point designation}

In "2-axis circular interpolation control" (" Da. 2 Control system" = ABS circular right, INC circular right, ABS circular left, INC circular left), two motors are used to carry out position control in an arc path having an arc address as a center point, while carrying out interpolation for the axis directions set in each axis.
(Refer to Section 9.1.6 "Interpolation control" for details on interpolation control.)
The following table shows the rotation directions, arc center angles that can be controlled, and positioning paths for the different control systems.
\begin{tabular}{|c|c|c|c|}
\hline Control system & Rotation direction & Arc center angle that can be controlled & Positioning path \\
\hline ABS circular right & & \multirow{4}{*}{\(0^{\circ}<\theta \leq 360^{\circ}\)} &  \\
\hline INC circular right & & & \\
\hline ABS circular left & \multirow{2}{*}{Counterclockwise} & & \\
\hline INC circular left & & & (current stop
position) \\
\hline
\end{tabular}

Circular interpolation error compensation
In circular interpolation control with center point designation, the arc path calculated from the start point address and center point address may deviate from the position of the end point address set in " Da. 6 Positioning address/movement amount".
(Refer to " Pr. 41 Allowable circular interpolation error width".)
(1) Calculated error \(\leq\) " Pr. 41 Allowable circular interpolation error width" Circular interpolation control to the set end point address is carried out while the error compensation is carried out. (This is called "spiral interpolation".)


In circular interpolation control with center point designation, an angular velocity is calculated on the assumption that operation is carried out at a command speed on the arc using the radius calculated from the start point address and center point address, and the radius is compensated in proportion to the angular velocity deviated from that at the start point.
Thus, when there is a difference (error) between a radius calculated from the start point address and center point address (start point radius) and a radius calculated from the end point address and center point address (end point radius), the composite speed differs from the command speed as follows.
* Start point radius > End point radius: As compared with the speed without error, the speed becomes slower as end point address is reached.
* Start point radius < End point radius: As compared with the speed without error, the speed becomes faster as end point address is reached.
(2) Calculated error > " Pr. 41 Allowable circular interpolation error width"

At the positioning start, an error "Large arc error deviation" (error code: 506) will occur and the control will not start. The machine will immediately stop if the error is detected during positioning control.

\section*{[1] 2-axis circular interpolation control with center point designation (ABS circular right, ABS circular left)}

Operation chart
In the absolute system, 2-axis circular interpolation control with center point designation, positioning is carried out from the current stop position (start point address) to the address (end point address) set in " Da. 6 Positioning address/movement amount" in an arc path having as its center the address (arc address) of the center point set in " Da. 7 Arc address".


Positioning of a complete round with a radius from the start point address to the arc center point can be carried out by setting the end point address (positioning address) to the same address as the start point address.


In circular interpolation control with center point designation, an angular velocity is calculated on the assumption that operation is carried out at a command speed on the arc using the radius calculated from the start point address and center point address, and the radius is compensated in proportion to the angular velocity deviated from that at the start point.
Thus, when there is a difference (error) between a radius calculated from the start point address and center point address (start point radius) and a radius calculated from the end point address and center point address (end point radius), the composite speed differs from the command speed as follows.
* Start point radius > End point radius: As compared with the speed without error, the speed becomes slower as end point address is reached.
* Start point radius < End point radius: As compared with the speed without error, the speed becomes faster as end point address is reached.

\section*{Restrictions}
(1) 2-axis circular interpolation control cannot be set in the following cases.
- When "degree" is set in " Pr. 1 Unit setting"
- When the units set in " Pr. 1 Unit setting" are different for the reference axis and interpolation axis. ("mm" and "inch" combinations are possible.)
- When "reference axis speed" is set in " Pr. 20 Interpolation speed designation method"
(2) An error will occur and the positioning start will not be possible in the following cases. The machine will immediately stop if the error is detected during positioning control.
- When the radius exceeds "536870912 \(\left(=2^{29}\right)\) ". (The maximum radius for which circular interpolation control is possible is "536870912 \(\left(=2^{29}\right)\) "
... An error "Outside radius range " (error code: 544) will occur at positioning start.
- When the start point address is the same as the center point address
... An error "Center point setting error" (error code: 527) will occur.
- When the end point address is the same as the center point address
... An error "Center point setting error" (error code: 527) will occur.
- When the center point address is outside the range of \(-2147483648\left(-2^{31}\right)\) to 2147483647 ( \(2^{31}-1\) )
... An error "Center point setting error" (error code: 527) will occur.

\section*{Positioning data setting examples}
[Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.]
The following table shows setting examples when " 2 -axis circular interpolation control with center point designation (ABS right arc, ABS left arc)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & _ & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & ABS circular right ABS circular left & - & Set absolute system, 2-axis circular interpolation control with center point designation. (Select clockwise or counterclockwise according to the control.) \\
\hline & Da. 3 & Acceleration time No. & 1 & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & Axis 2 & - & Set the axis to be interpolated (partner axis). If the self-axis is set, an error will occur. \\
\hline & Da. 6 & Positioning address/ movement amount & \(8000.0 \mu \mathrm{~m}\) & \(6000.0 \mu \mathrm{~m}\) & Set the positioning address. (Assuming "mm" is set in " Pr. 1 Unit setting".) \\
\hline & Da. 7 & Arc address & \(4000.0 \mu \mathrm{~m}\) & \(3000.0 \mu \mathrm{~m}\) & Set the arc address. (Assuming that the " Pr. 1 Unit setting" is set to "mm".) \\
\hline & Da. 8 & Command speed & \[
6000.00
\]
\[
\mathrm{mm} / \mathrm{min}
\] & - & Set the speed when moving to the end point address. (Designate the composite speed in " Pr. 20 Interpolation speed designation method".) \\
\hline & Da. 9 & Dwell time & 500ms & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINT}

Set a value in " Da. 8 Command speed" so that the speed of each axis does not exceed the " Pr. 8 Speed limit value". (The speed limit does not function for the speed calculated by the QD75 during interpolation control.)
[2] 2-axis circular interpolation control with center point designation (INC circular right, INC circular left)

Operation chart
In the incremental system, 2-axis circular interpolation control with center point designation, positioning is carried out from the current stop position (start point address) to a position at the end of the movement amount set in
" Da. 6 Positioning address/movement amount" in an arc path having as its center the address (arc address) of the center point set in " Da. 7 Arc address".


Positioning of a complete round with a radius of the distance from the start point address to the arc center point can be carried out by setting the movement amount to "0".


In circular interpolation control with center point designation, an angular velocity is calculated on the assumption that operation is carried out at a command speed on the arc using the radius calculated from the start point address and center point address, and the radius is compensated in proportion to the angular velocity deviated from that at the start point.
Thus, when there is a difference (error) between a radius calculated from the start point address and center point address (start point radius) and a radius calculated from the end point address and center point address (end point radius), the composite speed differs from the command speed as follows.
* Start point radius > End point radius: As compared with the speed without error, the speed becomes slower as end point address is reached.
* Start point radius < End point radius: As compared with the speed without error, the speed becomes faster as end point address is reached.

\section*{Restrictions}
(1) 2-axis circular interpolation control cannot be set in the following cases.
- When "degree" is set in " Pr. 1 Unit setting"
- When the units set in " Pr. 1 Unit setting" are different for the reference axis and interpolation axis. ("mm" and "inch" combinations are possible.)
- When "reference axis speed" is set in " Pr. 20 Interpolation speed designation method"
(2) An error will occur and the positioning start will not be possible in the following cases. The machine will immediately stop if the error is detected during positioning control.
- When the radius exceeds " \(536870912\left(=2^{29}\right)\) ". (The maximum radius for which circular interpolation control is possible is "536870912 \(\left(=2^{29}\right)\) "
... An error "Outside radius range" (error code: 544) will occur at positioning start.
- When the end point address is outside the range of \(-2147483648\left(-2^{31}\right)\) to 2147483647 ( \(2^{31}-1\) )
... An error "End point setting error" (error code: 526) will occur.
- When the start point address is the same as the center point address
... An error "Center point setting error" (error code: 527) will occur.
- When the end point address is the same as the center point address
... An error "Center point setting error" (error code: 527) will occur.
- When the center point address is outside the range of \(-2147483648\left(-2^{31}\right)\) to 2147483647( \(2^{31}-1\) )
... An error "Center point setting error" (error code: 527) will occur.

\section*{Positioning data setting examples}
[Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.]
The following table shows setting examples when " 2 -axis circular interpolation control with center point designation (INC circular right, INC circular left)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & Set "Positioning complete" assuming the next positioning data will not be executed. \\
\hline & Da. 2 & Control system & INC circular right INC circular left & - & Set incremental system, 2-axis circular interpolation control with center point designation. (Select clockwise or counterclockwise according to the control.) \\
\hline & Da. 3 & Acceleration time No. & 1 & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & Axis 2 & - & Set the axis to be interpolated (partner axis). If the self-axis is set, an error will occur. \\
\hline & Da.6 & Positioning address/ movement amount & 8000.0رm & \(6000.0 \mu \mathrm{~m}\) & Set the movement amount. (Assuming that the " Pr. 1 Unit setting" is set to "mm".) \\
\hline & Da. 7 & Arc address & \(4000.0 \mu \mathrm{~m}\) & \(3000.0 \mu \mathrm{~m}\) & Set the center point address. (Assuming that the " Pr. 1 Unit setting" is set to "mm".) \\
\hline & Da. 8 & Command speed & \[
6000.00
\]
mm/min & - & Set the speed when moving to the end point address. (Designate the composite speed in " Pr. 20 Interpolation speed designation method".) \\
\hline & Da.9 & Dwell time & 500ms & - & Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. \\
\hline & Da. 10 & M code & 10 & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\section*{POINT}

Set a value in " Da. 8 Command speed" so that the speed of each axis does not exceed the "Pr. 8 Speed limit value". (The speed limit does not function for the speed calculated by the QD75 during interpolation control.)

\subsection*{9.2.12 1-axis speed control}

In "1-axis speed control" (" Da. 2 Control system" = Forward run: speed 1, Reverse run: speed 1), control is carried out in the axis direction in which the positioning data has been set by continuously outputting pulses for the speed set in
" Da. 8 Command speed" until the input of a stop command.
The two types of 1 -axis speed control are "Forward run: speed 1" in which the control starts in the forward run direction, and "Reverse run: speed 1" in which control starts in the reverse run direction.

Operation chart
The following chart shows the operation timing for 1 -axis speed control with axis 1 as the reference axis.
The "in speed control" flag (Md.31 Status: b0) is turned ON during speed control. The "Positioning complete signal" is not turned ON.


Fig.9.9 1-axis speed control operation timing

Current feed value during 1-axis speed control
The following table shows the " Md. 20 Current feed value" during 1-axis speed control corresponding to the " Pr. 21 Current feed value during speed control" settings.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ "Pr.21 \begin{tabular}{c} 
Current feed value during speed \\
control" setting
\end{tabular}} & \multicolumn{1}{|c|}{ Md. 20 Current feed value } \\
\hline 0: Do not update current feed value & \begin{tabular}{l} 
The current feed value at speed control start \\
is maintained.
\end{tabular} \\
\hline 1: Update current feed value & The current feed value is updated. \\
\hline 2: Zero clear current feed value & The current feed value is fixed at 0. \\
\hline
\end{tabular}

(a) Current feed value not updated

(b) Current feed value updated

(c) Current feed value zero cleared

Restrictions
(1) Set "Positioning complete" in " Da. 1 Operation pattern". An axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set in " Da. 1 Operation pattern". ("Continuous positioning control" and "continuous path control" cannot be set in speed control.)
(2) Set the WITH mode in " Pr. 18 M code ON signal output timing" when using an \(M\) code. The \(M\) code will not be output, and the \(M\) code \(O N\) signal will not turn ON if the AFTER mode is set.
(3) An error "No command speed" (error code: 503) will occur if the current speed \((-1)\) is set in " Da. 8 Command speed".
(4) The software stroke limit check will not carried out if the control unit is set to "degree".

Positioning data setting examples
The following table shows the setting examples when "1-axis speed control (forward run: speed 1)" is set in the positioning data No. 1 of axis 1.
\begin{tabular}{|l|l|l|c|l|l|}
\hline \multicolumn{2}{|c|}{ Setting item } & Setting example & \multicolumn{1}{c|}{ Setting details } \\
\hline & Da.1 & Operation pattern & \begin{tabular}{c} 
Positioning \\
complete
\end{tabular} & \begin{tabular}{l} 
Setting other than "Positioning complete" is not possible in speed \\
control.
\end{tabular} \\
\hline & Da.2 & Control system & \begin{tabular}{c} 
Forward run \\
speed 1
\end{tabular} & Set 1-axis speed control. \\
\hline & Da.3 & Acceleration time & 1 & \begin{tabular}{l} 
Designate the value set in " \\
acceleration time at start.
\end{tabular} \\
No. Pr.25
\end{tabular} Acceleration time 1" as the
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.13 2-axis speed control}

In "2-axis speed control" (" Da. 2 Control system" = Forward run: speed 2, Reverse run: speed 2), control is carried out in the 2-axis direction in which the positioning data has been set by continuously outputting pulses for the speed set in " Da. 8 Command speed" until the input of a stop command.
The two types of 2-axis speed control are "Forward run: speed 2" in which the control starts in the forward run direction, and "Reverse run: speed 2" in which control starts in the reverse run direction.
(Refer to Section 9.1.6 "Interpolation control" for the combination of the reference axis with the interpolation axis.)
- Operation chart

The following chart shows the operation timing for 2-axis (axes 1 and 2) speed control with axis 1 as the reference axis. The "in speed control" flag (Md. 31 Status: b0) is turned ON during speed control.

The "positioning complete signal" is not turned ON.


Fig. 9.10 2-axis speed control operation timing

Current feed value during 2-axis speed control The following table shows the " Md. 20 Current feed value" during 2-axis speed control corresponding to the " Pr. 21 Current feed value during speed control" settings. (Note that the reference axis setting values are used for parameters.)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ " Pr.21 Current feed value during speed } \\
control" setting
\end{tabular}\(\quad\)\begin{tabular}{|l|}
\hline \multicolumn{1}{c|}{ Md. 20} \\
Current feed value
\end{tabular}

(a) Current feed value not updated

(b) Current feed value updated

(c) Current feed value zero cleared

Restrictions
(1) Set "Positioning complete" in " Da. 1 Operation pattern". An axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set.
("Continuous positioning control" and "continuous path control" cannot be set in speed control.)
(2) Set the WITH mode in " Pr. 18 M code ON signal output timing" when using an \(M\) code. The \(M\) code will not be output, and the \(M\) code ON signal will not turn ON if the AFTER mode is set.
(3) Set the "reference axis speed" in " Pr. 20 Interpolation speed designation method". An error "Interpolation mode error" (error code: 523) will occur and the operation cannot start if a composite speed is set.
(4) When either of two axes exceeds the speed limit, that axis is controlled with the speed limit value. The speeds of the other axes are limited at the ratios of " Da. 8 Command speed". (Examples)
\begin{tabular}{|c|c|c|c|}
\hline & Axis & Axis 1 setting & Axis 2 setting \\
Setting item & & \\
\hline Pr.8 & Speed limit value & \(4000.00 \mathrm{~mm} / \mathrm{min}\) & \(5000.00 \mathrm{~mm} / \mathrm{min}\) \\
\hline Da.8 & Command speed & \(8000.00 \mathrm{~mm} / \mathrm{min}\) & \(6000.00 \mathrm{~mm} / \mathrm{min}\) \\
\hline
\end{tabular}

With the settings shown above, the operation speed in speed control is as follows.
Axis 1: \(4000.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited by Pr. 8 ).
Axis 2: \(3000.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited at an ratio of an axis 1 command speed to an axis 2 command speed).

Note: Operation runs at speed 1 when a reference axis speed is less than 1 as a result of speed limit.
In addition, when a bias speed is set, it will be the minimum speed.
(5) An error "No command speed" (error code: 503) occurs if a current speed (-1) is set in " Da. 8 Command speed".
(6) The software stroke limit check is not carried out when the control unit is set to "degree".

Positioning data setting examples
[Setting examples when the reference axis and interpolation axis are designated as axes 1 and 2, respectively.]
The following table shows the setting examples when "2-axis speed control (forward run: speed 2)" is set in the positioning data No. 1 of axis 1 (reference axis).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{L on ełep 6u!uo!!!sod l s!x才} & Da. 1 & Operation pattern & Positioning complete & - & Setting other than "Positioning complete" is not possible in speed control. \\
\hline & Da. 2 & Control system & Forward run speed 2 & - & Set 2-axis speed control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & Axis 2 & - & Set the axis to be interpolated (partner axis). If the self-axis is set, an error will occur. \\
\hline & Da.6 & Positioning address/ movement amount & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 7 & Arc address & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & 6000.00 \(\mathrm{mm} / \mathrm{min}\) & 3000.00 mm/min & Set the speed to be commanded. \\
\hline & Da. 9 & Dwell time & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 10 & M code & 10 & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. (" Pr. 18 M code ON signal output timing" setting only possible in the WITH mode.) \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.14 3-axis speed control}

In "3-axis speed control" (" Da. 2 Control system" = Forward run: speed 3, Reverse run: speed 3 ), control is carried out in the 3-axis direction in which the positioning data has been set by continuously outputting pulses for the speed set in " Da. 8 Command speed" until the input of a stop command.
The two types of 3-axis speed control are "Forward run: speed 3" in which the control starts in the forward run direction, and "Reverse run: speed 3" in which control starts in the reverse run direction.
(Refer to Section 9.1.6 "Interpolation control" for the combination of the reference axis with the interpolation axes.)
- Operation chart

The following chart shows the operation timing for 3 -axis (axes 1,2 , and 3 ) speed control with axis 1 as the reference axis.
The "in speed control" flag (Md. 31 Status: b0) is turned ON during speed control. The "positioning complete signal" is not turned ON.


Fig. 9.11 3-axis speed control operation timing

Current feed value during 3-axis speed control
The following table shows the " Md. 20 Current feed value" during 3-axis speed control corresponding to the " Pr. 21 Current feed value during speed control" settings. (Note that the reference axis setting values are used for parameters.)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{l} 
Pr.21 \begin{tabular}{l} 
Current feed value during speed \\
control" setting
\end{tabular} \\
\hline 0: Do not update current feed value
\end{tabular}} & \begin{tabular}{l} 
The current feed value at speed control start \\
is maintained.
\end{tabular} \\
\hline 1: Update current feed value & The current feed value is updated. \\
\hline 2: Zero clear current feed value & The current feed value is fixed at 0. \\
\hline
\end{tabular}

(a) Current feed value not updated

(b) Current feed value updated

(c) Current feed value zero cleared

Restrictions
(1) Set "Positioning complete" in " Da. 1 Operation pattern". An axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set. ("Continuous positioning control" and "continuous path control" cannot be set in speed control.)
(2) Set the WITH mode in " Pr. 18 M code ON signal output timing" when using an \(M\) code. The \(M\) code will not be output, and the \(M\) code \(O N\) signal will not turn ON if the AFTER mode is set.
(3) Set the "reference axis speed" in " Pr. 20 Interpolation speed designation method". An error "Interpolation mode error" (error code: 523) will occur and the operation cannot start if a composite speed is set.
(4) When either of three axes exceeds the speed limit, that axis is controlled with the speed limit value. The speeds of the other axes are limited at the ratios of " Da. 8 Command speed".
(Examples)
\begin{tabular}{|c|c|c|c|c|}
\hline & Axis & Axis 1 setting & Axis 2 setting & Axis 3 setting \\
\hline Setting item & & \\
\hline Pr. 8 & \begin{tabular}{c} 
Speed limit \\
value
\end{tabular} & \(4000.00 \mathrm{~mm} / \mathrm{min}\) & \(5000.00 \mathrm{~mm} / \mathrm{min}\) & \(6000.00 \mathrm{~mm} / \mathrm{min}\) \\
\hline Da.8 & \begin{tabular}{c} 
Command \\
speed
\end{tabular} & \(8000.00 \mathrm{~mm} / \mathrm{min}\) & \(6000.00 \mathrm{~mm} / \mathrm{min}\) & \(4000.00 \mathrm{~mm} / \mathrm{min}\) \\
\hline
\end{tabular}

With the settings shown above, the operation speed in speed control is as follows.
Axis 1: \(4000.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited by Pr. 8 ).
Axis 2: \(3000.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited at ratios in axes 1, 2, and 3 command speeds).
Axis 3: \(2000.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited at ratios in axes 1, 2, and 3 command speeds).
Note: Operation runs at speed 1 when a reference axis speed is less than 1 as a result of speed limit.
In addition, when a bias speed is set, it will be the minimum speed.
(5) An error "No command speed" (error code: 503) will occur if a current speed \((-1)\) is set in " Da. 8 Command speed".
(6) The software stroke limit check is not carried out when the control unit is set to "degree".

Positioning data setting examples
The following table shows the setting examples when " 3 -axis speed control (forward run: speed 3 )" is set in the positioning data No. 1 of axis 1 (reference axis).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\square\)} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Axis 3 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & - & Setting other than "Positioning complete" is not possible in speed control. \\
\hline & Da. 2 & Control system & Forward run speed 3 & - & - & Set 3-axis speed control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & - & \begin{tabular}{l}
Designate the value set in \\
" Pr. 25 Acceleration time 1" as the acceleration time at start.
\end{tabular} \\
\hline & Da. 4 & Deceleration time No. & 0 & - & - & \begin{tabular}{l}
Designate the value set in \\
" Pr. 10 Deceleration time 0" as the deceleration time at deceleration.
\end{tabular} \\
\hline & Da. 5 & Axis to be interpolated & - & - & - & \begin{tabular}{l}
Setting not required (setting value will be ignored). \\
When axis 1 is used as a reference axis, the interpolation axes are axes 2 and 3 .
\end{tabular} \\
\hline & Da. 6 & Positioning address/ movement amount & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 7 & Arc address & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & 6000.00 mm/min & 3000.00 mm/min & 2000.00 \(\mathrm{mm} / \mathrm{min}\) & Set the speed to be commanded. \\
\hline & Da. 9 & Dwell time & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 10 & M code & 10 & - & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. (" Pr. 18 M code ON signal output timing" setting only possible in the WITH mode.) \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.15 4-axis speed control}

In "4-axis speed control" (" Da. 2 Control system" = Forward run: speed 4, Reverse run: speed 4), control is carried out in the 4-axis direction in which the positioning data has been set by continuously outputting pulses for the speed set in " Da. 8 Command speed" until the input of a stop command.
The two types of 4-axis speed control are "Forward run: speed 4" in which the control starts in the forward run direction, and "Reverse run: speed 4" in which control starts in the reverse run direction.
(Refer to Section 9.1.6 "Interpolation control" for the combination of the reference axis with the interpolation axes.)

Operation chart
The following chart shows the operation timing for 4 -axis speed control with axis 1 as the reference axis.
The "in speed control" flag (Md.31 Status: b0) is turned ON during speed control. The "positioning complete signal" is not turned ON.


Fig. 9.12 4-axis speed control operation timing

Current feed value during 4-axis speed control
The following table shows the " Md. 20 Current feed value" during 4-axis speed control corresponding to the " Pr. 21 Current feed value during speed control" settings. (Note that the reference axis setting values are used for parameters.)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{l} 
Pr.21 \begin{tabular}{l} 
Current feed value during speed \\
control" setting
\end{tabular} \\
\hline 0: Do not update current feed value
\end{tabular}} & \begin{tabular}{l} 
The current feed value at speed control start \\
is maintained.
\end{tabular} \\
\hline 1: Update current feed value & The current feed value is updated. \\
\hline 2: Zero clear current feed value & The current feed value is fixed at 0. \\
\hline
\end{tabular}

(a) Current feed value not updated

(b) Current feed value updated

(c) Current feed value zero cleared

Restrictions
(1) Set "Positioning complete" in " Da. 1 Operation pattern". An axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set. ("Continuous positioning control" and "continuous path control" cannot be set in speed control.)
(2) Set the WITH mode in " Pr. 18 M code ON signal output timing" when using an M code. The M code will not be output, and the M code ON signal will not turn ON if the AFTER mode is set.
(3) Set the "reference axis speed" in " Pr. 20 Interpolation speed designation method". An error "Interpolation mode error" (error code: 523) will occur and the operation cannot start if a composite speed is set.
(4) When either of four axes exceeds the speed limit, that axis is controlled with the speed limit value. The speeds of the other axes are limited at the ratios of " Da. 8 Command speed". (Examples)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Setting item Axis} & Axis 1 setting & Axis 2 setting & Axis 3 setting & Axis 4 setting \\
\hline Pr. 8 & Speed limit value & \[
\underset{\mathrm{min}}{4000.00 \mathrm{~mm} /}
\] & \(\underset{\text { min }}{5000.00 \mathrm{~mm} /}\) & \(\underset{\text { min }}{6000.00 \mathrm{~mm} /}\) & \(8000.00 \mathrm{~mm} /\) min \\
\hline Da. 8 & Command speed & \(\underset{\text { min }}{8000.00 \mathrm{~mm} /}\) & \(\underset{\mathrm{min}}{6000.00 \mathrm{~mm} /}\) & \[
\begin{gathered}
4000.00 \mathrm{~mm} / \\
\mathrm{min}
\end{gathered}
\] & \(1500.00 \mathrm{~mm} /\) min \\
\hline
\end{tabular}

With the settings shown above, the operation speed in speed control is as follows.
Axis 1: \(4000.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited by Pr. 8 ).
Axis 2: \(3000.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited at ratios in axes 1, 2, 3 and 4 command speeds).
Axis 3: \(2000.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited at ratios in axes 1, 2, 3 and 4 command speeds).
Axis 4: \(750.00 \mathrm{~mm} / \mathrm{min}\) (Speed is limited at ratios in axes 1, 2, 3 and 4 command speeds).
Note: Operation runs at speed 1 when a reference axis speed is less than 1 as a result of speed limit.
In addition, when a bias speed is set, it will be the minimum speed.
(5) An error "No command speed" (error code: 503) will occur if a current speed \((-1)\) is set in " Da. 8 Command speed".
(6) The software stroke limit check is not carried out when the control unit is set to "degree".

Positioning data setting examples
The following table shows the setting examples when "4-axis speed control (forward run: speed 4)" is set in the positioning data No. 1 of axis 1 (reference axis).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Setting item} & Axis 1 (reference axis) setting example & Axis 2 (interpolation axis) setting example & Axis 3 (interpolation axis) setting example & Axis 4 (interpolation axis) setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & - & - & - & Setting other than "Positioning complete" is not possible in speed control. \\
\hline & Da. 2 & Control system & Forward run & - & - & - & Set 4-axis speed control. \\
\hline & Da. 3 & Acceleration time No. & 1 & - & - & - & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & - & - & - & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & - & - & - & \begin{tabular}{l}
Setting not required (setting value will be ignored). \\
When axis 1 is used as a reference axis, the interpolation axes are axes 2, 3 and 4.
\end{tabular} \\
\hline & Da. 6 & Positioning address/ movement amount & - & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 7 & Arc address & - & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 8 & Command speed & \[
6000.00
\]
\[
\mathrm{mm} / \mathrm{min}
\] & \[
3000.00
\]
\[
\mathrm{mm} / \mathrm{min}
\] & \[
2000.00
\]
\[
\mathrm{mm} / \mathrm{min}
\] & \[
1000.00
\]
\[
\mathrm{mm} / \mathrm{min}
\] & Set the speed to be commanded. \\
\hline & Da. 9 & Dwell time & - & - & - & - & Setting not required (setting value will be ignored). \\
\hline & Da. 10 & M code & 10 & - & - & - & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. (" Pr. 18 M code ON signal output timing" setting only possible in the WITH mode.) \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.16 Speed-position switching control (INC mode)}

In "speed-position switching control (INC mode)" (" Da. 2 Control system" = Forward run: speed/position, Reverse run: speed/position), the pulses of the speed set in " Da. 8 Command speed" are kept output on the axial direction set to the positioning data. When the "speed-position switching signal" is input, position control of the movement amount set in " Da. 6 Positioning address/movement amount" is exercised.
"Speed-position switching control (INC mode)" is available in two different types: "forward run: speed/position" which starts the axis in the forward run direction and "reverse run: speed/position" which starts the axis in the reverse run direction.

Use the detailed parameter 1 " Pr. 150 Speed-position function selection" with regard to the choice for "speed-position switching control (INC mode)".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|c|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 150 & Speedposition function selection & 0 & Speed-position switching control (INC mode) & 34 & 184 & 334 & 484 \\
\hline
\end{tabular}
* If the set value is other than 0 and 2 , it is regarded as 0 and operation is performed in the INC mode.
For details of the setting, refer to Section 5.2 "List of parameters".
Switching over from speed control to position control
(1) The control is switched over from speed control to position control by executing the external command signal set in "speed-position switching signal".
(2) Besides setting the positioning data, the " Cd. 24 Speed-position switching enable flag" must also be turned ON to switch over from speed control to position control. (If the " Cd. 24 Speed-position switching enable flag" turns ON after the speed-position switching signal turns ON, the control will continue as speed control without switching over to position control. The control will be switched over from speed control to position control when the speed-position switching signal turns from OFF to ON again. Only position control will be carried out when the " Cd. 24 Speed-position switching enable flag" and speed-position switching signal are ON at the operation start.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & \multicolumn{2}{|c|}{ Setting details } & \multicolumn{3}{|c|}{ Buffer memory address } \\
\cline { 5 - 8 } & & \begin{tabular}{l} 
Speed- \\
position \\
Cd.24
\end{tabular} & \begin{tabular}{l} 
switching \\
enable \\
flag
\end{tabular} & 1 & \begin{tabular}{l} 
Set "1: Switch from speed control \\
to position control when the \\
external command signal [CHG] \\
turns ON.".
\end{tabular} & 1528 & 1628 \\
\hline
\end{tabular}

Speed-position switching signal setting
The following table shows the items that must be set to use the external command signals (CHG) as speed-position switching signals.
\begin{tabular}{|c|l|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & \multicolumn{2}{|c|}{ Setting details } & \multicolumn{4}{|c|}{ Buffer memory address } \\
\cline { 5 - 8 } & & \begin{tabular}{l} 
External \\
command
\end{tabular} & 2 & \begin{tabular}{l} 
Set the "2: speed-position and \\
position-speed switching \\
requests".
\end{tabular} & Axis 2 & Axis 3 & Axis 4 \\
\hline & \begin{tabular}{l} 
function \\
selection
\end{tabular} & & 62 & 212 & 362 & 512 \\
\hline Cd.8 & \begin{tabular}{l} 
External \\
command \\
valid
\end{tabular} & 1 & \begin{tabular}{l} 
Set "1: Validate external \\
command".
\end{tabular} & 1505 & 1605 & 1705 & 1805 \\
\hline
\end{tabular}
*Refer to Section 5.2 "List of parameters" and Section 5.7 "List of control data" for information on the setting details.

\section*{Operation chart}

The following chart (Fig.9.13) shows the operation timing for speed-position switching control (INC mode). The "in speed control flag" ( Md. 31 Status: b0) is turned ON during speed control of speed-position switching control (INC mode).


Fig. 9.13 Speed-position switching control (INC mode) operation timing

\section*{[Operation example]}

The following operation assumes that the speed-position switching signal is input at the position of the current feed value of 90.00000 [degree] during execution of " Da. 2 Control system" "Forward run: speed/position" at " Pr. 1 Unit setting" of "2: degree" and " Pr. 21 Current feed value during speed control" setting of "1: Update current feed value".
(The value set in " Da. 6 Positioning address/movement amount" is 270.00000 [degree])


Operation timing and processing time during speed-position switching control (INC mode)


Fig. 9.14 Operation timing and processing time during speed-position switching control (INC mode)

Normal timing time
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model & t 1 & t 2 & t 3 & t 4 & t 5 & t 6 & t 7 \\
\hline QD75P \(\square \mathrm{N} / \mathrm{QD} 75 \mathrm{D} \square \mathrm{N}\) & 0.2 to 1.1 ms & 0 to 0.9 ms & 0 to 0.9 ms & 0.4 to 1.3 ms & 0 to 0.9 ms & 1.0 ms & Follows \\
\hline QD75P \(\square\) QD75D \(\square\) & 1.1 ms & 0 to 1.8 ms & 0 to 1.8 ms & 2.7 to 4.4 ms & 0 to 1.8 ms & 1.0ms & parameters \\
\hline
\end{tabular}
- The t 1 timing time could be delayed by the operation state of other axes.
- Current feed value during speed-position switching control (INC mode) The following table shows the " Md.20 Current feed value" during speedposition switching control (INC mode) corresponding to the " Pr. 21 Current feed value during speed control" settings.
\begin{tabular}{|l|l|}
\hline " Pr.21 Current feed value during & \multicolumn{1}{|c|}{\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Md.20 Current feed value control" setting }
\end{tabular}} \\
\hline 0: Do not update current feed value & \begin{tabular}{l} 
The current feed value at control start is maintained during \\
speed control, and updated from the switching to position \\
control.
\end{tabular} \\
\hline 1: Update current feed value & \begin{tabular}{l} 
The current feed value is updated during speed control \\
and position control.
\end{tabular} \\
\hline 2: Zero clear current feed value & \begin{tabular}{l} 
The current feed value is cleared (set to "0") at control \\
start, and updated from the switching to position control.
\end{tabular} \\
\hline
\end{tabular}


Switching time from speed control to position control
There is 1 ms from the time the speed-position switching signal is turned ON to the time the speed-position switching latch flag (Md.31 Status: b1) turns ON.


Changing the position control movement amount In "speed-position switching control (INC mode)", the position control movement amount can be changed during the speed control section.
(1) The "new movement amount" is stored in " Cd. 23 Speed-position switching control movement amount change register" by the sequence program during speed control.
When the speed-position switching signal is turned ON, the movement amount for position control is stored in " Cd. 23 Speed-position switching control movement amount change register".
(2) The movement amount is stored in the " Md.29 Speed-position switching control positioning amount" of the axis monitor area from the point where the control changes to position control by the input of a speed-position switching signal from an external source.


Fig. 9.15 Position control movement amount change timing

\section*{POINT}
- The machine recognizes the presence of a movement amount change request when the data is written to " Cd. 23 Speed-position switching control movement amount change register" with the sequence program.
- The new movement amount is validated after execution of the speed-position switching control (INC mode), before the input of the speed-position switching signal.
- The movement amount change can be enable/disable with the interlock function in position control using the "speed-position switching latch flag" (Md.31 Status: b1) of the axis monitor area.

Restrictions
(1) The axis error "Continuous path control not possible" (error code: 516) will occur, and the operation cannot start if "continuous path control" is set in " Da. 1 Operation pattern".
(2) "Speed-position switching control" cannot be set in " Da. 2 Control system" of the positioning data when "continuous path control" has been set in " Da. 1 Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", "speed-position switching control" cannot be set in positioning data
No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.
(3) The error "No command speed" (error code: 503) will occur if "current speed (1)" is set in " Da. 8 Command speed".
(4) The software stroke limit range check during speed control is made only when the following (a) and (b) are satisfied:
(a) When " Pr. 21 Current feed value during speed control" is "1: Update current feed value"
If the movement amount exceeds the software stroke limit range during speed control in cases of settings other than the one above, the error "Software stroke limit+" (error code: 507) or "Software stroke limit-" (error code: 508) will occur as soon as speed control is changed to position control, and the axis will decelerate to a stop.
(b) When " Pr. 1 Unit setting" is other than "2: degree" If the unit is "degree", the software stroke limit range check is not performed.
(5) If the value set in " Da. 6 Positioning address/movement amount" is negative, the error "Outside address range" (error code: 530) will occur.
(6) Deceleration processing is carried out from the point where the speed-position switching signal is input if the position control movement amount set in " Da. 6 Positioning address/movement amount" is smaller than the deceleration distance from the " Da. 8 Command speed".
(7) Turn ON the speed-position switching signal in the speed stabilization region (constant speed status). The warning "Speed-position switching (during acceleration) signal ON" (warning code: 508) will occur because of large deviation in the droop pulse amount if the signal is turned ON during acceleration.
During use of the servomotor, the actual movement amount after switching of speed control to position control is the "preset movement amount + droop pulse amount". If the signal is turned ON during acceleration/deceleration, the stop position will vary due to large variation of the droop pulse amount. Even though " Md. 29 Speed-position switching control positioning amount" is the same, the stop position will change due to a change in droop pulse amount when " Da. 8 Command speed" is different.

Positioning data setting examples
The following table shows setting examples when "speed-position switching control (INC mode) by forward run" is set in positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{\[
\text { L on ełep 6u!uo!!!!sod } \quad \text { l s!x }
\]} & Da. 1 & Operation pattern & Positioning complete & Set "Positioning complete" assuming the next positioning data will not be executed. ("Continuous path control" cannot be set in "speedposition switching control (INC mode)".) \\
\hline & Da. 2 & Control system & Forward run: speed/position & Set speed-position switching control by forward run. \\
\hline & Da. 3 & Acceleration time No. & 1 & Designate the value set in " Pr.25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 6 & Positioning address/ movement amount & 10000.0 \(\mu \mathrm{m}\) & \begin{tabular}{l}
\[
\text { INC mode ( } \mathrm{Pr} .150=0)
\] \\
Set the movement amount after the switching to position control. (Assuming that the " Pr. 1 Unit setting" is set to "mm".)
\end{tabular} \\
\hline & Da. 7 & Arc address & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 8 & Command speed & \(6000.00 \mathrm{~mm} / \mathrm{min}\) & Set the speed to be controlled. \\
\hline & Da. 9 & Dwell time & 500ms & Set a time from the positioning stop (pulse output stop) by position control until the positioning complete signal is output. When the system is stopped by speed control, ignore the setting value. \\
\hline & Da. 10 & M code & 10 & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.17 Speed-position switching control (ABS mode)}

In case of "speed-position switching control (ABS mode)" (" Da. 2 Control system" = Forward run: speed/position, Reverse run: speed/position), the pulses of the speed set in " Da. 8 Command speed" are kept output in the axial direction set to the positioning data. When the "speed-position switching signal" is input, position control to the address set in " Da. 6 Positioning address/movement amount" is exercised.
"Speed-position switching control (ABS mode)" is available in two different types: "forward run: speed/position" which starts the axis in the forward run direction and "reverse run: speed/position" which starts the axis in the reverse run direction.
"Speed-position switching control (ABS mode)" is valid only when " Pr. 1 Unit setting" is "2: degree".
\begin{tabular}{|l|c|c|c|c|}
\hline Pr. 1 Unit setting & & & & \\
\hline \begin{tabular}{l} 
Speed-position \\
function selection
\end{tabular} & inch & degree & pulse \\
\hline INC mode & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline ABS mode & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

O: Setting allowed,
\(\times\) : Setting disallowed (If setting is made, the error "Speed-position function selection error" (error code: 935) will occur when the PLC READY (YO) turns ON.)

Use the detailed parameter 1 " Pr. 150 Speed-position function selection" to choose "speed-position switching control (ABS mode)".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|c|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Pr. 150 & Speedposition function selection & 2 & Speed-position switching control (ABS mode) & 34 & 184 & 334 & 484 \\
\hline
\end{tabular}
* If the set value is other than 0 and 2 , it is regarded as 0 and operation is performed in the INC mode.
For details of the setting, refer to Section 5.2 "List of parameters".

\section*{Switching over from speed control to position control}
(1) The control is switched over from speed control to position control by executing the external command signal set in "speed-position switching signal".
(2) Besides setting the positioning data, the " Cd. 24 Speed-position switching enable flag" must also be turned ON to switch over from speed control to position control. (If the " Cd. 24 Speed-position switching enable flag" turns ON after the speed-position switching signal turns ON, the control will continue as speed control without switching over to position control. The control will be switched over from speed control to position control when the speed-position switching signal turns from OFF to ON again. Only position control will be carried out when the " Cd. 24 Speed-position switching enable flag" and speed-position switching signal are ON at the operation start.)
\begin{tabular}{|c|c|c|l|l|l|l|l|}
\hline \multirow{2}{*}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & \multicolumn{2}{|c|}{ Setting details } & \multicolumn{4}{|c|}{ Buffer memory address } \\
\cline { 4 - 8 } & & \begin{tabular}{l} 
Speed- \\
position \\
Switching \\
enable \\
flag
\end{tabular} & 1 & \begin{tabular}{l} 
Set "1: Switch from speed control \\
to position control when the \\
external command signal [CHG] \\
turns ON.".
\end{tabular} & 1528 & 1628 & 1728 \\
\hline
\end{tabular}

Speed-position switching signal setting
The following table shows the items that must be set to use the external command signals (CHG) as speed-position switching signals.
\begin{tabular}{|c|c|c|l|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & \multicolumn{2}{|c|}{ Setting details } & \multicolumn{3}{|c|}{ Buffer memory address } \\
\cline { 5 - 8 } & Pr.42 & \begin{tabular}{l} 
External \\
command \\
function \\
selection
\end{tabular} & 2 & \begin{tabular}{l} 
Set the "2: speed-position and \\
position-speed switching \\
requests".
\end{tabular} & 62 & 212 & 362 \\
\hline Cd.8 & \begin{tabular}{l} 
External \\
command \\
valid
\end{tabular} & 1 & \begin{tabular}{l} 
Set "1: Validate external \\
command".
\end{tabular} & 1505 & 1605 & 1705 & 1805 \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" and Section 5.7 "List of control data" for information on the setting details.

\section*{Operation chart}

The following chart (Fig.9.16) shows the operation timing for speed-position switching control (ABS mode). The "in speed control flag" (Md.31 Status: b0) is turned ON during speed control of speed-position switching control (ABS mode).


Fig. 9.16 Speed-position switching control (ABS mode) operation timing

\section*{[Operation example]}

The following operation assumes that the speed-position switching signal is input at the position of the current feed value of 90.00000 [degree] during execution of " Da. 2 Control system" "Forward run: speed/position" at " Pr. 1 Unit setting" of "2: degree" and " Pr. 21 Current feed value during speed control" setting of "1: Update current feed value".
(The value set in " Da.6 Positioning address/movement amount" is 270.00000 [degree])


Operation timing and processing time during speed-position switching control (ABS mode)


Fig. 9.17 Operation timing and processing time during speed-position switching control (ABS mode)

Normal timing time
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model & t 1 & t 2 & t 3 & t 4 & t 5 & t 6 & t 7 \\
\hline QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) & 0.2 to 1.1 ms & 0 to 0.9 ms & 0 to 0.9 ms & 0.4 to 1.3 ms & 0 to 0.9 ms & 1.0 ms & Follows \\
\hline QD75P \(\square\) QD75D \(\square\) & 1.1 ms & 0 to 1.8 ms & 0 to 1.8 ms & 2.7 to 4.4 ms & 0 to 1.8 ms & 1.0 ms & parameters \\
\hline
\end{tabular}
- The t1 timing time could be delayed by the operation state of other axes.

Current feed value during speed-position switching control (ABS mode) The following table shows the " Md.20 Current feed value" during speedposition switching control (ABS mode) corresponding to the " Pr. 21 Current feed value during speed control" settings.
\begin{tabular}{|l|c|}
\hline " Pr.21 Current feed value during \\
speed control" setting
\end{tabular}\(\quad\) Md.20 Current feed value

Only "1: Update current value" is valid for the setting of " Pr. 21 Current feed value during speed control" in speed-position switching control (ABS mode). The error "Speed-position function selection error" (error code: 935) will occur if the " Pr. 21 Current feed value during speed control" setting is other than 1.


Current feed value updated
Switching time from speed control to position control
There is 1 ms from the time the speed-position switching signal is turned ON to the time the speed-position switching latch flag (Md.31 Status: b1) turns ON.


\section*{Restrictions}
(1) The axis error "Continuous path control not possible" (error code: 516) will occur, and the operation cannot start if "continuous path control" is set in " Da. 1 Operation pattern".
(2) "Speed-position switching control" cannot be set in " Da. 2 Control system" of the positioning data when "continuous path control" has been set in
" Da. 1 Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", "speed-position switching control" cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.
(3) The error "No command speed" (error code: 503) will occur if "current speed \((-1)\) " is set in " Da. 8 Command speed".
(4) If the value set in " Da.6 Positioning address/movement amount" is negative, the error "Outside address range" (error code: 530) will occur.
(5) Even though the axis control data " Cd. 23 Speed-position switching control movement amount change register" was set in speed-position switching control (ABS mode), it would not function. The set value is ignored.
(6) To exercise speed-position switching control (ABS mode), the following conditions must be satisfied:
(a) " Pr. 1 Unit setting" is "2: degree"
(b) The software stroke limit function is invalid (upper limit value \(=\) lower limit value)
(c) " Pr. 21 Current feed value during speed control" is "1: Update current feed value"
(d) The setting range of " Da. 6 Positioning address/movement amount" is within 0 to 359.99999 (degree)
(If the value is outside of the range, the error "Outside address range" (error code: 530) will occur at the start.)
(e) The " Pr. 150 Speed-position function selection" setting is "2: Speedposition switching control (ABS mode)".
(7) If any of the conditions in (6)(a) to (6)(c) is not satisfied in the case of (6)(e), the error "Speed-position function selection error" (error code: 935) will occur when the PLC READY [Y0] turns from OFF to ON.
(8) If the axis reaches the positioning address midway through deceleration after automatic deceleration started at the input of the speed-position switching signal, the axis will not stop immediately at the positioning address. The axis will stop at the positioning address after N revolutions so that automatic deceleration can always be made. ( N : Natural number)
In the following example, since making deceleration in the path of dotted line will cause the axis to exceed the positioning addresses twice, the axis will decelerate to a stop at the third positioning address.


Positioning data setting examples
The following table shows setting examples when "speed-position switching control (ABS mode) by forward run" is set in positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & Set "Positioning complete" assuming the next positioning data will not be executed. ("Continuous path control" cannot be set in "speedposition switching control (ABS mode)".) \\
\hline & Da. 2 & Control system & Forward run: speed/position & Set speed-position switching control by forward run. \\
\hline & Da. 3 & Acceleration time No. & 1 & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 6 & Positioning address/ movement amount & \[
\begin{gathered}
270.00000 \\
\text { degree }
\end{gathered}
\] & \begin{tabular}{l}
\[
\text { ABS mode (Pr. } 150=2)
\] \\
Set the address after the switching to position control. (Assuming that the " Pr. 1 Unit setting" is set to "degree".)
\end{tabular} \\
\hline & Da. 7 & Arc address & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 8 & Command speed & \(6000.00 \mathrm{~mm} / \mathrm{min}\) & Set the speed to be controlled. \\
\hline & Da. 9 & Dwell time & 500ms & Set a time from the positioning stop (pulse output stop) by position control until the positioning complete signal is output. When the system is stopped by speed control, ignore the setting value. \\
\hline & Da. 10 & M code & 10 & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.18 Position-speed switching control}

In "position-speed switching control" (" Da.2 Control system" = Forward run: position/speed, Reverse run: position/speed), before the position-speed switching signal is input, position control is carried out for the movement amount set in " Da. 6 Positioning address/movement amount" in the axis direction in which the positioning data has been set. When the position-speed switching signal is input, the position control is carried out by continuously outputting the pulses for the speed set in " Da. 8 Command speed" until the input of a stop command.
The two types of position-speed switching control are "Forward run: position/speed" in which the control starts in the forward run direction, and "Reverse run: position/speed" in which control starts in the reverse run direction.

\section*{Switching over from position control to speed control}
(1) The control is switched over from position control to speed control by executing the external command signal set in "position-speed switching signal".
(2) Besides setting the positioning data, the " Cd. 26 Position-speed switching enable flag" must also be turned ON to switch over from position control to speed control. (If the " Cd. 26 Position-speed switching enable flag" turns ON after the position-speed switching signal turns ON, the control will continue as position control without switching over to speed control. The control will be switched over from position control to speed control when the position-speed switching signal turns from OFF to ON again. Only speed control will be carried out when the " Cd. 26 Position-speed switching enable flag" and position-speed switching signal are ON at the operation start.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|c|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Cd. 26 & Positionspeed switching enable flag & 1 & Set "1: Switch from position control to speed control when the external command signal [CHG] turns ON". & 1532 & 1632 & 1732 & 1832 \\
\hline
\end{tabular}

Position-speed switching signal setting
The following table shows the items that must be set to use the external command signals (CHG) as position-speed switching signals.
\begin{tabular}{|c|l|c|l|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & \multicolumn{2}{|c|}{ Setting details } & \multicolumn{3}{|c|}{ Buffer memory address } \\
\cline { 5 - 8 } & & \begin{tabular}{l} 
External \\
command \\
function \\
selection
\end{tabular} & 2 & \begin{tabular}{l} 
Set the "2: speed-position and \\
position-speed switching \\
requests".
\end{tabular} & 62 & 212 & 362 \\
\hline & \begin{tabular}{l} 
External \\
command \\
valid
\end{tabular} & 1 & \begin{tabular}{l} 
Set "1: Validate external \\
command".
\end{tabular} & 1505 & 1605 & 1705 & 1805 \\
\hline Cd.8
\end{tabular}
* Refer to Section 5.2 "List of parameters" and Section 5.7 "List of control data" for information on the setting details.
\(\square\) Operation chart
The following chart shows the operation timing for position-speed switching control. The "in speed control" flag (Md. 31 Status: b0) is turned ON during speed control of position-speed switching control.


Fig. 9.18 Position-speed switching control operation timing

Operation timing and processing time during position-speed switching control


Fig. 9.19 Operation timing and processing time during position-speed switching control

\section*{Normal timing time}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model & t 1 & t 2 & t 3 & t 4 & t 5 & t 6 \\
\hline QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) & 0.2 to 1.1 ms & 0 to 0.9 ms & 0 to 0.9 ms & 0.4 to 1.3 ms & - & 1.0 ms \\
\hline QD75P \(\square / \mathrm{QD75D} \square\) & 1.0 to 1.4 ms & 0 to 1.8 ms & 0 to 1.8 ms & 2.7 to 4.4 ms & - & 1.0 ms \\
\hline
\end{tabular}
- The t 1 timing time could be delayed by the operation state of other axes.

Current feed value during position-speed switching control The following table shows the " Md. 20 Current feed value" during positionspeed switching control corresponding to the " Pr. 21 Current feed value during speed control" settings.
\begin{tabular}{|l|l|}
\hline " Pr. 21 Current feed value during \\
speed control" setting
\end{tabular}\(\quad\)\begin{tabular}{l} 
Md.20 Current feed value
\end{tabular}


Switching time from position control to speed control
There is 1 ms from the time the position-speed switching signal is turned ON to the time the position-speed switching latch flag (Md.31 Status: b5) turns ON.


Changing the speed control command speed
In "position-speed switching control", the speed control command speed can be changed during the position control.
(1) The speed control command speed can be changed during the position control of position-speed switching control.
A command speed change request will be ignored unless issued during the position control of the position-speed switching control.
(2) The "new command speed" is stored in " Cd. 25 Position-speed switching control speed change register" by the sequence program during position control.
This value then becomes the speed control command speed when the position-speed switching signal turns ON.


Fig. 9.20 Speed control speed change timing

\section*{POINTS}
- The machine recognizes the presence of a command speed change request when the data is written to " Cd. 25 Position-speed switching control speed change register" with the sequence program.
- The new command speed is validated after execution of the position-speed switching control before the input of the position-speed switching signal.
- The command speed change can be enabled/disabled with the interlock function in speed control using the "position-speed switching latch flag" (Md.31 Status: b5) of the axis monitor area.

Restrictions
(1) The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set in " Da. 1 Operation pattern".
(2) "Position-speed switching control" cannot be set in " Da. 2 Control system" of the positioning data when "continuous path control" has been set in " Da. 1 Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", "position-speed switching control" cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.
(3) The software stroke limit range is only checked during speed control if the "1: Update current feed value" is set in " Pr. 21 Current feed value during speed control".
The software stroke limit range is not checked when the control unit is set to "degree".
(4) The error "Software stroke limit+" or "Software stroke limit-" (error code: 507 or 508) will occur and the operation cannot start if the start point address or end point address for position control exceeds the software stroke limit range.
(5) Deceleration stop will be carried out if the position-speed switching signal is not input before the machine is moved by a specified movement amount. When the position-speed switching signal is input during automatic deceleration by positioning control, acceleration is carried out again to the command speed to continue speed control.
When the position-speed switching signal is input during deceleration to a stop with the stop signal, the control is switched to the speed control to stop the machine.
Restart is carried out by speed control using the restart command.
(6) The warning "Speed limit value over" (warning code: 501) will occur and control is continued by " Pr. 8 Speed limit value" if a new speed exceeds " Pr. 8 Speed limit value" at the time of change of the command speed.
(7) If the value set in " Da. 6 Positioning address/movement amount" is negative, the error "Outside address range" (error code: 530) will occur.

Positioning data setting examples
The following table shows setting examples when "position-speed switching control (forward run: position/speed)" is set in positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & Positioning complete & Set "Positioning complete" assuming the next positioning data will not be executed. ("Continuous positioning control" and "Continuous path control" cannot be set in "position/speed changeover control".) \\
\hline & Da. 2 & Control system & Forward run: position/speed & Set position-speed switching control. \\
\hline & Da. 3 & Acceleration time No. & 1 & Designate the value set in " Pr. 25 Acceleration time 1" as the acceleration time at start. \\
\hline & Da. 4 & Deceleration time No. & 0 & Designate the value set in " Pr. 10 Deceleration time 0" as the deceleration time at deceleration. \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required. (Setting value is ignored.) \\
\hline & Da.6 & Positioning address/ movement amount & 10000.0رm & Set the movement amount at the time of position control before the switching to speed control. (Assuming that the " Pr. 1 Unit setting" is set to "mm".) \\
\hline & Da. 7 & Arc address & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 8 & Command speed & \(6000.00 \mathrm{~mm} / \mathrm{min}\) & Set the speed to be controlled. \\
\hline & Da. 9 & Dwell time & 500ms & Set the time the machine dwells after the positioning stop (pulse output stop) by position control to the output of the positioning complete signal. If the machine is stopped by speed control, the setting value will be ignored. \\
\hline & Da. 10 & M code & 10 & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.19 Current value changing}

When the current value is changed to a new value, control is carried out in which the " Md. 20 Current feed value" of the stopped axis is changed to a random address set by the user. (The " Md. 21 Machine feed value" is not changed when the current value is changed.)

The two methods for changing the current value are shown below.
[1] Changing to a new current value using the positioning data
[2] Changing to a new current value using the start No. (No. 9003) for a current value changing

The current value changing using method [1] is used during continuous positioning of multiple blocks, etc.

\section*{[1] Changing to a new current value using the positioning data}

\section*{\(\square\) Operation chart}

The following chart shows the operation timing for a current value changing. The
" Md. 20 Current feed value" is changed to the value set in " Da. 6 Positioning address/movement amount" when the positioning start signal turns ON.


\section*{Restrictions}
(1) An axis error "New current value not possible" (error code: 515) will occur and the operation cannot start if "continuous path control" is set in
" Da. 1 Operation pattern". ("Continuous path control" cannot be set in current value changing.)
(2) "Current value changing" cannot be set in " Da. 2 Control system" of the positioning data when "continuous path control" has been set in
" Da. 1 Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", "current value changing" cannot be set in positioning data No. 2.) An axis error "New current value not possible" (error code: 515) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.
(3) An axis error "Outside new current value range" (error code: 514) will occur and the operation cannot start if "degree" is set in " Pr. 1 Unit setting" and the value set in " Da. 6 Positioning address/movement amount" is outside the setting range ( 0 to 359.99999 [degree]).
(4) If the value set in " Da. 6 Positioning address/movement amount" is outside the software stroke limit (Pr.12, Pr. 13 ) setting range, an error "Software stroke limit +" or "Software stroke limit -" (error code: 507 or 508 ) will occur at the positioning start, and the operation will not start.

\section*{Positioning data setting examples}

The following table shows the setting examples when " current value changing" is set in the positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{Axis 1 positioning data No. 1} & Da. 1 & Operation pattern & Positioning complete & Set "Positioning complete" assuming that the next positioning data will be executed. ("Continuous path control" cannot be set by current value change.) \\
\hline & Da. 2 & Control system & Current value changing & Set the current value changing. \\
\hline & Da. 3 & Acceleration time No. & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 4 & Deceleration time No. & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required (Setting value is ignored.) \\
\hline & Da.6 & Positioning address/ movement amount & \(10000.0 \mu \mathrm{~m}\) & Set the address to which address change is desired. (Assuming that the " Pr. 1 Unit setting" is set to "mm".) \\
\hline & Da. 7 & Arc address & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 8 & Command speed & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 9 & Dwell time & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 10 & M code & 10 & Set this when other sub operation commands are issued in combination with the No. 1 positioning data. \\
\hline
\end{tabular}

\footnotetext{
* Refer to Section 5.3 "List of positioning data" for information on the setting details.
}
[2] Changing to a new current value using the start No. (No. 9003) for a current value changing

\section*{\(\square\) Operation chart}

The current value is changed by setting the new current value in the current value changing buffer memory " Cd. 9 Current value changing", setting "9003" in the
" Cd. 3 Positioning start No.", and turning ON the positioning start signal.


\section*{Restrictions}
(1) An axis error "Outside new current value range" (error code: 514) will occur if the designated value is outside the setting range when "degree" is set in "Unit setting".
(2) An error "Software stroke limit +" or "Software stroke limit -" (error code: 507 or 508) will occur if the designated value is outside the software stroke limit range.
(3) The current value cannot be changed during stop commands and while the M code ON signal is ON.
(4) The M code output function is made invalid.

Current value changing procedure
The following shows the procedure for changing the current value to a new value.
1)

Write the current value to "Cd. 9 Current value changing"
2)


\section*{Setting method for the current value changing function}

The following shows an example of a sequence program and data setting to change the current value to a new value with the positioning start signal. (The " Md. 20 Current feed value is changed to " \(5000.0 \mu \mathrm{~m}\) " in the example shown.)
(1) Set the following data.
(Set with the sequence program shown in (3), while referring to the start time chart shown in (2).)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[t]{2}{*}{Setting value} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Setting details}} & \multicolumn{4}{|r|}{Buffer memory address} \\
\hline & & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline Cd. 3 & Positioning start No. & 9003 & \multicolumn{2}{|l|}{Set the start No. "9003" for the new current value.} & 1500 & 1600 & 1700 & 1800 \\
\hline Cd. 9 & Current value changing & 50000 & \multicolumn{2}{|l|}{Set the new " Md. 20 Current feed value".} & \[
\begin{aligned}
& 1506 \\
& 1507
\end{aligned}
\] & \[
\begin{aligned}
& 1606 \\
& 1607
\end{aligned}
\] & \[
\begin{aligned}
& 1706 \\
& 1707 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1806 \\
& 1807 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
(2) The following shows a start time chart.


Fig. 9.21 Changing to a new current value using the start No. (No. 9003) for a current value changing
(3) Add the following sequence program to the control program, and write it to the CPU module.


\subsection*{9.2.20 NOP instruction}

The NOP instruction is used for the nonexecutable control system.

\section*{- Operation}

The positioning data No. to which the NOP instruction is set transfers, without any processing, to the operation for the next positioning data No.
- Positioning data setting examples

The following table shows the setting examples when "NOP instruction" is set in positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{Axis 1 positioning data No. 1} & Da. 1 & Operation pattern & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 2 & Control system & NOP instruction & Set the NOP instruction \\
\hline & Da. 3 & Acceleration time No. & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 4 & Deceleration time No. & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 6 & Positioning address/ movement amount & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 7 & Arc address & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 8 & Command
speed & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 9 & Dwell time & - & Setting not required (Setting value is ignored.) \\
\hline & Da. 10 & M code & - & Setting not required (Setting value is ignored.) \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

Restrictions
An error "Control system setting error" (error code: 524) will occur if the "NOP instruction" is set for the control system of the positioning data No. 600.

\section*{POINT \\ <Use example of NOP instruction> \\ If there is a possibility of speed switching or temporary stop (automatic deceleration) at a point between two points during positioning, that data can be reserved with the NOP instruction to change the data merely by the replacement of the identifier.}

\subsection*{9.2.21 JUMP instruction}

The JUMP instruction is used to control the operation so it jumps to a positioning data No. set in the positioning data during "continuous positioning control" or "continuous path control".

JUMP instruction include the following two types of JUMP.
(1) Unconditional JUMP

When no execution conditions are set for the JUMP instruction
(When " 0 " is set as the condition data No.)
(2) Conditional JUMP

When execution conditions are set for the JUMP instruction
(The conditions are set in the "condition data" used with "high-level positioning control".)
Using the JUMP instruction enables repeating of the same positioning control, or selection of positioning data by the execution conditions during "continuous positioning control" or "continuous path control".

\section*{- Operation}
(1) Unconditional JUMP

The JUMP instruction is unconditionally executed. The operation jumps to the positioning data No. set in " Da. 9 Dwell time".
(2) Conditional JUMP

The block start condition data is used as the JUMP instruction execution conditions.
- When block positioning data No. 7000 to 7004 is started:

Each block condition data is used.
- When positioning data No. 1 to 600 is started: Start block 0 condition data is used.
- When the execution conditions set in " Da. 10 M code" of the JUMP instruction have been established: the JUMP instruction is executed to jump the operation to the positioning data No. set in " Da. 9 Dwell time".
- When the execution conditions set in " Da. 10 M code" of the JUMP instruction have not been established: the JUMP instruction is ignored, and the next positioning data No.is executed.

\section*{Restrictions}
(1) When using a conditional JUMP instruction, establish the JUMP instruction execution conditions by the 4th positioning data No. before the JUMP instruction positioning data No.
If the JUMP instruction execution conditions are not established by the time the 4th positioning control is carried out before the JUMP instruction positioning data No., the operation will be processed as an operation without established JUMP instruction execution conditions.
(During execution of continuous path control/continuous positioning control, the QD75 calculates the positioning data of the positioning data No. four items ahead of the current positioning data.)
(2) Positioning control such as loops cannot be executed by conditional JUMP instructions alone until the conditions have been established.
As the target of the JUMP instruction, specify a positioning data that is controlled by other than JUMP and NOP instructions.

Positioning data setting example
The following table shows setting examples when "JUMP instruction" is set in positioning data No. 1 of axis 1.
\begin{tabular}{|l|l|l|c|l|l|}
\hline \multicolumn{2}{|c|}{ Setting item } & Setting example & \multicolumn{1}{c|}{ Setting details } \\
\hline & Da.1 & Operation pattern & - & Setting not required. (Setting value is ignored.) \\
\hline & Da.2 & Control system & \begin{tabular}{c} 
JUMP \\
instruction
\end{tabular} & Set the JUMP instruction. \\
\hline & Da.3 & \begin{tabular}{l} 
Acceleration time \\
No.
\end{tabular} & - & Setting not required. (Setting value is ignored.) \\
\hline & Da.4 & \begin{tabular}{l} 
Deceleration time \\
No.
\end{tabular} & - & Setting not required. (Setting value is ignored.) \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

\subsection*{9.2.22 LOOP}

The LOOP is used for loop control by the repetition of LOOP to LEND.
■ Operation
The LOOP to LEND loop is repeated by set repeat cycles.
Positioning data setting examples
The following table shows the setting examples when "LOOP" is set in positioning data No. 1 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{Q} & Da. 1 & Operation pattern & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 2 & Control system & LOOP & Set the LOOP. \\
\hline & Da. 3 & Acceleration time No. & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 4 & Deceleration time No. & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 6 & Positioning address/ movement amount & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 7 & Arc address & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 8 & Command speed & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 9 & Dwell time & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 10 & M code & 5 & Set the LOOP to LEND repeat cycles. \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

Restrictions
(1) An error "Control system LOOP setting error" (error code: 545) will occur if a " 0 " is set for the repeat cycles.
(2) Even if LEND is absent after LOOP, no error will occur, but repeat processing will not be carried out.
(3) Nesting is not allowed between LOOP-LEND's. If such setting is made, only the inner LOOP-LEND is processed repeatedly.

\section*{POINT}

The setting by this control system is easier than that by the special start "FOR loop" of "High-level Positioning Control" (refer to CHAPTER 10).
<Setting data>
- For special start: Positioning start data, special start data, condition data, and positioning data
- For control system: Positioning data

For the special start FOR to NEXT, the positioning data is required for each of FOR and NEXT points. For the control system, loop can be executed even only by one data.
Also, nesting is enabled by using the control system LOOP to LEND in combination with the special start FOR to NEXT.
However LOOP to LEND cannot be set across block. Always set LOOP to LEND so that the processing ends within one block.
(For details of the "block", refer to Section 10.1 "Outline of high-level positioning control".)

\subsection*{9.2.23 LEND}

The LEND is used to return the operation to the top of the repeat (LOOP to LEND) loop.

\section*{\(\square\) Operation}

When the repeat cycle designated by the LOOP becomes 0 , the loop is terminated, and the next positioning data No. processing is started. (The operation pattern, if set to "Positioning complete", will be ignored.)
When the operation is stopped after the repeat operation is executed by designated cycles, the dummy positioning data (for example, incremental positioning without movement amount) is set next to LEND.
\begin{tabular}{|c|c|c|c|c|}
\hline Positioning data No. & Operation pattern & Control system & Conditions & Operation \\
\hline 1 & Continuous control & ABS2 & & \multirow[t]{6}{*}{\begin{tabular}{l}
Executed in the order of the positioning data No. \(1 \rightarrow 2 \rightarrow 3\)
\[
\rightarrow 4 \rightarrow 5 \rightarrow 2
\]
\[
\rightarrow 3 \rightarrow 4 \rightarrow 5
\] \\
\(\rightarrow 6\). \\
(The operation patterns of the positioning data Nos. 2 and 5 are ignored.)
\end{tabular}} \\
\hline 2 & Positioning complete & LOOP & Number of loop cycles: 2 & \\
\hline 3 & Continuous path control & ABS2 & & \\
\hline 4 & Continuous control & ABS2 & & \\
\hline 5 & Positioning complete & LEND & & \\
\hline 6 & Positioning complete & ABS2 & & \\
\hline
\end{tabular}

Positioning data setting examples
The following table shows the setting examples when "LEND" is set in positioning data No. 8 of axis 1.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting example & Setting details \\
\hline \multirow{10}{*}{} & Da. 1 & Operation pattern & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 2 & Control system & LEND & Set the LEND. \\
\hline & Da. 3 & Acceleration time No. & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 4 & Deceleration time No. & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 5 & Axis to be interpolated & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 6 & Positioning address/ movement amount & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 7 & Arc address & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 8 & Command speed & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 9 & Dwell time & - & Setting not required. (Setting value is ignored.) \\
\hline & Da. 10 & M code & - & Setting not required. (Setting value is ignored.) \\
\hline
\end{tabular}
* Refer to Section 5.3 "List of positioning data" for information on the setting details.

Restrictions
(1) Ignore the "LEND" before the "LOOP" is executed.

\section*{MEMO}
\(\qquad\)

\section*{CHAPTER 10 HIGH-LEVEL POSITIONING CONTROL}

The details and usage of high-level positioning control (control functions using the "block start data") are explained in this chapter.

High-level positioning control is used to carry out applied control using the "positioning data". Examples of applied control are using conditional judgment to control "positioning data" set with the major positioning control, or simultaneously starting "positioning data" for several different axes.

Read the execution procedures and settings for each control, and set as required.
10.1 Outline of high-level positioning control ..... 10- 2
10.1.1 Data required for high-level positioning control ..... 10- 3
10.1.2 "Block start data" and "condition data" configuration ..... 10- 4
10.2 High-level positioning control execution procedure ..... 10- 6
10.3 Setting the block start data ..... 10- 7
10.3.1 Relation between various controls and block start data ..... 10- 7
10.3.2 Block start (normal start) ..... 10- 8
10.3.3 Condition start ..... 10-10
10.3.4 Wait start ..... 10-11
10.3.5 Simultaneous start ..... 10-12
10.3.6 Repeated start (FOR loop) ..... 10-14
10.3.7 Repeated start (FOR condition) ..... 10-15
10.3.8 Restrictions when using the NEXT start ..... 10-16
10.4 Setting the condition data ..... 10-17
10.4.1 Relation between various controls and the condition data ..... 10-17
10.4.2 Condition data setting examples ..... 10-20
10.5 Multiple axes simultaneous start control ..... 10-21
10.6 Start program for high-level positioning control ..... 10-24
10.6.1 Starting high-level positioning control ..... 10-24
10.6.2 Example of a start program for high-level positioning control ..... 10-25

\subsection*{10.1 Outline of high-level positioning control}

In "high-level positioning control" the execution order and execution conditions of the "positioning data" are set to carry out more applied positioning. (The execution order and execution conditions are set in the "block start data" and "condition data".) The following applied positioning controls can be carried out with "high-level positioning control".
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
High-level positioning \\
control
\end{tabular} & \\
\hline \begin{tabular}{l} 
Block *1 start \\
(Normal start)
\end{tabular} & \begin{tabular}{l} 
With one start, executes the positioning data in a random block with the set order.
\end{tabular} \\
\hline Condition start & \begin{tabular}{l} 
Carries out condition judgment set in the "condition data" for the designated \\
positioning data, and then executes the "block start data". \\
- When the condition is established, the " block start data" is executed. \\
- \\
When not established, that " block start data" is ignored, and the next point's " block \\
start data" is executed.
\end{tabular} \\
\hline Wait start & \begin{tabular}{l} 
Carries out condition judgment set in the "condition data" for the designated \\
positioning data, and then executes the " block start data". \\
- When the condition is established, the " block start data" is executed. \\
- When not established, stops the control until the condition is established. (Waits.)
\end{tabular} \\
\hline \begin{tabular}{l} 
Simultaneous start \\
\(* 2\)
\end{tabular} & \begin{tabular}{l} 
Simultaneously executes the positioning data having the No. for the axis designated \\
with the "condition data". (Outputs pulses at the same timing.)
\end{tabular} \\
\hline \begin{tabular}{l} 
Repeated start (FOR \\
loop)
\end{tabular} & \begin{tabular}{l} 
Repeats the program from the " block start data" set with the "FOR loop" to the " \\
block start data" set in "NEXT" for the designated No. of times.
\end{tabular} \\
\hline \begin{tabular}{l} 
Repeated start (FOR \\
condition)
\end{tabular} & \begin{tabular}{l} 
Repeats the program from the " block start data" set with the "FOR condition" to the " \\
block start data" set in "NEXT" until the conditions set in the "condition data" are \\
established.
\end{tabular} \\
\hline
\end{tabular}
- High-level positioning control sub functions
"High-level positioning control" uses the "positioning data" set with the "major positioning control". Refer to Section 3.2.4 "Combination of QD75 main functions and sub functions" for details on sub functions that can be combined with the major positioning control.
Note that the sub function Section 12.7.7 "Pre-reading start function" cannot be used together with "high-level positioning control".
- High-level positioning control from peripheral devices
"High-level positioning control" (start of the "block start data") can be executed from GX Configurator-QP test mode.
Refer to GX Configurator-QP Operating Manual for details on starting of the "block start data" from GX Configurator-QP.

\section*{REMARK}

Block \(* 1\) :
"1 block" is defined as all the data continuing from the positioning data in which "continuous positioning control" or "continuous path control" is set in the operation pattern ( \(\mathrm{Da.1}\) ) to the positioning data in which "independent positioning control (Positioning complete)" is set.

\section*{Simultaneous start \(* 2\) :}

Besides the simultaneous start of "block start data" system, the "simultaneous starts" include the "multiple axes simultaneous start control" of control system. Refer to Section 10.5 "Multiple axes simultaneous start control" for details.

\subsection*{10.1.1 Data required for high-level positioning control}
"High-level positioning control" is executed by setting the required items in the "block start data" and "condition data", then starting that "block start data". Judgment about whether execution is possible, etc., is carried out at execution using the "condition data" designated in the "block start data".
"Block start data" can be set for each No. from 7000 to 7004 (called "block Nos."), and up to 50 points can be set for each axis. (This data is controlled with Nos. called "points" to distinguish it from the positioning data. For example, the 1st block start data item is called the "1st point block start data" or "point No. 1 block start data".)
"Condition data" can be set for each No. from 7000 to 7004 (called "block Nos."), and up to 10 data items can be set for each block No.

The " block start data" and "condition data" are set as 1 set for each block No.

The following table shows an outline of the " block start data" and "condition data" stored in the QD75.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting details \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \frac{\pi}{0} \\
& \frac{\pi}{0} \\
& \frac{1}{0} \\
& \frac{7}{0} \\
& \frac{\square}{0} \\
& \frac{0}{0}
\end{aligned}
\]} & Da. 11 & Shape & Set whether to end the control after executing only the "block start data" of the shape itself, or continue executing the "block start data" set in the next point. \\
\hline & Da. 12 & Start data No. & Set the "positioning data No." to be executed. \\
\hline & Da. 13 & Special start instruction & Set the method by which the positioning data set in Da. 12 will be started. \\
\hline & Da. 14 & Parameter & Set the conditions by which the start will be executed according to the commands set in Da.13. (Designate the "condition data No." and "No. of repetitions".) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting details \\
\hline \multirow{5}{*}{} & Da. 15 & Condition target & Designate the "device", "buffer memory storage details", and "positioning data No." elements for which the conditions are set. \\
\hline & Da. 16 & Condition operator & Set the judgment method carried out for the target set in Da.15. \\
\hline & Da. 17 & Address & Set the buffer memory address in which condition judgment is carried out (only when the details set in Da. 15 are "buffer memory storage details"). \\
\hline & Da. 18 & Parameter 1 & Set the required conditions according to the details set in Da. 15 and Da. 16. \\
\hline & Da. 19 & Parameter 2 & Set the required conditions according to the details set in Da. 15 and Da. 16 . \\
\hline
\end{tabular}

\subsection*{10.1.2 "Block start data" and "condition data" configuration}

The "block start data" and "condition data" corresponding to "block No. 7000" can be stored in the buffer memory. (The following drawing shows an example for axis 1.)

(Same for axis 2, axis 3 and axis 4.)


Set in the QD75 with a sequence program or GX Configurator-QP.

Set in QD75 the " block start data" and "condition data" corresponding to the following "block Nos. 7001 to 7004 " using GX Configurator-QP or the sequence program. (The following drawing shows an example for axis 1.)


\subsection*{10.2 High-level positioning control execution procedure}

High-level positioning control is carried out using the following procedure.


\section*{REMARK}
* (1) Five sets of "block start data (50 points)" and "condition data (10 items) corresponding to "7000" to "7004" are set with a sequence program.
(2) Five sets of data from "7000" to "7004" can be set when GX Configurator-QP is used. If GX Configurator-QP is used to set the "block start data" and "condition data" corresponding to "7000" to "7004" and write the data to the QD75, "7000" to "7004" can be set in " Cd. 3 Positioning start No." in STEP 4.

\subsection*{10.3 Setting the block start data}

\subsection*{10.3.1 Relation between various controls and block start data}

The " block start data" must be set to carry out "high-level positioning control". The setting requirements and details of each " block start data" item to be set differ according to the " Da. 13 Special start instruction" setting.

The following shows the " block start data" setting items corresponding to various control systems. The operation details of each control type are explained starting in Section 10.3.2. Also refer to Section 10.4 "Setting the condition data for details on "condition data" with which control execution is judged.
(The " block start data" settings in this chapter are assumed to be carried out using GX Configurator-QP.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & Block start (Normal start) & Condition start & Wait start & Simultaneous start & Repeated start (FOR loop) & Repeated start (FOR condition) & NEXT start
\(*\) \\
\hline \multirow{2}{*}{Da. 11} & \multirow{2}{*}{Shape} & 0 : End & ( & (0) & ( & (0) & \(\times\) & \(\times\) & ( \\
\hline & & 1 : Continue & ( & ( & (0) & (0) & ( & ( & ( \\
\hline Da. 12 & \multicolumn{2}{|l|}{Start data No.} & \multicolumn{7}{|c|}{1 to 600} \\
\hline Da. 13 & \multicolumn{2}{|l|}{Special start instruction} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Da. 14 & \multicolumn{2}{|l|}{Parameter} & - & \multicolumn{3}{|c|}{Condition data No.} & No. of repetitions & Condition data No. & - \\
\hline
\end{tabular}
(0): One of the two setting items must be set.

O : Set when required
\(\times\) : Setting not possible
- : Setting not required (Setting value will be ignored. Use the initial value or a value within the setting range.)
* The "NEXT start" instruction is used in combination with "repeated start (FOR loop)" and "repeated start (FOR condition)". Control using only the "NEXT start" will not be carried out.

\section*{REMARK}

It is recommended that the "block start data" be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\subsection*{10.3.2 Block start (normal start)}

In a "block start (normal start)", the positioning data groups of a block are continuously executed in a set sequence starting from the positioning data set in " Da. 12 Start data No." by one start.

Section [2] shows a control example where the " block start data" and "positioning data" are set as shown in section [1].
[1] Setting examples
(1) Block start data setting example
\begin{tabular}{|c|c|c|c|c|}
\hline Axis 1 block start data & \[
\begin{array}{|l|}
\hline \text { Da. } 11 \\
\hline \text { Shape }
\end{array}
\] & \begin{tabular}{l}
Da. 12 \\
Start data No.
\end{tabular} & \begin{tabular}{l}
Da. 13 \\
Special start instruction
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { Da. } 14 \\
\hline \text { Parameter }
\end{array}
\] \\
\hline 1st point & 1: Continue & 1 & 0: Block start & - \\
\hline 2nd point & 1: Continue & 2 & 0: Block start & - \\
\hline 3rd point & 1: Continue & 5 & 0: Block start & - \\
\hline 4th point & 1: Continue & 10 & 0: Block start & - \\
\hline 5th point & 0: End & 15 & 0: Block start & - \\
\hline - & & & & \\
\hline - & & & & \\
\hline
\end{tabular}

\section*{(2) Positioning data setting example}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c} 
Axis 1 position- \\
ing data No.
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c} 
Da.1 \\
Operation pattern
\end{tabular}} \\
\hline 1 & 00: Positioning complete \\
\hline 2 & 11: Continuous path control \\
\hline 3 & \(01:\) Continuous positioning control \\
\hline 4 & 00: Positioning complete \\
\hline 5 & \(11:\) Continuous path control \\
\hline 6 & 00: Positioning complete \\
\hline • & \\
\hline 10 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline 15 & \(00:\) Positioning complete \(*\) \\
\hline\(\cdot\) & \\
\hline
\end{tabular}

\section*{REMARK}

Block * :
"1 block" is defined as all the data continuing from the positioning data in which "continuous positioning control" or "continuous path control" is set in the operation pattern (Da.1 ) to the positioning data in which "independent positioning control (Positioning complete)" is set.

\section*{[2] Control examples}

The following shows the control executed when the "block start data" of the 1st point of axis 1 is set as shown in section [1] and started.
\(<1>\) The positioning data is executed in the following order before stopping.
Axis 1 positioning data No. \(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 10 \rightarrow 15\).


Fig. 10.1 Block start control example

\subsection*{10.3.3 Condition start}

In a "condition start", the "condition data" conditional judgment designated in " Da. 14 Parameter" is carried out for the positioning data set in " Da. 12 Start data No.". If the conditions have been established, the " block start data" set in "1: condition start" is executed. If the conditions have not been established, that " block start data" will be ignored, and the "block start data" of the next point will be executed.

Section [2] shows a control example where the " block start data" and "positioning data" are set as shown in section [1].

\section*{[1] Setting examples}
(1) Block start data setting example
\begin{tabular}{|c|l|l|c|c|}
\hline \begin{tabular}{c} 
Axis 1 block \\
start data
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{|c|c|c|}
\hline Da.11 \\
Shape
\end{tabular}} & \begin{tabular}{c} 
Da.12 \\
Start data No.
\end{tabular} & \begin{tabular}{c} 
Da.13 \\
\begin{tabular}{c} 
Special start \\
instruction
\end{tabular}
\end{tabular} & \begin{tabular}{c} 
Da.14 \\
Parameter
\end{tabular} \\
\hline 1st point & 1: Continue & 1 & 1: Condition start & 1 \\
\hline 2nd point & 1: Continue & 10 & 1: Condition start & 2 \\
\hline 3rd point & 0: End & 50 & 0: Block start & - \\
\hline\(\bullet\) & & & & \\
\hline\(\bullet\) & & & & \\
\hline \multicolumn{1}{|l|}{} & & & \\
\hline
\end{tabular}
\[
\text { * The "condition data Nos." have been set in " Da. } 14 \text { Parameter". }
\]

\section*{(2) Positioning data setting example}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Axis 1 position- \\
ing data No.
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Da.1 \\
Operation pattern
\end{tabular}} \\
\hline 1 & 01: Continuous positioning control \\
\hline 2 & 01: Continuous positioning control \\
\hline 3 & 00: Positioning complete \\
\hline\(\bullet\) & \\
\hline 10 & 11: Continuous path control \\
\hline 11 & 11: Continuous path control \\
\hline 12 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline 50 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline
\end{tabular}

\section*{[2] Control examples}

The following shows the control executed when the " block start data" of the 1st point of axis 1 is set as shown in section [1] and started.
\(<1>\) The conditional judgment set in "condition data No. 1" is carried out before execution of the axis 1 "positioning data No. 1".
\(\rightarrow\) Conditions established \(\rightarrow\) Execute positioning data No. 1, 2, and \(3 \rightarrow\) Go to <2>.
\(\rightarrow\) Conditions not established \(\rightarrow\) Go to <2>.
<2> The conditional judgment set in "condition data No. 2" is carried out before execution of the axis 1 "positioning data No. 10".
\(\rightarrow\) Conditions established \(\rightarrow\) Execute positioning data No. 10, 11, and 12 \(\rightarrow\) Go to <3>.
\(\rightarrow\) Conditions not established \(\rightarrow\) Go to \(<3>\).
\(<3>\) Execute axis 1 "positioning data No. 50" and stop the control.

\subsection*{10.3.4 Wait start}

In a "wait start", the "condition data" conditional judgment designated in " Da. 14 Parameter" is carried out for the positioning data set in " Da. 12 Start data No.". If the conditions have been established, the " block start data" is executed. If the conditions have not been established, the control stops (waits) until the conditions are established.

Section [2] shows a control example where the " block start data" and "positioning data" are set as shown in section [1].

\section*{[1] Setting examples}
(1) Block start data setting example
\begin{tabular}{|c|l|c|c|c|}
\hline \begin{tabular}{c} 
Axis 1 block \\
start data
\end{tabular} & \begin{tabular}{c} 
Da.11 \\
Shape
\end{tabular} & \begin{tabular}{c} 
Da.12 \\
Start data No.
\end{tabular} & \begin{tabular}{c} 
Da.13 \\
Special start \\
instruction
\end{tabular} & \begin{tabular}{c} 
Darameter
\end{tabular} \\
\hline 1st point & 1: Continue & 1 & 2: Wait start & 3 \\
\hline 2nd point & 1: Continue & 10 & 0: Block start & - \\
\hline 3rd point & 0: End & 50 & 0: Block start & - \\
\hline\(\bullet\) & & & & \\
\hline\(\bullet\) & & & & \\
\hline
\end{tabular}
* The "condition data Nos." have been set in " Da. 14 Parameter".
(2) Positioning data setting example
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Axis 1 position- \\
ing data No.
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Da.1 \\
Operation pattern
\end{tabular}} \\
\hline 1 & 01: Continuous positioning control \\
\hline 2 & \(01:\) Continuous positioning control \\
\hline 3 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline 10 & \(11:\) Continuous path control \\
\hline 11 & 11: Continuous path control \\
\hline 12 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline 50 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline
\end{tabular}

\section*{[2] Control examples}

The following shows the control executed when the " block start data" of the 1st point of axis 1 is set as shown in section [1] and started.
\(<1>\) The conditional judgment set in "condition data No. 3" is carried out before execution of the axis 1 "positioning data No. 1".
\(\rightarrow\) Conditions established \(\rightarrow\) Execute positioning data No. 1, 2, and \(3 \rightarrow\) Go to <2>.
\(\rightarrow\) Conditions not established \(\rightarrow\) Control stops (waits) until conditions are established \(\rightarrow\) Go to <1>.
<2> Execute the axis 1 "positioning data No. 10, 11, 12, and 50" and stop the control.

\subsection*{10.3.5 Simultaneous start}

In a "simultaneous start", the positioning data set in the " Da. 12 Start data No." and positioning data of other axes set in the "condition data" are simultaneously executed (pulses are output with the same timing).
(The "condition data" is designated with " Da. 14 Parameter".)
Section [2] shows a control example where the " block start data" and "positioning data" are set as shown in section [1].

\section*{[1] Setting examples}
(1) Block start data setting example
\begin{tabular}{|c|l|c|c|c|}
\hline \begin{tabular}{c} 
Axis 1 block \\
start data
\end{tabular} & \begin{tabular}{c} 
Da.11 \\
Shape
\end{tabular} & \begin{tabular}{c} 
Da.12 \\
Start data No.
\end{tabular} & \begin{tabular}{c} 
Da.13 \\
Special start \\
instruction
\end{tabular} & \begin{tabular}{c} 
Da.14 \\
Parameter
\end{tabular} \\
\hline 1st point & 0: End & 1 & 3: Simultaneous start & 4 \\
\hline\(\bullet\) & & & & \\
\hline
\end{tabular}
* It is assumed that the "axis 2 positioning data" for simultaneous starting is set in the "condition data" designated with " Da. 14 Parameter".
(2) Positioning data setting example
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Axis 1 positioning \\
data No.
\end{tabular} & \begin{tabular}{c} 
Da.1 \\
Operation pattern
\end{tabular} \\
\hline 1 & 01: Continuous positioning control \\
\hline 2 & 01: Continuous positioning control \\
\hline 3 & 00: Positioning complete \\
\hline\(\bullet\) & \\
\hline
\end{tabular}

\section*{[2] Control examples}

The following shows the control executed when the " block start data" of the 1st point of axis 1 is set as shown in section [1] and started.
\(<1>\) Check the axis operation status of axis 2 which is regarded as the simultaneously started axis.
\(\rightarrow\) Axis 2 is standing by \(\rightarrow\) Go to \(<2>\).
\(\rightarrow\) Axis 2 is carrying out positioning. \(\rightarrow\) An error occurs and simultaneous start will not be carried out.
<2> Simultaneously start the axis 1 "positioning data No. 1" and axis 2 positioning data set in "condition data No. 4".

\section*{[3] Precautions}

Positioning data No. executed by simultaneously started axes is set to condition data (" Da. 18 Parameter 1"," Da. 19 Parameter 2", but the setting value of start axis (the axis which carries out positioning start) should be "0". If the setting value is set to other than "0", the positioning data set in " Da. 18 Parameter 1", " Da. 19 Parameter 2" is given priority to be executed rather than
" Da. 12 Start data No.".
(For details, refer to section 5.5 "List of condition data".)

\subsection*{10.3.6 Repeated start (FOR loop)}

In a "repeated start (FOR loop)", the data between the " block start data" in which "4: FOR loop" is set in " Da. 13 Special start instruction" and the "block start data" in which "6: NEXT start" is set in " Da. 13 Special start instruction " is repeatedly executed for the No. of times set in " Da. 14 Parameter". An endless loop will result if the No. of repetitions is set to "0".
(The No. of repetitions is set in " Da. 14 Parameter" of the " block start data" in which "4: FOR loop" is set in " Da. 13 Special start instruction".)

Section [2] shows a control example where the " block start data" and "positioning data" are set as shown in section [1].

\section*{[1] Setting examples}
(1) Block start data setting example
\begin{tabular}{|c|l|l|l|c|}
\hline \begin{tabular}{c} 
Axis 1 block \\
start data
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{|c|}
\hline Da.11 \\
Shape
\end{tabular}} & \begin{tabular}{c} 
Da.12 \\
Start data No.
\end{tabular} & \begin{tabular}{c} 
Da.13 \\
Special start \\
instruction
\end{tabular} & \begin{tabular}{c} 
Da.14 \\
Parameter
\end{tabular} \\
\hline 1st point & 1: Continue & 1 & 4: FOR loop & 2 \\
\hline 2nd point & 1: Continue & 10 & 0: Block start & - \\
\hline 3rd point & 0: End & 50 & 6: NEXT start & - \\
\hline\(\bullet\) & & & & \\
\hline - & & & & \\
\hline
\end{tabular}
* The "condition data Nos." have been set in " Da. 14 Parameter".
(2) Positioning data setting example
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Axis 1 position- \\
ing data No.
\end{tabular} & \begin{tabular}{c} 
Da.1 \\
Operation pattern
\end{tabular} \\
\hline 1 & 01: Continuous positioning control \\
\hline 2 & 01: Continuous positioning control \\
\hline 3 & 00: Positioning complete \\
\hline\(\bullet\) & \\
\hline 10 & 11: Continuous path control \\
\hline 11 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline 50 & \(01:\) Continuous positioning control \\
\hline 51 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline
\end{tabular}

\section*{[2] Control examples}

The following shows the control executed when the " block start data" of the 1st point of axis 1 is set as shown in section [1] and started.
<1> Execute the axis 1 "positioning data No. 1, 2, 3, 10, 11, 50, and 51".
<2> Return to the axis 1 "1st point block start data". Again execute the axis 1 "positioning data No. 1, 2, 3, 10, 11, 50 and 51", and then stop the control. (Repeat for the No. of times (2 times) set in Da.14.)

\subsection*{10.3.7 Repeated start (FOR condition)}

In a "repeated start (FOR condition)", the data between the " block start data" in which "5: FOR condition" is set in " Da. 13 Special start instruction" and the " block start data" in which "6: NEXT start" is set in " Da. 13 Special start instruction" is repeatedly executed until the establishment of the conditions set in the "condition data". Conditional judgment is carried out as soon as switching to the point of "6: NEXT start" (before positioning of NEXT start point).
(The "condition data" designation is set in " Da. 14 Parameter" of the " block start data" in which "5: FOR condition" is set in " Da. 13 Special start instruction".)

Section [2] shows a control example where the " block start data" and "positioning data" are set as shown in section [1].

\section*{[1] Setting examples}
(1) Block start data setting example
\begin{tabular}{|c|l|c|c|c|}
\hline \begin{tabular}{c} 
Axis 1 block \\
start data
\end{tabular} & \begin{tabular}{c} 
Da.11 \\
Shape
\end{tabular} & \begin{tabular}{c} 
Da.12 \\
Start data No.
\end{tabular} & \begin{tabular}{c} 
Da.13 \\
\begin{tabular}{c} 
Special start \\
instruction
\end{tabular}
\end{tabular} & \begin{tabular}{c} 
Da.14 \\
Parameter
\end{tabular} \\
\hline 1st point & 1: Continue & 1 & 5: FOR condition & 5 \\
\hline 2nd point & 1: Continue & 10 & 0: Block start & - \\
\hline 3rd point & 0: End & 50 & 6: NEXT start & - \\
\hline\(\bullet\) & & & & \\
\hline\(\bullet\) & & & & \\
\hline
\end{tabular}
* The "condition data Nos." have been set in " Da. 14 Parameter".
(2) Positioning data setting example
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Axis 1 position- \\
ing data No.
\end{tabular} & \begin{tabular}{c} 
Da.1 \\
Operation pattern
\end{tabular} \\
\hline 1 & 01: Continuous positioning control \\
\hline 2 & \(01:\) Continuous positioning control \\
\hline 3 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline 10 & \(11:\) Continuous path control \\
\hline 11 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline 50 & \(01:\) Continuous positioning control \\
\hline 51 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline
\end{tabular}

\section*{[2] Control examples}

The following shows the control executed when the " block start data" of the 1st point of axis 1 is set as shown in section [1] and started.
<1> Execute axis 1 "Positioning data No. 1, 2, 3, 10, 11".
<2> Execute the conditional judgment set in axis 1 "Condition data No.5". *1
\(\rightarrow\) Conditions not established \(\rightarrow\) Execute "Positioning data No. 50, 51". Go to <1>
\(\rightarrow\) Conditions established \(\rightarrow\) Execute "Positioning data No.50, 51" and complete the positioning.
*1: Conditional judgment is carried out as soon as switching to NEXT start point (before positioning of NEXT start point).

\subsection*{10.3.8 Restrictions when using the NEXT start}

The "NEXT start" is a instruction indicating the end of the repetitions when executing Section 10.3.6 "Repeated start (FOR loop)" and Section 10.3.7 "Repeated start (FOR condition)".

The following shows the restrictions when setting "6: NEXT start" in the " block start data".
(1) The processing when "6: NEXT start" is set before execution of "4: FOR loop" or " 5 : FOR condition" is the same as that for a " 0 : block start".
(2) Repeated processing will not be carried out if there is no "6: NEXT start" instruction after the "4: FOR loop" or "5: FOR condition" instruction. (Note that an "error" will not occur.)
(3) Nesting is not possible between "4: FOR loop" and "6: NEXT start", or between " 5 : FOR condition" and " 6 : NEXT start". A warning "FOR to NEXT nest construction" (warning code: 506) will occur if nesting is attempted.
[Operating examples without nesting structure]
[Operating examples with nesting structure]
\begin{tabular}{|c|c|}
\hline Start block data & Da.13 \\
Special start instruction \\
\hline 1st point & Normal start \\
\hline 2nd point & FOR \\
\hline 3rd point & Normal start \\
\hline 4th point & NEXT \\
\hline 5th point & Normal start \\
\hline 6th point & Normal start \\
\hline 7th point & FOR \(\longleftarrow\) \\
\hline 8th point & Normal start \\
\hline 9th point & NEXT \\
\hline\(\cdot\) & \\
\hline. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Start block data & Da.13 \\
Special start instruction \\
\hline 1st point & Normal start \\
\hline 2nd point & FOR \\
\hline 3rd point & Normal start \\
\hline 4th point & FOR \\
\hline 5th point & Normal start \\
\hline 6th point & Normal start \\
\hline 7th point & NEXT \\
\hline 8th point & Normal start \\
\hline 9th point & NEXT \\
\hline\(\cdot\) & \\
\hline - & \\
\hline
\end{tabular}

A warning will occur when starting the 4th point "FOR".
The JUMP destination of the 7th point "NEXT" is the 4th point. The 9th point "NEXT" is processed as normal start.

\subsection*{10.4 Setting the condition data}

\subsection*{10.4.1 Relation between various controls and the condition data}
"Condition data" is set in the following cases.
(1) When setting conditions during execution of Section 9.2.21 "JUMP instruction" (major positioning control)
(2) When setting conditions during execution of "high-level positioning control"

The "condition data" to be set includes the 5 setting items from Da.15 to Da.19, but the setting requirements and details differ according to the control system and setting conditions.

The following shows the "condition data" " Da. 15 Condition target" corresponding to the different types of control.
(The "condition data" settings in this chapter are assumed to be carried out using GX Configurator-QP.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Control type & \multicolumn{4}{|c|}{High-level positioning control} & Major positioning control \\
\hline \begin{tabular}{l}
Da. 15 \\
Setting item
\end{tabular} & Block start & Wait start & Simultaneous start & Repeated start (For condition) & JUMP instruction \\
\hline 01: Device \(X * 1\) & ( & ( & \(\times\) & ( & ( \\
\hline 02: Device Y * 1 & () & ( & \(\times\) & () & ( \\
\hline \begin{tabular}{l}
03: Buffer memory \\
(1 word)
\end{tabular} & ( & ( & \(\times\) & © & ( \\
\hline 04: Buffer memory (2 words) & ( & ( ) & \(\times\) & ( ) & ( \\
\hline 05: Positioning data No. & \(\times\) & \(\times\) & ( & \(\times\) & \(\times\) \\
\hline
\end{tabular}
(O) : One of the setting items must be set.
\(\times\) : Setting not possible
*1: Refers to buffer memories and devices X/Y which belongs to QD75.

\section*{REMARK}

It is recommended that the "condition data" be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

The setting requirements and details of the following "condition data" Da. 16 to Da. 19 setting items differ according to the \("\) Da. 15 Condition target" setting.
The following shows the Da. 16 to Da. 19 setting items corresponding to the
" Da. 15 Condition target".
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
\[
\begin{array}{|c|}
\hline \text { Da. } 16 \\
\hline
\end{array}
\] \\
Condition operator
\end{tabular} & \begin{tabular}{l}
\[
\text { Da. } 17
\] \\
Address
\end{tabular} & \multicolumn{2}{|r|}{\begin{tabular}{l}
Da. 18 \\
Parameter 1
\end{tabular}} & \multicolumn{2}{|r|}{\begin{tabular}{l}
Da. 19 \\
Parameter 2
\end{tabular}} \\
\hline 01н: Device X & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 07н : DEV=ON } \\
& 08 \mathrm{H}: \mathrm{DEV}=\mathrm{OFF}
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{0 to 1Fh (bit No.)} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{-}} \\
\hline 02н: Device Y & & & \multicolumn{2}{|l|}{0 to 1FH (bit No.)} & & \\
\hline 03н: Buffer memory
(1 word) \(* 1\) & \multirow[t]{2}{*}{\[
\begin{aligned}
& 01 \mathrm{H}: * *=\mathrm{P} 1 \\
& 02 \mathrm{H}: * * \neq \mathrm{P} 1 \\
& 03 \mathrm{H}: * * \leq \mathrm{P} 1 \\
& 04 \mathrm{H}: * * \geq \mathrm{P} 1 \\
& 05 \mathrm{H}: \mathrm{P} 1 \leq * * \leq \mathrm{P} 2 \\
& 06 \mathrm{H}: * * \leq \mathrm{P} 1, \mathrm{P} 2 \leq * *
\end{aligned}
\]} & \multirow[b]{2}{*}{Buffer memory address} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{P1 (numeric value)}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{P2 (numeric value) (Set only when Da.16 is [05H] or [06н].)}} \\
\hline 04н: Buffer memory
( 2 words) \(* 1\) & & & & & & \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
10 H : Axis 1 designation \\
20H: Axis 2 designation \\
30 H : Axis 1 and axis 2 designation \\
40н : Axis 3 designation \\
50 H : Axis 1 and axis 3 designation \\
60н : Axis 2 and axis 3 designation \\
70н: Axis 1, axis 2 and axis 3 designation \\
80н : Axis 4 designation \\
90 H : Axis 1 and axis 4 designation \\
A0н: Axis 2 and axis 4 designation \\
BO : Axis 1, axis 2 and axis 4 designation \\
COH : Axis 3 and axis 4 designation \\
D0н: Axis 1, axis 3 and axis 4 designation \\
EOh: Axis 2, axis 3 and axis 4 designation
\end{tabular}} & \multirow{2}{*}{-} & Low-order 16 bits & Axis 1 positioning data No. *2 & Low-order 16 bits & Axis 3 positioning data No. *2 \\
\hline No. & & & High-order 16 bits & Axis 2 positioning data No. *2 & High-order 16 bits & Axis 4 positioning data No. *2 \\
\hline
\end{tabular}

\footnotetext{
- : Setting not required (Setting value will be ignored. Use the initial value or a value within the setting range.)
**: Value stored in buffer memory designated in Da.17.
*1 : Comparison of \(\leq\) and \(\geq\) is judged as signed values. Refer to Section 5.5 "List of condition data" for the setting contents.
*2 : The setting value of start axis (the axis which executes positioning start) should be " 0 ". If the setting value is set to other than " 0 ", the positioning data set in Da. 18 Parameter 1 and Da. 19 Parameter 2 is given priority to be executed rather than " Da. 12 Start data No.".
}

Judgment whether the condition operator is " \(=\) " or " \(\neq\) " at the wait start. Judgment on data is carried out for each control cycle of the QD75. Thus, in the judgment on the data such as current feed value which varies continuously, the operator "=" may not be detected. If this occurs, use a range operator.

\section*{REMARK}

The "PLC CPU memory area" can be designated as the buffer memory address to be designated in Da.17. (Refer to Section 7.1.1 "Configuration and roles of QD75 memory".)


\subsection*{10.4.2 Condition data setting examples}

The following shows setting examples for "condition data".
(1) Setting the device ON/OFF as a condition
[Condition] Device "XC" (= Axis 1 Busy signal) is OFF
\begin{tabular}{|c|c|c|c|c|}
\hline & & & \\
\begin{tabular}{c} 
Da.15 \\
Condition target
\end{tabular} & \begin{tabular}{c} 
Da.16 \\
Condition \\
operator
\end{tabular} & \begin{tabular}{|c|c|}
\hline Da.17 \\
Address
\end{tabular} & \begin{tabular}{c} 
Da.18 \\
Parameter 1
\end{tabular} & \begin{tabular}{c} 
Da.19 \\
Parameter 2
\end{tabular} \\
\hline 01н: Device X & 08н: DEV=OFF & - & 0Сн & - \\
\hline
\end{tabular}
(2) Setting the numeric value stored in the "buffer memory" as a condition
[Condition]
The value stored in buffer memory addresses "800, 801" (= " Md. 20 Current feed value") is "1000" or larger.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Da.15 \\
Condition target
\end{tabular} & \begin{tabular}{c} 
Da.16 \\
Condition \\
operator
\end{tabular} & \begin{tabular}{c} 
Da.17 \\
Address
\end{tabular} & \begin{tabular}{c} 
Da.18 \\
Parameter 1
\end{tabular} & \begin{tabular}{c} 
Da.19 \\
Parameter 2
\end{tabular} \\
\hline \begin{tabular}{c} 
04н: Buffer memory \\
(2 words)
\end{tabular} & 04н: \(* * \geq \mathrm{P} 1\) & 800 & 1000 & - \\
\hline
\end{tabular}
(3) Designating the axis and positioning data No. to be simultaneously started in "simultaneous start"
[Condition]
Simultaneously starting "axis 2 positioning data No.3".
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Da.15 \\
Condition target
\end{tabular} & \begin{tabular}{c} 
Da.16 \\
Condition \\
operator
\end{tabular} & \begin{tabular}{c} 
Da.17 \\
Address
\end{tabular} & \begin{tabular}{c} 
Da.18 \\
Parameter 1
\end{tabular} & \begin{tabular}{c} 
Da.19 \\
Parameter 2
\end{tabular} \\
\hline \begin{tabular}{c} 
05н:
\end{tabular} \\
\begin{tabular}{c} 
Positioning \\
data No.
\end{tabular} & \begin{tabular}{c} 
20н: Axis 2 \\
designation
\end{tabular} & - & \begin{tabular}{c} 
High-order 16 \\
bits "0003н" \(* 1\)
\end{tabular} & \(-* 1\) \\
\hline
\end{tabular}
*1: The setting value of start axis (the axis which executes positioning start) should be " 0000 н".

\subsection*{10.5 Multiple axes simultaneous start control}

The "multiple axes simultaneous start control" starts and controls the multiple axes simultaneously by outputting pulses to the axis to be started at the same timing as the start axis.
The maximum of four axes can be started simultaneously.

\section*{[1] Control details}

Multiple axes simultaneous start control is executed as follows.
Set the start data No. to the buffer memory areas
" Cd. 30 to Cd. 33 Simultaneous starting axis start data No. (axis 1 to 4 start data No.)".
Set "9004" to " Cd. 3 Positioning start No." of the start axis.
Turn ON the positioning start signal.

\section*{[2] Restrictions}
(1) The error "Error before simultaneous start" (error code: 501) will occur and all simultaneously started axes will not start if the simultaneously started axis start data No. is not set to the axis control data on the start axis or set outside the setting range.
(2) The error "Error before simultaneous start" (error code: 501) will occur and all simultaneously started axes will not start if either of the simultaneously started axes is BUSY.
(3) The error "Error before simultaneous start" (error code: 501) will occur and all simultaneously started axes will not start if an error occurs during the analysis of the positioning data on the simultaneously started axes.
(4) No error or warning will occur if only the start axis is the simultaneously started axis.
(5) This function cannot be used with the sub function Section 12.7.7 "Prereading start function".
[3] Multiple axes simultaneous start control procedure The procedure for multiple axes simultaneous start control is as follows.

[4] Multiple axes simultaneous start control function setting method The following shows the setting of the data used to execute the multiple axes simultaneous start control with positioning start signals (The axis control data on the start axis is set).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis
\[
1
\] & \[
\begin{gathered}
\text { Axis } \\
2
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
3
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
4 \\
\hline
\end{array}
\] \\
\hline Cd. 3 & Positioning start No. & 9004 & Set the multiple axes simultaneous start control start No. "9004". & 1500 & 1600 & 1700 & 1800 \\
\hline Cd. 30 & Simultaneous starting axis start data No. (Axis 1 start data No.) & \multicolumn{2}{|l|}{\multirow{4}{*}{\begin{tabular}{l}
Set the simultaneously started axis start data No. \\
Set a "0" for the axis other than the simultaneously started axes.
\end{tabular}}} & 1540 & 1640 & 1740 & 1840 \\
\hline Cd. 31 & Simultaneous starting axis start data No. (Axis 2 start data No.) & & & 1541 & 1641 & 1741 & 1841 \\
\hline Cd. 32 & Simultaneous starting axis start data No. (Axis 3 start data No.) & & & 1542 & 1642 & 1742 & 1842 \\
\hline Cd. 33 & Simultaneous starting axis start data No. (Axis 4 start data No.) & & & 1543 & 1643 & 1743 & 1843 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for information on setting details.

\section*{[5] Setting examples}

The following shows the setting examples in which the axis 1 is used as the start axis and the simultaneously started axes are used as the axes 2 and 4.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Setting item} & Setting value & Setting details & Buffer memory address (Axis 1) \\
\hline Cd. 3 & Positioning start No. & 9004 & Set the multiple axes simultaneous start control start No. "9004". & 1500 \\
\hline Cd. 30 & Simultaneous starting axis start data No. (Axis 1 start data No.) & 100 & The axis 1 starts the positioning data No. 100. & 1540 \\
\hline Cd. 31 & Simultaneous starting axis start data No. (Axis 2 start data No.) & 200 & Immediately after the start of the axis 1, the axis 2 starts the axis 2 positioning data No. 200. & 1541 \\
\hline Cd. 32 & Simultaneous starting axis start data No. (Axis 3 start data No.) & 0 & Will not start simultaneously. & 1542 \\
\hline Cd. 33 & Simultaneous starting axis start data No. (Axis 4 start data No.) & 300 & Immediately after the start of the axis 1 , the axis 4 starts the axis 4 positioning data No. 300. & 1543 \\
\hline
\end{tabular}

\section*{POINTS}
(1) The "multiple axes simultaneous start control" carries out an operation equivalent to the "simultaneous start" using the "block start data".
(2) The setting of the "multiple axes simultaneous start control" is easier than that of the "simultaneous start" using the "block start data".
- Setting items for "simultaneous start" using "block start data" Positioning start data, block start data, condition data, and positioning data
- Setting items for "multiple axes simultaneous start control" Positioning data and axis control data

\subsection*{10.6 Start program for high-level positioning control}

\subsection*{10.6.1 Starting high-level positioning control}

To execute high-level positioning control, a sequence program must be created to start the control in the same method as for major positioning control.

The following shows the procedure for starting the "1st point block start data" (regarded as block No. 7000) set in axis 1.


Fig. 10.2 High-level positioning control start procedure

\subsection*{10.6.2 Example of a start program for high-level positioning control}

The following shows an example of a start program for high-level positioning control in which the 1st point " block start data" of axis 1 is started. (The block No. is regarded as "7000".)
- Control data that require setting

The following control data must be set to execute high-level positioning control.
The setting is carried out using a sequence program.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Setting item} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & \[
\begin{gathered}
\text { Axis } \\
2
\end{gathered}
\] & Axis 3 & Axis 4 \\
\hline Cd. 3 & Positioning start No. & 7000 & Set "7000" to indicate control using " block start data". & 1500 & 1600 & 1700 & 1800 \\
\hline Cd. 4 & Positioning starting point No. & 1 & Set the point No. of the " block start data" to be started. & 1501 & 1601 & 1701 & 1801 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

\section*{- Start conditions}

The following conditions must be fulfilled when starting the control. The required conditions must also be integrated into the sequence program, and configured so the control does not start unless the conditions are fulfilled.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal name}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal state}} & \multicolumn{4}{|c|}{Device} \\
\hline & & & & Axis
\[
1
\] & Axis & \[
\begin{array}{|c}
\text { Axis } \\
3
\end{array}
\] & Axis 4 \\
\hline \multirow{8}{*}{Interface signal} & PLC READY signal & ON & CPU module preparation completed & \multicolumn{4}{|c|}{Y0} \\
\hline & QD75 READY signal & ON & QD75 preparation completed & \multicolumn{4}{|c|}{X0} \\
\hline & Synchronization flag & ON & QD75 buffer memory The access is possible. & \multicolumn{4}{|c|}{X1} \\
\hline & Axis stop signal & OFF & Axis stop signal is OFF & Y4 & Y5 & Y6 & Y7 \\
\hline & Start complete signal & OFF & Start complete signal is OFF & X10 & X11 & X12 & X13 \\
\hline & BUSY signal & OFF & BUSY signal is OFF & XC & XD & XE & XF \\
\hline & Error detection signal & OFF & There is no error & X8 & X9 & XA & XB \\
\hline & M code ON signal & OFF & M code ON signal is OFF & X4 & X5 & X6 & X7 \\
\hline \multirow{4}{*}{External signal} & Drive unit READY signal & ON & Drive unit preparation completed & \multicolumn{4}{|c|}{-} \\
\hline & Stop signal & OFF & Stop signal is OFF & \multicolumn{4}{|c|}{-} \\
\hline & Upper limit (FLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline & Lower limit (RLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline
\end{tabular}

Start time chart
The following chart shows a time chart in which the positioning data No. 1, 2, 10, 11 , and 12 of axis 1 are continuously executed as an example.
(1) Block start data setting example
\begin{tabular}{|l|l|l|l|c|}
\hline \begin{tabular}{c} 
Axis 1 block \\
start data
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{|c|c|c|}
\hline Da.11 \\
Shape
\end{tabular}} & \begin{tabular}{c} 
Da.12 \\
Start data No.
\end{tabular} & \begin{tabular}{c} 
Da.13 \\
Special start \\
instruction
\end{tabular} & \begin{tabular}{c} 
Da.14 \\
Parameter
\end{tabular} \\
\hline 1st point & 1: Continue & 1 & \(0:\) Block start & - \\
\hline 2nd point & 0: End & 10 & 0: Block start & - \\
\hline - & & & & \\
\hline . & & & & \\
\hline
\end{tabular}
(2) Positioning data setting example
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Axis 1 position- \\
ing data No.
\end{tabular} & \begin{tabular}{c} 
Da.1 \\
Operation pattern
\end{tabular} \\
\hline 1 & 11: Continuous path control \\
\hline 2 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline 10 & \(11:\) Continuous path control \\
\hline 11 & \(11:\) Continuous path control \\
\hline 12 & \(00:\) Positioning complete \\
\hline\(\bullet\) & \\
\hline
\end{tabular}
(3) Start time chart


Fig. 10.3 Start time chart for high-level positioning control (block start)

Creating the program


MEMO
\(\qquad\)

\section*{CHAPTER 11 MANUAL CONTROL}

The details and usage of manual control are explained in this chapter.
In manual control, pulse output commands are issued during a JOG operation and an inching operation executed by the turning ON of the JOG START signal, or from a manual pulse generator connected to the QD75.
Manual control using a sequence program from the CPU module is explained in this chapter. Refer to GX Configurator-QP Operating Manual for an explanation of manual control (JOG operation, inching operation and manual pulse generator operation) using the peripheral devices.
11.1 Outline of manual control ..... 11- 2
11.1.1 Three manual control methods ..... 11- 2
11.2 JOG operation ..... 11- 4
11.2.1 Outline of JOG operation ..... 11- 4
11.2.2 JOG operation execution procedure ..... 11- 7
11.2.3 Setting the required parameters for JOG operation ..... 11- 8
11.2.4 Creating start programs for JOG operation ..... 11-10
11.2.5 JOG operation example ..... 11-13
11.3 Inching operation ..... 11-16
11.3.1 Outline of inching operation ..... 11-16
11.3.2 Inching operation execution procedure ..... 11-19
11.3.3 Setting the required parameters for inching operation ..... 11-20
11.3.4 Creating a program to enable/disable the inching operation ..... 11-21
11.3.5 Inching operation example ..... 11-24
11.4 Manual pulse generator operation ..... 11-26
11.4.1 Outline of manual pulse generator operation ..... 11-26
11.4.2 Manual pulse generator operation execution procedure ..... 11-30
11.4.3 Setting the required parameters for manual pulse generator operation ..... 11-31
11.4.4 Creating a program to enable/disable the manual pulse generator operation ..... 11-32

\subsection*{11.1 Outline of manual control}

\subsection*{11.1.1 Three manual control methods}
"Manual control" refers to control in which positioning data is not used, and a positioning operation is carried out in response to signal input from an external source. The three types of this "manual control" are explained below.
[1] JOG operation
"JOG operation" is a control method in which the machine is moved by only a movement amount (pulses are continuously outputted while the JOG START signal is ON). This operation is used to move the workpiece in the direction in which the limit signal is ON, when the operation is stopped by turning the limit signal OFF to confirm the positioning system connection and obtain the positioning data address (Refer to Section 12.7.4 "Teaching function").


Fig. 11.1 JOG operation

\section*{[2] Inching operation}
"Inching operation" is a control method in which a minute movement amount of pulses is output manually at 1.8 ms .
When the "inching movement amount" of the axis control data is set by JOG operation, the workpiece is moved by a set movement amount. (When the "inching movement amount" is set to "0", the operation is performed as the JOG operation.)


Fig. 11.2 Inching operation

\section*{[3] Manual pulse generator operation}
"Manual pulse generator operation" is a control method in which positioning is carried out in response to the No. of pulses input from a manual pulse generator (the No. of input pulses is output). This operation is used for manual fine adjustment, etc., when carrying out accurate positioning to obtain the positioning address.


Fig. 11.3 Manual pulse generator control
Manual control sub functions
Refer to Section 3.2.4 "Combination of QD75 major functions and sub functions" for details on "sub functions" that can be combined with manual control. Also refer to CHAPTER 12 "CONTROL SUB FUNCTIONS" for details on each sub function.

Carrying out manual control from peripheral devices
"JOG operation", "Inching operation" and enabling/disabling of the "manual pulse generator operation" can be executed from GX Configurator-QP test mode. Refer to GX Configurator-QP Operating Manual for details on manual control from GX Configurator-QP.

Monitoring manual control
Refer to Section 5.6 "List of monitor data" when directly monitoring the buffer memory using GX Developer.
Also refer to GX Configurator-QP Operating Manual when monitoring with the monitor functions of GX Configurator-QP.

\subsection*{11.2 JOG operation}

\subsection*{11.2.1 Outline of JOG operation}

\section*{Important}

Use the hardware stroke limit function when carrying out JOG operation near the upper or lower limits. (Refer to Section 12.4.4).
* If the hardware stroke limit function is not used, the workpiece may exceed the moving range, causing an accident.

\section*{JOG operation}

In JOG operation, the FORWARD run JOG start signal (Y8, YA, YC, YE) or REVERSE run JOG start signal (Y9, YB, YD, YF) turns ON, causing pulses to be output to the drive unit from the QD75 while the signal is ON. The workpiece is then moved in the designated direction.
The following shows examples of JOG operation.
\begin{tabular}{|c|c|}
\hline 1) & When the START signal turns ON, acceleration begins in the direction designated by the START signal, and continues for the acceleration time designated in " Pr. 32 JOG operation acceleration time selection". At this time, the BUSY signal changes from OFF to ON. \\
\hline 2) & \begin{tabular}{l}
When the workpiece being accelerated reaches the speed set in " Cd. 17 JOG speed", the movement continues at this speed. \\
The constant speed movement takes place at 2) and 3).
\end{tabular} \\
\hline 3) & When the START signal is turned OFF, deceleration begins from the speed set in " Cd. 17 JOG speed", and continues for the deceleration time designated in " Pr. 33 JOG operation deceleration time selection". \\
\hline 4) & The operation stops when the speed becomes " 0 ". At this time, the BUSY signal changes from ON to OFF \\
\hline
\end{tabular}


Fig. 11.4 JOG operation

Precautions during operation
(1) For safety, first set " Cd. 17 JOG speed" to a smaller value and check the movement. Then gradually increase the value.
(2) The axis error "Outside JOG speed range" (error code: 300) will occur and the operation will not start if the "JOG speed" is outside the setting range at the JOG start.
(3) The axis error "JOG speed limit value error" (error code: 956) will occur and the operation will not start if " Pr. 31 JOG speed limit value" is set to a value larger than " Pr. 8 Speed limit value".
(4) If " Cd. 17 JOG speed" exceeds the speed set in " Pr. 31 JOG speed limit value", the workpiece will move at the " Pr. 31 JOG speed limit value" and the warning "JOG speed limit value" (warning code: 301) will occur in the QD75.
(5) The JOG operation can be continued even if an "Axis warning" has occurred.
(6) Set a " 0 " in " Cd. 16 Inching movement amount". If a value other than " 0 " is set, the operation will become an inching operation (Refer to Section 11.3 "Inching operation").

Operations when stroke limit error occurs
When the operation is stopped by hardware stroke limit error or software stroke limit error, the JOG operation can execute in an opposite way (direction within normal limits) after an error reset. (An error will occur again if JOG start signal is turned ON in a direction to outside the stroke limit.)


JOG operation timing and processing time
The following drawing shows details of the JOG operation timing and processing time.


Fig. 11.5 JOG operation timing and processing times
Normal timing times
\begin{tabular}{|c|c|c|c|c|}
\hline Model & t 1 & t 2 & t 3 & t4 \\
\hline QD75P \(\square\) N/QD75D \(\square \mathrm{N}\) & 1.0 to 3.0 ms & 0 to 0.9 ms & 1.3 to 2.2 ms & 0 to 0.9 ms \\
\hline QD75P \(\square / Q D 75 D \square\) & 1.0 to 3.0 ms & 0 to 1.8 ms & 2.7 to 4.4 ms & 0 to 1.8 ms \\
\hline
\end{tabular}
- Delays may occur in the \(t 1\) timing time due to the operation status of other axes.

\subsection*{11.2.2 JOG operation execution procedure}

The JOG operation is carried out by the following procedure.


\section*{REMARK}
- Mechanical elements such as limit switches are considered as already installed.
- Parameter settings work in common for all control using the QD75.

\subsection*{11.2.3 Setting the required parameters for JOG operation}

The "Parameters" must be set to carry out JOG operation.
The following table shows the setting items of the required parameters for carrying out JOG operation. When only JOG operation will be carried out, no parameters other than those shown below need to be set. (Use the initial values or setting values within a range where no error occurs for trouble-free operation.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting requirement & Factory-set initial value (setting details) \\
\hline \multirow{17}{*}{} & Pr. 1 & Unit setting & ( & 3 (pulse) \\
\hline & Pr.2 & No. of pulses per rotation (Ap) (Unit: pulse) & ( & 20000 \\
\hline & Pr. 3 & Movement amount per rotation (AI) (Unit: pulse) & ( & 20000 \\
\hline & Pr. 4 & Unit magnification (Am) & () & 1 (1-fold) \\
\hline & Pr. 5 & Pulse output mode & () & 1 (CW/CCW mode) \\
\hline & Pr. 6 & Rotation direction setting & ( & 0 (current value increases by forward run pulse output) \\
\hline & Pr. 7 & Bias speed at start (Unit: pulse/s) & \(\bigcirc\) & 0 \\
\hline & Pr. 8 & Speed limit value (Unit: pulse/s) & () & 200000 \\
\hline & Pr. 9 & Acceleration time 0 (Unit: ms) & () & 1000 \\
\hline & Pr. 10 & Deceleration time 0 (Unit: ms) & () & 1000 \\
\hline & Pr. 11 & Backlash compensation amount (Unit: pulse) & \(\bigcirc\) & 0 \\
\hline & Pr. 12 & Software stroke limit upper limit value (Unit: pulse) & \(\bigcirc\) & 2147483647 \\
\hline & Pr. 13 & Software stroke limit lower limit value (Unit: pulse) & \(\bigcirc\) & -2147483648 \\
\hline & Pr. 14 & Software stroke limit selection & \(\bigcirc\) & 0 (current feed value) \\
\hline & Pr. 15 & Software stroke limit valid/invalid setting & \(\bigcirc\) & 0 (valid) \\
\hline & Pr. 17 & Torque limit setting value (Unit: \%) & \(\bigcirc\) & 300 \\
\hline & Pr. 23 & Output signal logic selection & \(\bigcirc\) & 0 (Pulse output to drive unit is negative logic.) \\
\hline
\end{tabular}
© : Setting always required.
O : Set according to requirements (Leave set to the initial value when not used.)

\section*{REMARK}
- Parameter settings work in common for all control using the QD75. When carrying out other control ("major positioning control", "high-level positioning control", "OPR positioning control"), the respective setting items must also be matched and set.
- Parameters are set for each axis.
- Refer to CHAPTER 5 "DATA USED FOR POSITIONING CONTROL" for setting details.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting requirement & Factory-set initial value (setting details) \\
\hline \multirow{15}{*}{} & Pr. 25 & Acceleration time 1 (Unit: ms) & \(\bigcirc\) & 1000 \\
\hline & Pr. 26 & Acceleration time 2 (Unit: ms) & \(\bigcirc\) & 1000 \\
\hline & Pr. 27 & Acceleration time 3 (Unit: ms) & \(\bigcirc\) & 1000 \\
\hline & Pr. 28 & Deceleration time 1 (Unit: ms) & \(\bigcirc\) & 1000 \\
\hline & Pr. 29 & Deceleration time 2 (Unit: ms) & \(\bigcirc\) & 1000 \\
\hline & Pr. 30 & Deceleration time 3 (Unit: ms) & \(\bigcirc\) & 1000 \\
\hline & Pr. 31 & JOG speed limit value (Unit: pulse/s) & () & 20000 \\
\hline & Pr. 32 & JOG operation acceleration time selection & ( & 0 (acceleration time 0) \\
\hline & Pr. 33 & JOG operation deceleration time selection & ( & 0 (deceleration time 0) \\
\hline & Pr. 34 & Acceleration/deceleration process selection & \(\bigcirc\) & 0 (trapezoidal acceleration/ deceleration processing) \\
\hline & Pr. 35 & S-curve ratio (Unit: \%) & \(\bigcirc\) & 100 \\
\hline & Pr. 36 & Sudden stop deceleration time (Unit: ms) & \(\bigcirc\) & 1000 \\
\hline & Pr. 37 & Stop group 1 sudden stop selection & \(\bigcirc\) & 0 (deceleration stop) \\
\hline & Pr. 38 & Stop group 2 sudden stop selection & \(\bigcirc\) & 0 (deceleration stop) \\
\hline & Pr. 39 & Stop group 3 sudden stop selection & \(\bigcirc\) & 0 (deceleration stop) \\
\hline
\end{tabular}
() : Setting always required.
\(\bigcirc\) : Set according to requirements (Leave set to the initial value when not used.)

\subsection*{11.2.4 Creating start programs for JOG operation}

A sequence program must be created to execute a JOG operation. Consider the "required control data setting", "start conditions" and "start time chart" when creating the program.
The following shows an example when a JOG operation is started for axis 1.
(" Cd. 17 JOG speed" is set to " \(100.00 \mathrm{~mm} / \mathrm{min}\) " in the example shown.)
\(\square\) Required control data setting
The control data shown below must be set to execute a JOG operation. The setting is carried out with the sequence program.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis
\[
2
\] & Axis 3 & \[
\begin{gathered}
\hline \text { Axis } \\
4
\end{gathered}
\] \\
\hline Cd. 16 & Inching movement amount & 0 & Set "0". & 1517 & 1617 & 1717 & 1817 \\
\hline Cd. 17 & JOG speed & 10000 & \begin{tabular}{l}
Set a value equal to or above the " Pr. 7 Bias speed at start" and equal to or below the \\
" Pr. 31 JOG speed limit value".
\end{tabular} & \[
\begin{aligned}
& 1518 \\
& 1519
\end{aligned}
\] & 1618 & & \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

\section*{Start conditions}

The following conditions must be fulfilled when starting. The required conditions must also be assembled in the sequence program, and the sequence program must be configured so the operation will not start if the conditions are not fulfilled.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal name}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal state}} & \multicolumn{4}{|c|}{Device} \\
\hline & & & & \[
\begin{array}{|c}
\text { Axis } \\
1
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
2 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\text { Axis } \\
3
\end{array}
\] & \[
\begin{array}{|c}
\text { Axis } \\
4 \\
\hline
\end{array}
\] \\
\hline \multirow{8}{*}{Interface signal} & PLC READY signal & ON & CPU module preparation completed & \multicolumn{4}{|c|}{Y0} \\
\hline & QD75 READY signal & ON & QD75 preparation completed & \multicolumn{4}{|c|}{X0} \\
\hline & Synchronization flag * & ON & QD75 buffer memory The access is possible. & \multicolumn{4}{|c|}{X1} \\
\hline & Axis stop signal & OFF & Axis stop signal is OFF & Y4 & Y5 & Y6 & Y7 \\
\hline & Start complete signal & OFF & Start complete signal is OFF & X10 & X11 & X12 & X13 \\
\hline & BUSY signal & OFF & QD75 is not operating & XC & XD & XE & XF \\
\hline & Error detection signal & OFF & There is no error & X8 & X9 & XA & XB \\
\hline & M code ON signal & OFF & M code ON signal is OFF & X4 & X5 & X6 & X7 \\
\hline \multirow{4}{*}{External signal} & Drive unit READY signal & ON & Drive unit preparation completed & \multicolumn{4}{|c|}{-} \\
\hline & Stop signal & OFF & Stop signal is OFF & \multicolumn{4}{|c|}{-} \\
\hline & Upper limit (FLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline & Lower limit (RLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline
\end{tabular}
* If the CPU module is set to the asynchronous mode in the synchronization setting, this must be inserted in the program for interlocking. If it is set to the synchronous mode, it must not be inserted in the program for interlocking because it is turned ON when the CPU module executes calculation.

\section*{Start time chart}


Fig. 11.6 JOG operation start time chart

\section*{Creating the program}


\subsection*{11.2.5 JOG operation example}

When the "stop signal" is turned ON during JOG operation
When the "stop signal" is turned ON during JOG operation, the JOG operation will stop by the "deceleration stop" method.
An error "Stop signal ON at start" (error code 106) will occur if JOG start signal is turned ON while the stop signal is ON.
The operation can be started by turning the stop signal OFF, and turning the JOG start signal from OFF to ON again.


Fig. 11.7 Operation when the stop signal is turned ON during JOG operation
- When both the "forward run JOG start signal" and "reverse run JOG start signal" are turned ON simultaneously for one axis
When both the "forward run JOG start signal" and "reverse run JOG start signal" are turned ON simultaneously for one axis, the "forward run JOG start signal" is given priority. In this case, the "reverse run JOG start signal" is validated when the QD75 BUSY signal is turned OFF.
If the forward run JOG operation is stopped due to stop or axis error by a stop signal, the reverse run JOG operation will not be executed even if the "reverse run JOG start signal" turns ON.


Fig. 11.8 Operation when both the forward run JOG start signal and reverse run JOG start signal are turned ON simultaneously
\(\square\) When the "JOG start signal" is turned ON again during deceleration caused by the ON \(\rightarrow\) OFF of the "JOG start signal"
When the "JOG start signal" is turned ON again during deceleration caused by the ON \(\rightarrow\) OFF of the "JOG start signal", the JOG operation will be carried out from the time the "JOG start signal" is turned ON.


Fig. 11.9 Operation when the JOG start signal is turned ON during deceleration

When the "JOG start signal" is turned ON during a peripheral device test mode
When the "JOG start signal" is turned ON during a peripheral device test mode, it will be ignored and the JOG operation will not be carried out.


Fig. 11.10 Operation when the JOG start signal is turned ON during a test mode

\subsection*{11.3 Inching operation}

\subsection*{11.3.1 Outline of inching operation}

\section*{Important}

When the inching operation is carried out near the upper or lower limit, use the hardware stroke limit function (Refer to Section 12.4.4).
* If the hardware stroke limit function is not used, the workpiece may exceed the movement range, and an accident may result.

\section*{Inching operation}

In inching operation, pulses are input to the drive unit at 1.8 ms to move the workpiece by a designated movement amount after the forward run JOG start signal [Y8, YA, YC, YE] or reverse JOG start signal [Y9, YB, YD, YF] is turned ON. The following shows the example of inching operation.
\begin{tabular}{|c|l|}
\hline 1) & \begin{tabular}{l} 
When the start signal is turned ON, inching operation is carried out in the direction \\
designated by the start signal. In this case, BUSY signal is turned from OFF to ON.
\end{tabular} \\
\hline 2) & \begin{tabular}{l} 
The workpiece is moved by a movement amount set in " Cd.16 Inching movement \\
amount".
\end{tabular} \\
\hline 3) & \begin{tabular}{l} 
The workpiece movement stops when the speed becomes "0". In this case, BUSY signal \\
is turned from ON to OFF. The positioning complete signal is turned from OFF to ON.
\end{tabular} \\
\hline 4\()\) & \begin{tabular}{l} 
The positioning complete signal is turned from ON to OFF after a time set in \\
"
\end{tabular} Pr.40 Positioning complete signal output time" has been elapsed.
\end{tabular}


Fig. 11.11 Inching operation

\section*{Precautions during operation}
(1) Acceleration/deceleration processing is not carried out during inching operation. (Pulses corresponding to the designated inching movement amount are output at 1.8 ms . The movement direction of inching operation is reversed and, when backlash compensation is carried out, first pulses corresponding to the backlash amount are output at 1.8 ms and then pulses corresponding to the designated inching movement amount are output in the next 1.8 ms .) The " Cd. 17 JOG speed" is ignored even if it is set. However, the error "Inching movement amount error" (error code: 301) will occur in the following cases:
(Cd. 16 Inching movement amount) \(x(A)>(\) Pr. 31 JOG speed limit value) Where (A) is as follows.
- When the unit is pulse: 562.5
- When the unit is other than pulse: 337.5
(2) Set a value other than a " 0 " in " Cd. 16 Inching movement amount". If a "0" is set, the operation will become JOG operation (Refer to Section 11.2 "JOG operation".

Operations when stroke limit error occurs
When the operation is stopped by hardware stroke limit error or software stroke limit error, the inching operation can be performed in an opposite way (direction within normal limits) after an error reset. (An error will occur again if JOG start signal is turned ON in a direction to outside the stroke limit.)


Inching operation timing and processing times
The following drawing shows the details of the inching operation timing and processing time.


Fig. 11.12 Inching operation timing and processing times
Normal timing times
\begin{tabular}{|c|c|c|c|c|}
\hline Model & t 1 & t 2 & t 3 & t 4 \\
\hline QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) & 1.0 to 3.0 ms & 1.3 to 2.2 ms & 0 to 0.9 ms & \multirow{2}{c|}{\begin{tabular}{c} 
Depending on \\
parameters
\end{tabular}} \\
\hline QD75P \(\square /\) QD75D \(\square\) & 1.0 to 3.0 ms & 2.7 to 4.4 ms & 0 to 1.8 ms & \\
\hline
\end{tabular}
- Depending on the operating statuses of the other axes, delay may occur in the t1 timing time.

\subsection*{11.3.2 Inching operation execution procedure}

The inching operation is carried out by the following procedure.

- Mechanical elements such as limit switches are considered as already installed.
- Parameter settings work in common for all control using the QD75.

\subsection*{11.3.3 Setting the required parameters for inching operation}

The "Parameters" must be set to carry out inching operation.
The following table shows the setting items of the required parameters for carrying out inching operation. When only inching operation will be carried out, no parameters other than those shown below need to be set. (Use the initial values or setting values within a range where no error occurs for trouble-free operation.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting requirement & Factory-set initial value (setting details) \\
\hline \multirow{14}{*}{} & Pr. 1 & Unit setting & ( & 3 (pulse) \\
\hline & Pr. 2 & No. of pulses per rotation (Ap) (Unit: pulse) & ( & 20000 \\
\hline & Pr. 3 & Movement amount per rotation (AI) (Unit: pulse) & () & 20000 \\
\hline & Pr. 4 & Unit magnification (Am) & ( & 1 (1-fold) \\
\hline & Pr. 5 & Pulse output mode & () & 1 (CW/CCW mode) \\
\hline & Pr. 6 & Rotation direction setting & ( & 0 (current value increases by forward run pulse output) \\
\hline & Pr. 11 & Backlash compensation amount (Unit: pulse) & \(\bigcirc\) & 0 \\
\hline & Pr. 12 & Software stroke limit upper limit value (Unit: pulse) & \(\bigcirc\) & 2147483647 \\
\hline & Pr. 13 & Software stroke limit lower limit value (Unit: pulse) & \(\bigcirc\) & -2147483648 \\
\hline & Pr. 14 & Software stroke limit selection & \(\bigcirc\) & 0 (current feed value) \\
\hline & Pr. 15 & Software stroke limit valid/invalid setting & \(\bigcirc\) & 0 (valid) \\
\hline & Pr. 17 & Torque limit setting value (Unit: \%) & \(\bigcirc\) & 300 \\
\hline & Pr. 23 & Output signal logic selection & \(\bigcirc\) & 0 (Pulse output to the drive unit is negative logic) \\
\hline & Pr. 31 & JOG speed limit value (Unit: pulse/s) & ( ) & 20000 \\
\hline
\end{tabular}
() : Setting always required.
\(\bigcirc\) : Set according to requirements (Leave set to the initial value when not used.)

\section*{REMARK}
- Parameter settings work in common for all control using the QD75. When carrying out other controls ("major positioning control", "high-level positioning control", and "OPR positioning control"), the respective setting items must also be set.
- Parameters are set for each axis.
- Refer to CHAPTER 5 "DATA USED FOR POSITIONING CONTROL" for setting details.

\subsection*{11.3.4 Creating a program to enable/disable the inching operation}

A sequence program must be created to execute an inching operation. Consider the "required control data setting", "start conditions", and "start time chart" when creating the program.
The following shows an example when an inching operation is started for axis 1. (The example shows the inching operation when a "10.0 \(\mu \mathrm{m}\) " is set in " Cd. 16 Inching movement amount".)

Required control data setting
The control data shown below must be set to execute an inching operation. The setting is carried out with the sequence program.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \[
\begin{array}{|c}
\text { Axis } \\
1
\end{array}
\] & \[
\begin{gathered}
\text { Axis } \\
2
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Axis } \\
3
\end{array}
\] & \[
\begin{array}{|c}
\text { Axis } \\
4
\end{array}
\] \\
\hline Cd. 16 & Inching movement amount & 100 & \begin{tabular}{l}
Set the setting value so that the command pulse is not increased larger than the maximum output pulse. \\
(The max. output pulse \\
QD75D \(\square \mathrm{N}: ~ 4 \mathrm{Mpps}\) \\
QD75D \(\square\) : 1Mpps \\
QD75P \(\square\) N/QD75P \(\square:\) 200kpps)
\end{tabular} & 1517 & 1617 & 1717 & 1817 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for information on setting details.

Start conditions
The following conditions must be fulfilled when starting. The required conditions must also be assembled in the sequence program, and the sequence program must be configured so the operation will not start if the conditions are not fulfilled.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & vice & \\
\hline & Signal name & & Signal state & \[
\begin{array}{|c|}
\hline \text { Axis } \\
1 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
2 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { Axis } \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
4 \\
\hline
\end{array}
\] \\
\hline & PLC READY signal & ON & CPU module preparation completed & & & 0 & \\
\hline & QD75 READY signal & ON & QD75 preparation completed & & & 0 & \\
\hline & Synchronization flag * & ON & Accessible to QD75 buffer memory & & & 1 & \\
\hline & Axis stop signal & OFF & Axis stop signal is OFF & Y4 & Y5 & Y6 & Y7 \\
\hline signal & Start complete signal & OFF & Start complete signal is OFF & X10 & X11 & X12 & X13 \\
\hline & BUSY signal & OFF & QD75 is not operating & XC & XD & XE & XF \\
\hline & Positioning complete signal & OFF & Positioning complete signal is OFF & X14 & X15 & X16 & X17 \\
\hline & Error detection signal & OFF & There is no error & X8 & X9 & XA & XB \\
\hline & M code ON signal & OFF & M code ON signal is OFF & X4 & X5 & X6 & X7 \\
\hline & Drive unit READY signal & ON & Drive unit preparation completed & & & & \\
\hline External & Stop signal & OFF & Stop signal is OFF & & & - & \\
\hline signal & Upper limit (FLS) & ON & Within limit range & & & - & \\
\hline & Lower limit (RLS) & ON & Within limit range & & & - & \\
\hline
\end{tabular}
* If the CPU module is set to the asynchronous mode in the synchronization setting, this must be inserted in the program for interlocking. If it is set to the synchronous mode, it must not be inserted in the program for interlocking because it is turned ON when the CPU module executes calculation.

Start time chart


Fig. 11.13 Inching operation start time chart

Creating the program


\subsection*{11.3.5 Inching operation example}

When executing inching operation while stop signal is turned ON:
If the JOG start signal is turned ON while the stop signal is ON, an error "Stop signal ON at start" (error code: 106) will occur.
The inching operation can be re-started when the stop signal is turned OFF and the JOG start signal is turned OFF and then turned ON.


Fig. 11.14 Operation when executing inching operation while stop signal is ON

When "JOG start signal" is turned ON when peripheral devices are in the test mode:
If "JOG star signal" is turned ON when peripheral devices are in the test mode, the "JOG start signal" will be ignored and inching operation will not be carried out.


Fig. 11.15 Operation when JOG start signal is turned ON in test mode

\subsection*{11.4 Manual pulse generator operation}

\subsection*{11.4.1 Outline of manual pulse generator operation}

\section*{Important}

Create the sequence program so that " Cd. 21 Manual pulse generator enable flag" is always set to " 0 " (disabled) when a manual pulse generator operation is not carried out.
* Mistakenly touching the manual pulse generator when the manual pulse generator enable flag is set to "1" (enable) can cause accidents or incorrect positioning.

Manual pulse generator operation In manual pulse generator operations, pulses are input to the QD75 from the manual pulse generator. This causes the same No. of input pulses to be output from the QD75 to the servo amplifier, and the workpiece is moved in the designated direction.
The following shows an example of manual pulse generator operation.
\begin{tabular}{|c|l|}
\hline 1) & \begin{tabular}{l} 
When the " Cd.21 Manual pulse generator enable flag" is set to "1", the BUSY signal \\
turns ON and the manual pulse generator operation is enabled.
\end{tabular} \\
\hline 2) & \begin{tabular}{l} 
The workpiece is moved corresponding to the No. of pulses input from the manual pulse \\
generator.
\end{tabular} \\
\hline 3) & \begin{tabular}{l} 
The workpiece movement stops when no more pulses are input from the manual pulse \\
generator.
\end{tabular} \\
\hline 4) & \begin{tabular}{l} 
When the " Cd.21 Manual pulse generator enable flag" is set to "0", the BUSY signal \\
turns OFF and the manual pulse generator operation is disabled.
\end{tabular} \\
\hline
\end{tabular}
Cd. 21Manual pulse
generator enable flag

BUSY signal [XC, XD, YE, XF

Manual pulse generator input

Start complete signal \(* 2\)
[X10, X11, X12, X13]


[Precautions]
*1 If the input from the manual pulse generator stops, the machine will decelerate to a stop within 90ms.
*2 The start complete signal does not turn ON in manual pulse generator operation.
Fig. 11.16 Manual pulse generator operation
- Restricted items

A manual pulse generator is required to carry out manual pulse generator operation.

Precautions during operation
(1) The speed during manual pulse generator operation is not limited by the " Pr. 8 Speed limit value".
(2) If the " Cd. 21 Manual pulse generator enable flag" is turned ON while the QD75 is BUSY (BUSY signal ON), a warning "Start during operation" (warning code: 100) will occur.
(3) If a stop factor occurs during manual pulse generator operation, the operation will stop, and the BUSY signal will turn OFF.
At this time, the " Cd. 21 Manual pulse generator enable flag" will be left ON, but manual pulse generator operation will not be possible. To carry out manual pulse generator operation again, measures must be carried out to eliminate the stop factor. Once eliminated, the operation can be carried out again by turning the " Cd. 21 Manual pulse generator enable flag" ON \(\rightarrow\) OFF \(\rightarrow\) ON.
(Note that this excludes when hardware/software stroke limit errors occurs.)
(4) Pulses will not be output if an error occurs when the manual pulse generator operation starts.

\section*{REMARK}
- One QD75 module can be connected to one manual pulse generator.
- The QD75 module can simultaneously output pulses to the axis 1 to axis 4 drive units by one manual pulse generator.
(1- to 4-axis simultaneous operation is possible.)

Operations when stroke limit error occurs
When the hardware stroke limit error or the software stroke limit error is detected during operation, the operation will decelerate to a stop. However, " Md. 26 Axis operation status" will keep the status "Manual pulse generator operation" in that case. *1
After stopping, manual pulse generator input pulses to the outside direction of the limit range are not accepted, but operation can be executed within the range.
*1: Only when the current feed value or the current machine feed value overflows or underflows during deceleration, the manual pulse generator operation will terminate as " Md. 26 Axis operation status" is changed to "Error". To carry out manual pulse generator operation again, " Cd. 21 Manual pulse generator enable flag" must be turned OFF once and turn ON.

- Manual pulse generator operation timing and processing time The following drawing shows details of the manual pulse generator operation timing and processing time.


Fig. 11.17 Manual pulse generator operation timing and processing times
Normal timing times
\begin{tabular}{|c|c|c|c|c|}
\hline Model & t1 & t2 & t3 & t4 \\
\hline QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) & 0 to 0.9 ms & 1.7 to 30.2 ms & 58.6 to 87.6 ms & 28.4 to 57.2 ms \\
\hline QD75P \(\square /\) QD75D \(\square\) & 0 to 2.6 ms & 6.2 to 32 ms & 60.4 to 90 ms & 28.4 to 57.6 ms \\
\hline
\end{tabular}
- Delays may occur in the \(t 1\) timing time due to the operation status of other axes.
- Position control by manual pulse generator operation

In manual pulse generator operation, the position is moved by a "manual pulse generator 1 pulse movement amount" per pulse.
The current feed value in the positioning control by manual pulse generator operation can be calculated using the expression shown below.
Current feed value \(=\) Number of input pulses \(\times\) Cd. 20 Manual pulse generator 1 pulse input magnification \(\times\) Manual pulse generator 1 pulse movement amount
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. 1 Unit setting & mm & inch & degree & pulse \\
\hline \begin{tabular}{c} 
Manual pulse \\
generator 1 pulse \\
movement amount
\end{tabular} & \(0.1 \mu \mathrm{~m}\) & 0.00001 inch & 0.00001 degree & 1pulse \\
\hline
\end{tabular}

For example, when " Pr. 1 Unit setting" is mm and " Cd. 20 Manual pulse generator 1 pulse input magnification" is 2 , and 100 pulses are input from the manual pulse generator, the current feed value is as follows.
\[
\begin{aligned}
100 \times 2 \times 0.1 & =20[\mu \mathrm{~m}] \\
& =200[\text { Current feed value }]
\end{aligned}
\]

The number of pulses output actually to the drive unit is "Manual pulse generator 1 pulse movement amount/movement amount per pulse *". For example, when " Pr. 1 Unit setting" is mm and the movement amount per pulse is \(1 \mu \mathrm{~m}, 0.1 / 1=\) \(1 / 10\), i.e., the output to the drive unit per pulse from the manual pulse generator is \(1 / 10\) pulse. Thus, the QD75 outputs 1 pulse to the drive unit after receiving 10 pulses from the manual pulse generator.
\[
* \text { Movement amount per pulse }=\frac{\begin{array}{|cr} 
& \text { Pr } 3
\end{array} \text { Movement amount per rotation }}{\boxed{\operatorname{Pr} .2} \text { No. of pulses per rotation }} \times \text { Pr. } 4 \text { Unit magnification }
\]

\section*{Speed control by manual pulse generation operation}

The speed during positioning control by manual pulse generator operation is a speed corresponding to the No. of input pulses per unit time, and can be obtained using the following equation.

> Output command frequency \(=\) Input frequency \(\times\)\begin{tabular}{|l}  Cd. 20 \end{tabular} \(\begin{aligned} & \text { Manual pulse generator } \\ & 1 \text { pulse input magnification }\end{aligned}\)

\subsection*{11.4.2 Manual pulse generator operation execution procedure}

The manual pulse generator operation is carried out by the following procedure.


\section*{REMARK}
- Mechanical elements such as limit switches are considered as already installed.
- Parameter settings work in common for all control using the QD75.

\subsection*{11.4.3 Setting the required parameters for manual pulse generator operation}

The "Parameters" must be set to carry out manual pulse generator operation.
The following table shows the setting items of the required parameters for carrying out manual pulse generator operation. When only manual pulse generator operation will be carried out, no parameters other than those shown below need to be set. (Use the initial values or setting values within a range where no error occurs for trouble-free operation.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Setting item} & Setting requirement & Factory-set initial value (setting details) \\
\hline \multirow{15}{*}{} & Pr. 1 & Unit setting & ( & 3 (pulse) \\
\hline & Pr. 2 & No. of pulses per rotation (Ap) (Unit: pulse) & () & 20000 \\
\hline & Pr. 3 & Movement amount per rotation (AI) (Unit: pulse) & () & 20000 \\
\hline & Pr. 4 & Unit magnification (Am) & () & 1 (1-fold) \\
\hline & Pr. 5 & Pulse output mode & ( & 1 (CW/CCW mode) \\
\hline & Pr. 6 & Rotation direction setting & ( & 0 (current value increases by forward run pulse output) \\
\hline & Pr. 11 & Backlash compensation amount (Unit: pulse) & \(\bigcirc\) & 0 \\
\hline & Pr. 12 & Software stroke limit upper limit value (Unit: pulse) & \(\bigcirc\) & 2147483647 \\
\hline & Pr. 13 & Software stroke limit lower limit value (Unit: pulse) & \(\bigcirc\) & -2147483648 \\
\hline & Pr. 14 & Software stroke limit selection & \(\bigcirc\) & 0 (current feed value) \\
\hline & Pr. 15 & Software stroke limit valid/invalid setting & \(\bigcirc\) & 0 (valid) \\
\hline & Pr. 17 & Torque limit setting value (Unit: \%) & \(\bigcirc\) & 300 \\
\hline & Pr. 22 & Input signal logic selection & \(\bigcirc\) & 0 (Manual pulse generator input is negative logic.) \\
\hline & Pr. 23 & Output signal logic selection & \(\bigcirc\) & 0 (Pulse output to drive unit is negative logic.) \\
\hline & Pr. 24 & Manual pulse generator input selection & \(\bigcirc\) & 0 (4 times multiplication of A phase/B phase) \\
\hline
\end{tabular}
© : Setting always required.
\(\bigcirc\) : Set according to requirements (Leave set to the initial value when not used.)

\section*{REMARK}
- Parameter settings work in common for all control using the QD75. When carrying out other control ("major positioning control", "high-level positioning control", "OPR positioning control"), the respective setting items must also be matched and set.
- Parameters are set for each axis. But Pr.22 Manual pulse generator input logic (b8), Pr. 24 is set only for axis 1. (The setting for axes 2,3 , and 4 is ignored.)
- Refer to CHAPTER 5 "DATA USED FOR POSITIONING CONTROL" for setting details.

\subsection*{11.4.4 Creating a program to enable/disable the manual pulse generator operation}

A sequence program must be created to execute a manual pulse generator operation. Consider the "required control data setting", "start conditions" and "start time chart" when creating the program.
The following shows an example when a manual pulse generator operation is started for axis 1.

Required control data setting
The control data shown below must be set to execute a manual pulse generator operation. The setting is carried out with the sequence program.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \begin{tabular}{l}
Axis \\
1
\end{tabular} & \[
\begin{array}{|c}
\text { Axis } \\
2
\end{array}
\] & Axis
\[
3
\] & \[
\begin{array}{|c}
\text { Axis } \\
4
\end{array}
\] \\
\hline Cd. 20 & Manual pulse generator 1 pulse input magnification & 1 & \begin{tabular}{l}
Set the manual pulse generator 1 pulse input magnification. \\
(QD75P \(\square N / Q D 75 D \square N\) : 1 to 1000 times QD75P \(\square / Q D 75 D \square: 1\) to 100 times)
\end{tabular} & \[
\begin{aligned}
& 1522 \\
& 1523
\end{aligned}
\] & \[
\begin{aligned}
& 1622 \\
& 1623
\end{aligned}
\] & \[
\begin{array}{|l|}
1722 \\
1723
\end{array}
\] & \[
\begin{aligned}
& 1822 \\
& 1823
\end{aligned}
\] \\
\hline Cd. 21 & Manual pulse generator enable flag & 1 (0) & Set "1: Enable manual pulse generator operation". (Set "0: Disable manual pulse generator operation" when finished with the manual pulse generator operation.) & 1524 & 1624 & 1724 & 1824 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

\section*{Start conditions}

The following conditions must be fulfilled when starting. The required conditions must also be assembled in the sequence program, and the sequence program must be configured so the operation will not start if the conditions are not fulfilled.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal name}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Signal state}} & \multicolumn{4}{|c|}{Device} \\
\hline & & & & Axis
\[
1
\] & \[
\begin{array}{|c}
\text { Axis } \\
2 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\text { Axis } \\
3
\end{array}
\] & \[
\begin{array}{|c}
\text { Axis } \\
4 \\
\hline
\end{array}
\] \\
\hline \multirow{8}{*}{Interface signal} & PLC READY signal & ON & CPU module preparation completed & \multicolumn{4}{|c|}{Y0} \\
\hline & QD75 READY signal & ON & QD75 preparation completed & \multicolumn{4}{|c|}{X0} \\
\hline & Synchronization flag * & ON & QD75 buffer memory The access is possible. & \multicolumn{4}{|c|}{X1} \\
\hline & Axis stop signal & OFF & Axis stop signal is OFF & Y4 & Y5 & Y6 & Y7 \\
\hline & Start complete signal & OFF & Start complete signal is OFF & X10 & X11 & X12 & X13 \\
\hline & BUSY signal & OFF & QD75 is not operating & XC & XD & XE & XF \\
\hline & Error detection signal & OFF & There is no error & X8 & X9 & XA & XB \\
\hline & M code ON signal & OFF & M code ON signal is OFF & X4 & X5 & X6 & X7 \\
\hline \multirow{4}{*}{External signal} & Drive unit READY signal & ON & Drive unit preparation completed & \multicolumn{4}{|c|}{-} \\
\hline & Stop signal & OFF & Stop signal is OFF & \multicolumn{4}{|c|}{-} \\
\hline & Upper limit (FLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline & Lower limit (RLS) & ON & Within limit range & \multicolumn{4}{|c|}{-} \\
\hline
\end{tabular}
* If the CPU module is set to the asynchronous mode in the synchronization setting, this must be inserted in the program for interlocking. If it is set to the synchronous mode, it must not be inserted in the program for interlocking because it is turned ON when the CPU module executes calculation.

Start time chart


Fig. 11.18 Manual pulse generator operation start time chart

Creating the program


\section*{CHAPTER 12 CONTROL SUB FUNCTIONS}

> The details and usage of the "sub functions" added and used in combination with the main functions are explained in this chapter.
> A variety of sub functions are available, including functions specifically for machine OPR and generally related functions such as control compensation, etc. More appropriate, finer control can be carried out by using these sub functions. Each sub function is used together with a main function by creating matching parameter settings and sequence programs. Read the execution procedures and settings for each sub function, and set as required.
12.1 Outline of sub functions ..... 12- 2
12.1.1 Outline of sub functions ..... 12- 2
12.2 Sub functions specifically for machine OPR ..... 12- 4
12.2.1 OPR retry function ..... 12- 4
12.2.2 OP shift function ..... 12- 8
12.3 Functions for compensating the control ..... 12-12
12.3.1 Backlash compensation function ..... 12-12
12.3.2 Electronic gear function ..... 12-14
12.3.3 Near pass function ..... 12-21
12.3.4 Output timing selection of near pass control ..... 12-23
12.4 Functions to limit the control ..... 12-27
12.4.1 Speed limit function ..... 12-27
12.4.2 Torque limit function ..... 12-29
12.4.3 Software stroke limit function ..... 12-33
12.4.4 Hardware stroke limit function ..... 12-39
12.5 Functions to change the control details ..... 12-41
12.5.1 Speed change function ..... 12-41
12.5.2 Override function ..... 12-48
12.5.3 Acceleration/deceleration time change function ..... 12-51
12.5.4 Torque change function ..... 12-56
12.5.5 Target position change function ..... 12-58
12.6 Absolute position restoration function ..... 12-62
12.7 Other functions ..... 12-73
12.7.1 Step function ..... 12-73
12.7.2 Skip function ..... 12-78
12.7.3 M code output function ..... 12-81
12.7.4 Teaching function ..... 12-85
12.7.5 Command in-position function ..... 12-92
12.7.6 Acceleration/deceleration processing function ..... 12-95
12.7.7 Pre-reading start function ..... 12-98
12.7.8 Deceleration start flag function ..... 12-103
12.7.9 Stop command processing for deceleration stop function ..... 12-107

\subsection*{12.1 Outline of sub functions}
"Sub functions" are functions that compensate, limit, add functions, etc., to the control when the main functions are executed. These sub functions are executed by parameter settings, commands from GX Configurator-QP, sub function sequence programs, etc.

\subsection*{12.1.1 Outline of sub functions}

The following table shows the types of sub functions available.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Sub function} & Details \\
\hline \multirow[t]{2}{*}{Sub functions specifically for machine OPR} & OPR retry function & This function retries the machine OPR with the upper/lower limit switches during machine OPR. This allows machine OPR to be carried out even if the axis is not returned to before the near-point dog with JOG operation, etc. \\
\hline & OP shift function & After returning to the machine OP, this function offsets the position by the designated distance from the machine OP position and sets that position as the OP address. \\
\hline \multirow{4}{*}{Functions for compensating the control} & Backlash compensation function & This function compensates the mechanical backlash. Feed pulses equivalent to the set backlash amount are output each time the movement direction changes. \\
\hline & Electronic gear function & \begin{tabular}{l}
By setting the movement amount per pulse, this function can freely change the machine movement amount per commanded pulse. \\
A flexible positioning system that matches the machine system can be structured with this function.
\end{tabular} \\
\hline & Near pass function *1 & This function suppresses the machine vibration when the positioning data is switched during continuous path control in the interpolation control. \\
\hline & Output timing selection of near pass control & This function allows the user to select the timing to output the difference \((\triangle \ell)\) between the actual and the set positioning end addresses in continuous path control, in which the difference \((\triangle \ell)\) is output during the execution of the next positioning data. \\
\hline \multirow{4}{*}{Functions to limit the control} & Speed limit function & If the command speed exceeds " Pr. 8 Speed limit value" during control, this function limits the commanded speed to within the " Pr. 8 Speed limit value" setting range. \\
\hline & Torque limit function *2 & If the torque generated by the servomotor exceeds " Pr. 17 Torque limit setting value" during control, this function limits the generated torque to within the " Pr. 17 Torque limit setting value" setting range. \\
\hline & Software stroke limit function & If a command outside of the upper/lower limit stroke limit setting range, set in the parameters, is issued, this function will not execute positioning for that command. \\
\hline & Hardware stroke limit function & This function carries out deceleration stop with the limit switch connected to the QD75 external device connector. \\
\hline \multirow{5}{*}{Functions to change the control details} & Speed change function & \begin{tabular}{l}
This function changes the speed during positioning. \\
Set the changed speed in the speed change buffer memory (Cd. 14 New speed value), and change the speed with the speed change request Cd. 15 Speed change request).
\end{tabular} \\
\hline & Override function & This function changes the speed within a percentage of 1 to \(300 \%\) during positioning. This is executed using " Cd. 13 Positioning operation speed override". \\
\hline & Acceleration/deceleration time change function & This function changes the acceleration/deceleration time during speed change. (function added to the speed change function and override function) \\
\hline & Torque change function & This function changes the "torque limit value" during control. \\
\hline & Target position change function & This function changes the target position during the execution of positioning. At the same time, this also can change the speed. \\
\hline
\end{tabular}
*1 The near pass function is validated only when the machine of the standard specification carries out the position control with the continuous path control mode.
It cannot be invalidated with parameters.
*2 To carry out "torque limit", the "D/A conversion module" and a "drive unit capable of the torque limit command with an analog voltage" must be prepared.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Sub function} & Details \\
\hline \multicolumn{2}{|l|}{Absolute position restoration function *3} & This function restores the absolute position of designated axis. By this function, the OPR after power ON from OFF is not required once the OPR is executed when the system operation is started. \\
\hline \multirow{9}{*}{Other functions} & Step function & \begin{tabular}{l}
This function temporarily stops the operation to confirm the positioning operation during debugging, etc. \\
The operation can be stopped at each "automatic deceleration" or "positioning data".
\end{tabular} \\
\hline & Skip function & This function stops the positioning being executed (decelerates to a stop) when the skip signal is input, and carries out the next positioning. \\
\hline & M code output function & This function issues a sub work (clamp or drill stop, tool change, etc.) according to the code No. (0 to 65535) set for each positioning data. \\
\hline & Teaching function & This function stores the address positioned with manual control into the positioning address (Da.6 Positioning address/movement amount) having the designated positioning data No. \\
\hline & Command in-position function & At each automatic deceleration, this function calculates the remaining distance for the QD75 to reach the positioning stop position, and when the value is less than the set value, sets the "command in-position flag" to 1 . When using another sub work before ending the control, use this function as a trigger for the sub work. \\
\hline & Acceleration/deceleration processing function & This function adjusts the control acceleration/deceleration. (acceleration/deceleration time and curve). \\
\hline & Pre-reading start function & This function shortens the virtual start time. \\
\hline & Deceleration start flag function & Function that turns ON the flag when the constant speed status or acceleration status switches to the deceleration status during position control, whose operation pattern is "Positioning complete", to make the stop timing known. \\
\hline & Stop command processing for deceleration stop function & Function that selects a deceleration curve when a stop cause occurs during deceleration stop processing to speed 0 . \\
\hline
\end{tabular}
*3 "The 16-point input module", "16-point output module", and "the drive unit capable of configuring an absolute position detection system (, which is a Mitsubishi General-Purpose AC Servo and has an absolute position detection function (absolute position data transference protocol) equivalent to that of MR-J3- \(\square \mathrm{A}\) )" are required to execute the "absolute position restoration function".

\subsection*{12.2 Sub functions specifically for machine OPR}

The sub functions specifically for machine OPR include the "OPR retry function" and "OP shift function". Each function is executed by parameter setting.

\subsection*{12.2.1 OPR retry function}

When the workpiece goes past the OP without stopping during positioning control, it may not move back in the direction of the OP although a machine OPR is commanded, depending on the workpiece position. This normally means the workpiece has to be moved to a position before the near-point dog by a JOG operation, etc., to start the machine OPR again. However, by using the OPR retry function, a machine OPR can be carried out regardless of the workpiece position.

The details shown below explain about the "OPR retry function".
[1] Control details
[2] Control Precautions
[3] Setting method
[1] Control details
The following drawing shows the operation of the OPR retry function.
(1) OPR retry point return retry operation when the workpiece is within the range between the upper/lower limits.
1) The movement starts in the " Pr. 44 OPR direction" by a machine OPR start.
2) The operation decelerates when the limit signal OFF is detected.
3) After stopping at detection of the limit signal OFF, the operation moves at the " Pr. 46 OPR speed" in the direction opposite to the " Pr. 44 OPR direction".
4) The operation decelerates when the near-point dog turns OFF.
5) After stopping due to the near-point dog OFF, a machine OPR is carried out in the "Pr. 44 OPR direction".
6) Machine OPR completion


Fig. 12.1 OPR retry operation by limit signal detection
(2) OPR retry operation when the workpiece is outside the range between the upper/lower limits.
(a)When the direction from the workpiece to the OP is the same as the " Pr. 44 OPR direction", a normal machine OPR is carried out.

(b)When the direction from the workpiece to the OP is the opposite direction from the " Pr. 44 OPR direction", the operation carries out a deceleration stop when the near-point dog turns OFF, and then carries out a machine OPR in the direction set in " Pr. 44 OPR direction".


Note) The above figures in (a) and (b) are examples where " Pr. 44 OPR direction" is set to " 0 : Positive direction". When "0: Positive direction" is set in Pr. 44 , check that the limit switch placed in the OPR direction acts as the upper limit. When "1: Negative direction" is set in Pr.44, check that the limit switch placed in the OPR direction acts as the lower limit. Incorrect wiring of these limit switches may cause improper OPR retry operation. If any malfunction is identified, check and correct " Pr. 6 Rotation direction setting" and the wiring.

Fig. 12.2 OPR retry operation from on limit (limit switch OFF)
(3) Setting the dwell time during an OPR retry

The OPR retry function can perform such function as the dwell time using " Pr. 57 Dwell time at OPR retry" when the reverse run operation is carried out due to detection by the limit signal for upper/lower limits and when the machine OPR is executed after the near point dog is turned OFF to stop the operation.
" Pr. 57 Dwell time during OPR" is validated when the operation stops at the "A" and "B" positions in the following drawing. (The dwell time is the same value at both positions " A " and " B ".)


Fig. 12.3 Setting the dwell time during an OPR retry

\section*{[2] Control Precautions}
(1) The following table shows whether the OPR retry function may be executed by the " Pr. 43 OPR method".
\begin{tabular}{|l|c|l|}
\hline Pr.43 OPR method & \multicolumn{1}{|c|}{ Execution status of OPR retry function } \\
\hline Near-point dog method & \(\bigcirc:\) Execution possible \\
\hline Stopper method 1) & \(\bigcirc:\) Execution possible *1 \\
\hline Stopper method 2) & \(\bigcirc:\) Execution possible*1 \\
\hline Stopper method 3) & \(\times:\) Execution not possible \\
\hline Count method 1) & \(\bigcirc:\) Execution possible \\
\hline Count method 2) & \(\bigcirc:\) Execution possible \\
\hline
\end{tabular}
* 1 Starting can be executed from the position of the limit switch installed in the opposition direction of " Pr. 44 OPR direction". (The limit signal is OFF.) However, the retry operation by the limit switch in the OPR direction cannot be executed since a stopper is installed in the OPR direction.
(2) Always establish upper/lower limit switches at the upper/lower limit positions of the machine, and connect them to the QD75. If the OPR retry function is used without hardware stroke limit switches, the motor will continue rotation until a hardware stroke limit signal is detected.
(3) Do not configure a system so that the drive unit power turns OFF by the upper/lower limit switches connected to the QD75. If the drive unit power is turned OFF, the OPR retry cannot be carried out.
[3] Setting method
To use the "OPR retry function", set the required details in the parameters shown in the following table, and write them to the QD75.
When the parameters are set, the OPR retry function will be added to the machine OPR control. The set details are validated at the rising edge (OFF \(\rightarrow\) ON) of the PLC READY signal (YO). (Set " Pr. 57 Dwell time during OPR retry" according to the user's requirements.)
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{c} 
Setting \\
value
\end{tabular} & Setting details & \begin{tabular}{c} 
Factory-set \\
initial value
\end{tabular} \\
\hline Pr.48 & OPR retry & 1 & Set "1: Carry out OPR retry by limit switch". & 0 \\
\hline Pr.57 & \begin{tabular}{l} 
Dwell time during \\
OPR retry
\end{tabular} & \(\rightarrow\) & \begin{tabular}{l} 
Set the deceleration stop time during OPR retry. \\
(Random value between 0 and \(65535(\mathrm{~ms}))\)
\end{tabular} & 0 \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.

\section*{REMARK}
- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\subsection*{12.2.2 OP shift function}

When a machine OPR is carried out, the OP is normally established using the nearpoint dog, stopper, and zero signal. However, by using the OP shift function, the machine can be moved a designated movement amount from the position where the zero signal was detected. A mechanically established OP can then be interpreted at that point.
The OP shift function can be used without relation to " Pr. 43 OPR method".

The details shown below explain about the "OP shift function".
[1] Control details
[2] Setting range for the OP shift amount
[3] Movement speed during OP shift
[4] Control Precautions
[5] Setting method

\section*{[1] Control details}

The following drawing shows the operation of the OP shift function.


Fig. 12.4 OP shift operation
[2] Setting range for the OP shift amount
Set the OP shift amount within the range from the detected zero signal to the upper/lower limit switches.


Fig. 12.5 Setting range for the OP shift amount
[3] Movement speed during OP shift
When using the OP shift function, the movement speed during the OP shift is set in " Pr. 56 Speed designation during OP shift". The movement speed during the OP shift is selected from either the " Pr. 46 OPR speed" or the " Pr. 47 Creep speed".
The following drawings show the movement speed during the OP shift when a mechanical OPR is carried out by the near-point dog method.
(1) OP shift operation at the " Pr. 46 OPR speed"
(When " Pr. 56 Speed designation during OP shift" is 0 )


Fig. 12.6 OP shift operation at the OPR speed
(2) OP shift operation at the " Pr. 47 Creep speed" (When " Pr. 56 Speed designation during OP shift" is 1)


Fig. 12.7 OP shift operation at the creep speed
[4] Control Precautions
(1) The following data are set after the OP shift amount is complete.
- OPR complete flag (" Md. 31 Status: b4)
- Md. 20 Current feed value
- Md. 21 Machine feed value
- Md. 26 Axis operation status

OPR request flag (Md. 31 Status: b3) is reset after completion of the OP shift.
(2) " Pr. 53 OP shift amount" is not added to " Md. 34 Movement amount after near-point dog ON". The movement amount immediately before the OP shift operation, considering near-point dog ON as " 0 ", is stored. For the stopper method (1) 2) 3)), the movement amount is not changed from " 0 ".
(3) When using the OP shift function with the stopper method (1) 2) 3)) selected for the OPR method, configure the OP shift operation in the opposite direction of the OPR direction. It cannot shift to the OPR direction due to a mechanical stopper in the OPR direction.
[5] Setting method
To use the "OP shift function", set the required details in the parameters shown in the following table, and write them to the QD75.
When the parameters are set, the OP shift function will be added to the machine OPR control. The set details are validated at the rising edge (OFF \(\rightarrow\) ON) of the PLC READY signal (YO).
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Setting \\
value
\end{tabular}} & Setting details & \begin{tabular}{c} 
Factory-set \\
initial value
\end{tabular} \\
\hline Pr.53 & OP shift amount & \(\rightarrow\) & Set the shift amount during the OP shift. & 0 \\
\hline & \begin{tabular}{l} 
Speed \\
designation \\
during OP shift
\end{tabular} & \(\rightarrow\) & \begin{tabular}{l} 
Select the speed during the OP shift \\
\(0:\)
\end{tabular} Pr.46 OPR speed \\
Pr.56 & Pr.47 & Creep speed
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.

\section*{REMARK}
- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\subsection*{12.3 Functions for compensating the control}

The sub functions for compensating the control include the "backlash compensation function", "electronic gear function", "near pass function", and "output timing selection of near pass control". Each function is executed by parameter setting or sequence program creation and writing.

\subsection*{12.3.1 Backlash compensation function}

The "backlash compensation function" compensates the backlash amount in the mechanical system. When the backlash compensation amount is set, an extra amount of pulses equivalent to the set backlash amount is output every time the movement direction changes.

The details shown below explain about the "backlash compensation function".
[1] Control details
[2] Control Precautions
[3] Setting method
[1] Control details
The following drawing shows the operation of the backlash compensation function.


Fig. 12.8 Backlash compensation amount

\section*{[2] Control Precautions}
(1) The feed pulses of the backlash compensation amount are not added to the " Md. 20 Current feed value" or " Md. 21 Machine feed value".
(2) Always carry out a machine OPR before starting the control when using the backlash compensation function (when " Pr. 11 Backlash compensation amount" is set). The backlash in the mechanical system cannot be correctly compensated if a machine OPR is not carried out.
(3) Set the No. of pulses output in one backlash compensation (value in which the " Pr. 11 Backlash compensation amount" is divided by the "movement amount per pulse") to a value of 255 or lower. An error "Backlash compensation amount error" (error code: 920) will occur if a value over 255 is set. (Depending on the connected servo, tracking may not be possible if a large amount of pulses is output at once.)
\[
0 \leq \frac{\text { Backlash compensation amount }}{\text { Movement amount per pulse }} \leq 255
\]
(Omit values after the decimal point.)
(4) Backlash compensation, which includes the movement amount and " Pr. 11 Backlash compensation amount", is output the moment at the moving direction changes.
(5) Backlash compensation cannot be made when the stepping motor is used. The backlash compensation function cannot be used for an axis where a stepping motor is connected. Set 0 (initial value) in " Pr. 11 Backlash compensation amount".

\section*{[3] Setting method}

To use the "backlash compensation function", set the "backlash compensation amount" in the parameter shown in the following table, and write it to the QD75. The set details are validated at the rising edge (OFF \(\rightarrow \mathrm{ON}\) ) of the PLC READY signal (YO).
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{c} 
Setting \\
value
\end{tabular} & Setting details & \begin{tabular}{c} 
Factory-set \\
initial value
\end{tabular} \\
\hline Pr.11 & \begin{tabular}{l} 
Backlash \\
compensation \\
amount
\end{tabular} & \(\rightarrow\) & Set the backlash compensation amount. & 0 \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.

\section*{REMARK}
- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\subsection*{12.3.2 Electronic gear function}

The "electronic gear function" adjusts the pulses calculated and output according to the parameters set in the QD75 with the actual machine movement amount.

The "electronic gear function" has the following four functions.
[A] The function converts the command value (speed, movement amount from the start point to the end point), which is set in mm units, to pulse units, and determines the pulse frequency and pulse number of the command pulse.


Fig. 12.9 Conversion to pulse units
*1: Unit specified with " Pr. 1 Unit setting" (mm, inch, degree, pulse)
[B] If values less than one pulse are generated by converting the movement amount from the start point to the end point to pulse units, the values are not output and the machine stops at the front side of the positioning direction. The function accumulates values less than one pulse that could not be pulse output in the QD75 and outputs one pulse when the total cumulative value reached one pulse or more.
[C] When machine OPR is completed, current value changing is completed, speed control is started (except when current feed value change is present), or fixed-feed control is started, the function clears to " 0 " the cumulative values of less than one pulse which could not be output. (If the cumulative value is cleared, an error will occur by a cleared amount in the feed machine value. Control can be constantly carried out at the same machine movement amount, even when the fixed-feed control is continued.)
[D] The function compensates the mechanical system error of the command movement amount and actual movement amount by adjusting the "movement amount per pulse".
(The "movement amount per pulse" value is defined by " Pr. 2 No. of pulses per rotation (Ap)", " Pr. 3 Movement amount per rotation (Al)", and " Pr. 4 Unit magnification (Am)".)

The QD75 automatically carries out the processing for [A] and [C].
The details shown below explain about the "electronic gear function", including the method for compensating the error in [D] above, etc.
[1] Movement amount per pulse
[2] Error compensation method
[3] Control Precautions

\section*{[1] Movement amount per pulse}
" Pr. 2 No. of pulses per rotation (Ap)", " Pr. 3 Movement amount per rotation (Al)", and " Pr. 4 Unit magnification (Am)" are the items for determining how many rotations (equivalent to how many pulses) a motor should operate to move a machine for movement amount set in a program.
The drive unit controls the motor with the pulse number.
The following shows the details of control of the QD75.


Fig. 12.10 System using a ball screw
*1: The upper limits of the command pulse frequency are as follows
- QD75D \(\square \mathrm{N}\) : 4Mpulse/s
- QD75D \(\square\) : 1Mpulse/s
- QD75P \(\square\) N/QD75P \(\square: 200\) kpulse/s
*2: For a drive unit without electronic gear function, or when not using electronic gear function, this value is 1 (single).

Consider a system with the motor connected to a ball screw, such as the figure above.
1 is set to the electronic gear of the drive unit.
The movement amount of the machine is in mm or inch unit. Set the command value in mm or inch units to the QD75 for the CPU module program.
The motor is controlled by the drive unit in pulse number units.
Consequently, since the command value in mm or inch units is converted to pulse units, set \(\mathrm{Ap}, \mathrm{Al}\), and Am so that the following relational expressions are satisfied.

Number of pulses per rotation of motor =Ap
Movement amount per rotation of motor \(=\mathrm{Al} \times \mathrm{Am}\)
In this case, the machine movement amount for the command 1 pulse output from the QD75 is calculated by the following expression.

Movement amount per pulse (A) \(=\frac{\mathrm{Al} \times \mathrm{Am}}{\mathrm{Ap}}\)

\section*{POINT}

The command frequency from the QD75 is limited by a ceiling. If the command frequency exceeds the upper limit, increase the "Movement amount per pulse (A)" greater ( N times) to decrease the command frequency.
In this case, the electronic gear on the drive unit must be increased by N times as well.
The command pulse from the QD75 is changes to \(1 / \mathrm{N}\) times. Therefore, multiply it by N on the drive unit side to keep the number of motor rotations.
Since the "movement amount per pulse (A)" is increased, the position accuracy (command resolution) for the command 1 pulse from the QD75 decreases.
Consider to decrease the command speed when the position accuracy is required.

\section*{(1) Setting range of \(\mathrm{Ap}, \mathrm{Al}, \mathrm{Am}\)}

Determined setting ranges are available for Ap, Al, and Am. The following shows the setting ranges.
\begin{tabular}{|c|c|c|c|}
\hline & Setting item & \multicolumn{2}{|r|}{Setting range} \\
\hline Pr. 2 & No. of pulses per rotation (Ap) & \multicolumn{2}{|c|}{1 to 65535} \\
\hline \multirow{4}{*}{Pr. 3} & \multirow{4}{*}{Movement amount per rotation (AI)} & \multirow{4}{*}{1 to 65535} & \(\times 10^{-1} \mu \mathrm{~m}\) \\
\hline & & & \(\times 10^{-5}\) inch \\
\hline & & & \(\times 10^{-5}\) degree \\
\hline & & & pulse \\
\hline Pr. 4 & Unit magnification (Am) & & 0/1000 \\
\hline
\end{tabular}

For details of the setting, refer to Section 5.2 "List of parameters". In addition, use the value set in " Pr. 3 Movement amount per rotation (AI)" as movement amount per rotation (AI) to calculate movement amount per pulse (A).

Example: Movement amount per pulse (A) when " Pr. 1 Unit setting" is " 0 : mm"
" Pr. 2 No. of pulses per rotation": 20000
" Pr. 3 Movement amount per rotation": 40000
" Pr. 4 Unit magnification": 1
Movement amount per pulse (A) \(=\frac{40000 \times 10^{-1}}{20000} \times 1=0.2 \mu \mathrm{~m}\)

If the value is beyond the setting range, setting values of each parameter can be decreased by canceling the numerator and denominator with the movement amount per pulse (A) kept.

\section*{[2] Error compensation method}

When position control is carried out by the "movement amount per pulse" set in the QD75 parameters, an error sometimes occurs between the command movement amount ( L ) and the actual movement amount (L').
That error is compensated in the QD75 by adjusting the values in " Pr. 2 No. of pulses per rotation (Ap)", " Pr. 3 Movement amount per rotation (AI)", and
" Pr. 4 Unit magnification (Am)". (When " Pr. 1 Unit setting" is " 0 : mm")
(1) Definition

The "error compensation amount" used to carry out the error compensation is defined as follows.
\[
\text { Error compensation amount }=\frac{\text { Actual movement amount }\left(\mathrm{L}^{\prime}\right)}{\text { Designated movement amount }(\mathrm{L})}
\]

The QD75 "movement amount per pulse" is calculated with the following equation.
Movement amount per pulse is "A", " Pr. 2 No. of pulses per rotation" is (Ap), " Pr. 3 Movement amount per rotation" is (Al), and " Pr. 4 Unit magnification" is (Am).
\[
A=\frac{A l}{A p} \times A m
\]

\section*{(2) Procedure}
(a) Set the "command movement amount (L)", and carry out positioning. (Set the "movement amount per pulse (A)" according to Section 5.2 "List of parameters".)
(b) After positioning, measure the "actual movement amount (L')".
(c) Calculate the "error compensation amount".

Error compensation amount \(=\frac{\mathrm{L}^{\prime}}{\mathrm{L}}\)
(d) Calculate the post-compensation " Pr. 2 No. of pulses per rotation (Ap')", " Pr. 3 Movement amount per rotation (Al')", and " Pr. 4 Unit magnification (Am')" from the "post-compensation movement amount per pulse ( \(A^{\prime}\) )".
\(A=A \quad \times\) Error compensation amount
\[
\begin{aligned}
& =\frac{\mathrm{Al}}{\mathrm{Ap}} \times \mathrm{Am} \frac{\mathrm{~L}^{\prime}}{\mathrm{L}} \\
& =\frac{\mathrm{Al}^{\prime}}{\mathrm{Ap}^{\prime}} \times \mathrm{Am}^{\prime}
\end{aligned}
\]
(Adjust with Am' so that Al' and Ap' do not exceed the setting range.)

(e) Set the post-compensation " Pr. 2 No. of pulses per rotation (Ap')", " Pr. 3 Movement amount per rotation (Al')", and " Pr. 4 Unit magnification (Am')" in the parameters, and write them to the QD75. The set details are validated at the rising edge (OFF \(\rightarrow \mathrm{ON}\) ) of the PLC READY signal (YO).
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{c} 
Setting \\
value
\end{tabular} & Setting details & \begin{tabular}{c} 
Pre-compensation \\
value
\end{tabular} \\
\hline Pr.2 & \begin{tabular}{l} 
No. of pulses per \\
rotation
\end{tabular} & \(\mathrm{Ap}^{\prime}\) & Set the post-compensation value. & Ap \\
\hline Pr.3 & \begin{tabular}{l} 
Movement amount \\
per rotation
\end{tabular} & \(\mathrm{Al}^{\prime}\) & Set the post-compensation value. & Al \\
\hline Pr.4 & Unit magnification & \(\mathrm{Am}^{\prime}\) & Set the post-compensation value. & Am \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.

\section*{[3] Control Precautions}

If values less than one pulse are generated by converting the movement amount from the start point to the end point to pulse units with the electronic gear function, the values are not output and the machine stops at the front side of the positioning direction. The function accumulates values less than one pulse that could not be pulse output in the QD75 and outputs one pulse when the total cumulative value reached one pulse or more.


Fig. 12.11 Operation when values less than one pulse are generated

To prevent values less than one pulse from being generated, set the positioning address so that the value, calculated by multiplying the inverse number of movement amount per pulse (A) to the movement amount to the end point, becomes an integer.

It is recommended that the "movement amount per pulse (A)" be set to a value close to "1" for the following reasons. The "movement amount per pulse" of "1" means the minimum value in each " Pr. 1 Unit setting". ( \(0.1[\mu \mathrm{~m}]\) for the unit [mm])
(1) When the setting of the movement amount per pulse is decreased, the command frequency may increase. Be careful when changing the setting.
(2) If the setting of the movement amount per pulse is less than 1 , the mechanical system may oscillate. Be sure to use the movement amount per pulse among the range indicated below.
Movement amount per pulse \((A) \geq \frac{1}{500}\)
If the mechanical system oscillates, also use the electronic gear function of the drive unit and the movement amount per pulse greater.
(3) Set the movement amount per pulse so that the pulse output frequency for the drive unit becomes a value in the following table.
\begin{tabular}{|l|c|c|c|}
\hline & QD75P \(\square\) N/QD75P \(\square\) & QD75D \(\square \mathrm{N}\) & QD75D \(\square\) \\
\hline \begin{tabular}{l} 
Pulse output frequency \\
for drive unit
\end{tabular} & 200kpulse/s or less & 4Mpulse/s or less & 1Mpulse/s or less \\
\hline
\end{tabular}

If the setting of pulse output frequency for the drive unit exceeds a value in the table, the QD75 may not operate correctly.

\section*{REMARK}

In the QD75, the general term for the functions in this section is defined as the "electronic gear function". Refer to the User's Manual for the servomotor for the definition of the "electronic gear" on the servomotor side.

\subsection*{12.3.3 Near pass function}

When continuous pass control is carried out using interpolation control, the near pass function is carried out.

The "near pass function" is a function to suppress the mechanical vibration occurring at the time of switching the positioning data when continuous pass control is carried out using interpolation control.
[Near pass function]
The extra movement amount occurring at the end of each positioning data unit being continuously executed is carried over to the next positioning data unit. Alignment is not carried out, and thus the output speed drops are eliminated, and the mechanical vibration occurring during speed changes can be suppressed. Because alignment is not carried out, the operation is controlled on a path that passes near the position set in " Da. 6 Positioning address/movement amount".

The details shown below explain about the "near pass function".
[1] Control details
[2] Control Precautions

\section*{[1] Control details}

The following drawing shows the path of the continuous path control by the 2axis linear interpolation control.


Fig. 12.12 The path of the continuous path control

\section*{[2] Control Precautions}
(1) If the movement amount designated by the positioning data is small when the continuous path control is executed, the output speed may not reach the designated speed.
(2) The movement direction is not checked during interpolation operation. Therefore, a deceleration stops are not carried out even the movement direction changes. (See below) For this reason, the output will suddenly reverse when the reference axis movement direction changes. To prevent the sudden output reversal, assign not the continuous path control "11", but the continuous positioning control " 01 " to the positioning data of the passing point.

\section*{[Positioning by interpolation]}

[Operation of reference axis]

[Operation of partner axis for interpolation]


Fig. 12.13 Path and output speed of various axes when movement direction varies during continuous path control

\subsection*{12.3.4 Output timing selection of near pass control}

The function "output timing selection of near pass control" allows the user to select the timing to output the difference ( \(\triangle \ell\) ) between the actual and the set positioning end addresses in continuous path control, in which the difference \((\triangle \ell)\) is output during the execution of the next positioning data.

The details shown below explain about the function "output timing selection of near pass control".
[1] Control details
[2] Control precautions
[3] Setting method

\section*{[1] Control details}

There are two options for an output timing of near pass control: "At constant speed" and "At deceleration".
- At constant speed: The distance \(\triangle \ell\) is output when the next positioning data is executed in constant speed.
- At deceleration: The distance \(\triangle \ell\) is output when the next positioning speed decelerates from V1 to V2.

When "At constant speed" is selected in a condition where the specified speed of positioning data No. 1 and No. 2 in the figure 12.14 are "V1>V2", the distance \(\triangle \ell\) is output when the next positioning data is executed in constant speed; therefore, the positioning execution time is extended.
When "At deceleration" is selected, the positioning execution time is not extended and remains the same as it was set.

The following drawing shows the operation of the function "output timing selection of near pass control".


Fig. 12.14 Acceleration and deceleration depending on the output timing selection of near pass control

\section*{[2] Control precautions}

When command speed V1 and V2 are in the condition 1) or 2) below, the command output is that of "At constant speed" even though "At deceleration" was selected.
1) When "V1 \(\leq\) V2"
2) When "(Speed value converted from distance \(\triangle \ell)^{* 1} \leq \mathrm{V} 2<\mathrm{V} 1\) "
*1: The height of the grey area in the graph on the bottom right


Fig. 12.15 Examples of when the command output is that of "At constant speed" even though "At deceleration was selected"

\section*{[3] Setting method}

To use the function "output timing selection of near pass control", set the following control data in a sequence program.
The set detail is validated at the rising edge (OFF \(\rightarrow\) ON) of the PLC READY signal (YO).
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & \multicolumn{1}{c|}{ Setting details } & \begin{tabular}{c} 
Buffer memory \\
address
\end{tabular} \\
\hline Cd.43 & & \begin{tabular}{l} 
Select the timing to output the difference \((\triangle \ell)\) \\
between the actual and the set positioning end \\
Oddresses in continuous path control, in which the \\
Output timing \\
selection of near \\
pass control
\end{tabular} & \(\rightarrow\) & \begin{tabular}{l} 
difference \((\triangle \ell)\) is output during the execution of the \\
next positioning data. \\
0: At constant speed \\
\(1:\) At deceleration
\end{tabular}
\end{tabular}
* Refer to Section 5.7 "List of control data" for setting details.

\subsection*{12.4 Functions to limit the control}

Functions to limit the control include the "speed limit function", "torque limit function", "software stroke limit", and "hardware stroke limit". Each function is executed by parameter setting or sequence program creation and writing.

\subsection*{12.4.1 Speed limit function}

The "speed limit function" limits the command speed to a value within the "speed limit value" setting range when the command speed during control exceeds the "speed limit value".

The details shown below explain about the "speed limit function".
[1] Relation between the speed limit function and various controls
[2] Control precautions
[3] Setting method
[1] Relation between the speed limit function and various controls The following table shows the relation of the "speed limit function" and various controls.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Control type} & Speed limit function & Speed limit value \\
\hline \multirow[t]{2}{*}{OPR control} & \multicolumn{2}{|l|}{Machine OPR control} & ( & \multirow{9}{*}{Pr. 8 Speed limit value} \\
\hline & \multicolumn{2}{|l|}{Fast OPR control} & () & \\
\hline \multirow{9}{*}{Major positioning control} & \multirow{5}{*}{Position control} & 1-axis linear control & () & \\
\hline & & 2- to 4-axis linear interpolation control & © & \\
\hline & & 1-axis fixed-feed control & (0) & \\
\hline & & 2- to 4-axis fixed-feed control (interpolation) & (0) & \\
\hline & & 2-axis circular interpolation control & ( & \\
\hline & \multicolumn{2}{|l|}{1- to 4-axis Speed control} & ( & \\
\hline & \multicolumn{2}{|l|}{Speed-position switching control, Position-speed switching control} & ( & \\
\hline & \multirow[b]{2}{*}{Other control} & Current value changing & - & \\
\hline & & JUMP instruction, NOP instruction, LOOP to LEND & - & Setting value invalid \\
\hline \multirow[t]{2}{*}{Manual control} & \multicolumn{2}{|l|}{JOG operation, Inching operation} & ( & Pr. 31 JOG speed limit value \\
\hline & \multicolumn{2}{|l|}{Manual pulse generator operation} & - & Setting is invalid \\
\hline
\end{tabular}
(0) : Always set
- : Setting not required (Setting value is invalid. Use the initial values or setting values within a range where no error occurs.)

\section*{[2] Control precautions}

If any axis exceeds " Pr. 8 Speed limit value" during 2- to 4-axis speed control, the axis in excess of the speed limit value is controlled at the speed limit value. The speeds of the other axes interpolated are suppressed depending on their command speed ratios.
If the reference axis exceeds " Pr. 8 Speed limit value" during 2- to 4-axis linear interpolation control, 2- to 4-axis fixed-feed control or 2-axis circular interpolation control, the reference axis is controlled at the speed limit value (The speed limit does not function on the interpolation axis side.)

\section*{[3] Setting method}

To use the "speed limit function", set the "speed limit value" in the parameters shown in the following table, and write them to the QD75.
The set details are validated after they are written to the QD75.
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{c} 
Setting \\
value
\end{tabular} & \multicolumn{1}{c|}{ Setting details } & \begin{tabular}{c} 
Factory-set \\
initial value
\end{tabular} \\
\hline Pr.8 & Speed limit value & \(\rightarrow\) & Set the speed limit value (max. speed during control). & 200000 \\
\hline Pr.31 & \begin{tabular}{l} 
JOG speed limit \\
value
\end{tabular} & \(\rightarrow\) & \begin{tabular}{l} 
Set the speed limit value during JOG operation (max. \\
speed during control). (Note that " Pr.31 JOG speed \\
limit value" shall be less than or equal to \\
\(" ~\)
\end{tabular} \begin{tabular}{|l|ll|l|}
\hline Pr.8 Speed limit value".)
\end{tabular} & 20000 \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.

\section*{REMARK}
- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\subsection*{12.4.2 Torque limit function}

The "torque limit function" limits the generated torque to a value within the "torque limit value" setting range when the torque generated in the servomotor exceeds the "torque limit value".
The "torque limit function" protects the deceleration function, limits the power of the operation pressing against the stopper, etc. It controls the operation so that unnecessary force is not applied to the load and machine.
The QD75 does not carry out the torque limit of servo motor directly with this function. The torque limit command to servo amplifier is carried out by the D/A converter module.

The details shown below explain about the "torque limit function".
[1] System configuration for carrying out the torque limit
[2] Relation between the torque limit function and various controls
[3] Control details
[4] Control precautions
[5] Setting method
[1] System configuration for carrying out the torque limit Carry out the torque limit in the configuration in the figure below. (The following modules are required.)
- D/A converter module
- Drive unit capable of torque limit control by analog voltage input

1) Read out the " Md. 35 Torque limit stored value".
2) Write the value read in 1) into the D/A converter module.
(The value must be converted according to the specifications of D/A converter module.)
3) The drive unit carries out the torque limit according to the voltage input from the D/A converter module.

Fig. 12.16 Torque limit to the drive unit (axis 1)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ POINT } \\
\hline The QD75 monitors the creep speed reach during the OPR control and updates the \\
" Md. 35 Torque limit stored value" to the " Pr. 54 OPR torque limit value". \\
Monitoring this value prevents the need to monitor the creep speed reach by the \\
program. If all controls of torque limit value are carried out by the program (1) \\
Reading data by the FROM instruction, this function must not be used. \\
\hline
\end{tabular}
[2] Relation between the torque limit function and various controls The following table shows the relation of the "torque limit function" and various controls.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Control type} & Torque limit function & Torque limit value * \\
\hline \multirow[t]{2}{*}{OPR control} & \multicolumn{2}{|l|}{Machine OPR control} & \(\bigcirc\) & \begin{tabular}{l}
Pr. 17 Torque limit setting value \\
* After the " Pr. 47 Creep speed" is reached, this value becomes the " Pr. 54 OPR torque limit value".
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{Fast OPR control} & \(\bigcirc\) & \multirow{8}{*}{Pr. 17 Torque limit setting value} \\
\hline \multirow{9}{*}{Major positioning control} & \multirow{5}{*}{Position control} & 1-axis linear control & \(\bigcirc\) & \\
\hline & & 2- to 4-axis linear interpolation control & \(\bigcirc\) & \\
\hline & & 1-axis fixed-feed control & \(\bigcirc\) & \\
\hline & & 2- to 4-axis fixed-feed control (interpolation) & \(\bigcirc\) & \\
\hline & & 2-axis circular interpolation control & \(\bigcirc\) & \\
\hline & \multicolumn{2}{|l|}{1- to 4-axis Speed control} & \(\bigcirc\) & \\
\hline & \multicolumn{2}{|l|}{Speed-position switching control Position-speed switching control} & \(\bigcirc\) & \\
\hline & \multirow[b]{2}{*}{Other control} & Current value changing & - & \multirow[b]{2}{*}{Setting value is invalid.} \\
\hline & & JUMP instruction, NOP instruction, LOOP to LEND & - & \\
\hline \multirow[t]{2}{*}{Manual control} & \multicolumn{2}{|l|}{JOG operation, Inching operation} & \(\bigcirc\) & Pr. 17 Torque limit setting value \\
\hline & \multicolumn{2}{|l|}{Manual pulse generator operation} & \(\bigcirc\) & Pr. 17 Torque limit setting value \\
\hline
\end{tabular}

O:Set when required
- : Setting not required (Setting value is invalid. Use the initial values or setting values within a range where no error occurs.)
* : Shows the torque limit value when " Cd. 22 New torque value" is set to " 0 ".

\section*{[3] Control details}

The following drawing shows the operation of the torque limit function.


Fig. 12.17 Torque limit function operation

\section*{[4] Control precautions}
(1) When limiting the torque at the " Pr. 17 Torque limit setting value", confirm that " Cd.22 New torque value" is set to "0". If this parameter is set to a value besides " 0 ", the " Cd. 22 New torque value" will be validated, and the torque will be limited at that value. (Refer to Section 12.5.4 "Torque change function" for details about the "new torque value".)
(2) When " Pr. 54 OPR shift amount" exceeds " Pr. 17 Torque limit setting value", the error "OPR torque limit value error" (error code: 995) will occur.
(3) When the operation is stopped by torque limiting, the droop pulse will remain in the deviation counter. If a "deviation counter clear" is carried out by issuing an external signal at this time, positional deviation will occur when the operation is continued. If the load torque is eliminated, operation for the amount of droop pulses will be carried out.

\section*{[5] Setting method}
(1) To use the "torque limit function", set the "torque limit value" in the parameters shown in the following table, and write them to the QD75.
The set details are validated at the rising edge (OFF \(\rightarrow\) ON) of the PLC READY signal (YO).
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{c} 
Setting \\
value
\end{tabular} & \multicolumn{1}{c|}{ Setting details } & \begin{tabular}{c} 
Factory-set \\
initial value
\end{tabular} \\
\hline Pr.17 & \begin{tabular}{l} 
Torque limit \\
setting value
\end{tabular} & \(\rightarrow\) & Set the torque limit value as a percentage. & 300 \\
\hline Pr.54 & \begin{tabular}{l} 
OPR torque limit \\
value
\end{tabular} & \(\rightarrow\) & \begin{tabular}{l} 
Set the torque limit value after the " \begin{tabular}{l} 
Pr.47 \\
speed" is reached. Set as a percentage.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
Creep
\end{tabular} & 300 \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.

The following table shows the " Md. 35 Torque limit stored value" of the buffer memory address.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Monitor item}} & \multirow[t]{2}{*}{Monitor value} & \multirow[b]{2}{*}{Storage details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & \[
\begin{gathered}
\text { Axis } \\
2
\end{gathered}
\] & Axis 3 & Axis 4 \\
\hline Md. 35 & Torque limit stored value & \(\rightarrow\) & The "torque limit value" valid at that time is stored. (Pr.17, Pr.54, or Cd.22) & 826 & 926 & 1026 & 1126 \\
\hline
\end{tabular}
* Refer to Section 5.6 "List of monitor data" for information on the setting details.

\section*{REMARK}
- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\subsection*{12.4.3 Software stroke limit function}

In the "software stroke limit function" the address established by a machine OPR is used to set the upper/lower limits of the moveable range of the workpiece. Movement commands issued to addresses outside that setting range will not be executed. In the QD75, the "current feed value" and "machine feed value" are used as the addresses indicating the current position. However, in the "software stroke limit function", the address used to carry out the limit check is designated in the
" Pr. 14 Software stroke limit selection". (Refer to Section 9.1.4 "Confirming the current value" or details on the "current feed value" and "machine feed value".) The upper/lower limits of the moveable range of the workpiece are set in " Pr. 12 Software stroke limit upper limit value"/ " Pr. 13 Software stroke limit lower limit value".

The details shown below explain about the "software stroke limit function".
[1] Differences in the moveable range when "current feed value" and "machine feed value" are selected.
[2] Software stroke limit check details
[3] Relation between the software stroke limit function and various controls
[4] Precautions during software stroke limit check
[5] Setting method
[6] Invalidating the software stroke limit
[7] Setting when the control unit is "degree"
[1] Differences in the moveable range when "current feed value" and "machine feed value" are selected.

The following drawing shows the moveable range of the workpiece when the software stroke limit function is used.


Fig. 12.18 Workpiece moveable range

The following drawing shows the differences in the operation when
" Md. 20 Current feed value" and " Md. 21 Machine feed value" are used in the moveable range limit check.
[Conditions]
Assume the current stop position is 2000, and the upper stroke limit is set to 5000 .

[Current value changing]
When the current value is changed by a new current value command from 2000 to 1000, the current value will change to 1000 , but the machine feed value will stay the same at 2000.
1) When the machine feed value is set at the limit

The machine feed value of 5000 (current feed value: 4000) becomes the upper stroke limit.

2) When the current feed value is set at the limit

The current feed value of 5000 (machine feed value: 6000) becomes the upper stroke limit.


Fig. 12.19 Software stroke limits of the current feed value and machine feed value
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ POINT } & \\
\hline When "machine feed value" is set in " Pr. 14 & Software stroke limit selection", the \\
moveable range becomes an absolute range referenced on the OP. When "current \\
feed value" is set, the moveable range is the relative range from the "current feed \\
value".
\end{tabular}

\section*{[2] Software stroke limit check details}
\begin{tabular}{|c|c|}
\hline Check details & Processing when an error occurs \\
\hline \begin{tabular}{l}
An error shall occur if the current value \(* 1\) is outside the software \\
1) stroke limit range \(* 2\). \\
(Check " Md. 20 Current feed value" or " Md. 21 Machine feed value".)
\end{tabular} & An error "Software stroke limit +" or "Software stroke \\
\hline \begin{tabular}{l}
An error shall occur if the command address is outside the software \\
2) stroke limit range. \\
(Check " Da. 6 Positioning address/movement amount".)
\end{tabular} & code: 507 or 508) will occur. \\
\hline
\end{tabular}
*1: Check whether the " Md. 20 Current feed value" or " Md.21 Machine feed value" is set in " Pr. 14 Software stroke limit selection".
*2: Moveable range from the " Pr. 12 Software stroke limit upper limit value" to the " Pr. 13 Software stroke limit lower limit value".
[3] Relation between the software stroke limit function and various
controls


\section*{(0) : Check valid}

O : Check is not made when the current feed value is not updated (Refer to Pr.21) at the setting of " current feed value" in " Pr. 14 Software stroke limit selection" during speed control.
- : Check not carried out (check invalid).
\(\triangle\) : Valid only when "1:valid" is set in the " Pr. 15 Software stroke limit valid/invalid setting".
*3: The value in " Md. 20 Current feed value" will differ according to the " Pr. 21 Current feed value during speed control" setting.
*4: When the unit is "degree", check is not made during speed control.
*5: When the unit is "degree", check is not carried out.

\section*{[4] Precautions during software stroke limit check}
(1) A machine OPR must be executed beforehand for the "software stroke limit function" to function properly.
(2) During interpolation control, a stroke limit check is carried out for the every current value of both the reference axis and the interpolation axis. Every axis will not start if an error occurs, even if it only occurs in one axis.
(3) During circular interpolation control, the " Pr. 12 Software stroke limit upper limit value"/" Pr. 13 Software stroke limit lower limit value" may be exceeded.
In this case, a deceleration stop will not be carried out even if the stroke limit is exceeded. Always install an external limit switch if there is a possibility the stroke limit will be exceeded.

(4) If an error is detected during continuous path control, the axis stops immediately on completion of execution of the positioning data located right before the positioning data in error.

(5) During simultaneous start, a stroke limit check is carried out for the current values of every axis to be started. Every axis will not start if an error occurs, even if it only occurs in one axis.

\section*{[5] Setting method}

To use the "software stroke limit function", set the required values in the parameters shown in the following table, and write them to the QD75.
The set details are validated at the rising edge (OFF \(\rightarrow \mathrm{ON}\) ) of the PLC READY signal (YO).
\begin{tabular}{|c|c|c|c|c|}
\hline & Setting item & Setting value & Setting details & Factory-set initial value \\
\hline Pr. 12 & Software stroke limit upper limit value & \(\rightarrow\) & Set the upper limit value of the moveable range. & 2147483647 \\
\hline Pr. 13 & Software stroke limit lower limit value & \(\rightarrow\) & Set the lower limit value of the moveable range. & -2147483648 \\
\hline Pr. 14 & Software stroke limit selection & \(\rightarrow\) & Set whether to use the " Md. 20 Current feed value" or " Md. 21 Machine feed value" as the "current value". & 0: Current feed value \\
\hline Pr. 15 & Software stroke limit valid/invalid setting & 0:Valid & Set whether the software stroke limit is validated or invalidated during manual control (JOG operation, Inching operation, manual pulse generator operation). & 0 : valid \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.
[6] Invalidating the software stroke limit
To invalidate the software stroke limit, set the following parameters as shown, and write them to the QD75. (Set the value within the setting range.)


To invalidate only the manual operation, set " 0 : software stroke limit invalid" in the " Pr. 15 Software stroke limit valid/invalid setting".
The set details are validated at the rising edge (OFF \(\rightarrow\) ON) of the PLC READY signal (YO).
When the unit is "degree", the software stroke limit check is not performed during speed control (including speed control in speed-position switching control or position-speed switching control) or during manual control, independently of the values set in Pr.12, Pr. 13 and Pr.15.

\section*{REMARK}
- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\section*{[7] Setting when the control unit is "degree"}
- Current value address

The " Md. 20 Current feed value" address is a ring address between 0 and \(359.99999^{\circ}\).


Fig. 12.20 Current value address when the control unit is "degree"
Setting the software stroke limit
The upper limit value/lower limit value of the software stroke limit is a value between 0 and \(359.99999^{\circ}\).
(1) Setting when the software stroke limit is to be validated.

When the software stroke limit is to be validated, set the upper limit value in a clockwise direction from the lower limit value.

(a) Set the movement range of section \(A\) as follows.
- Software stroke limit lower limit value ................ \(315.00000^{\circ}\).
- Software stroke limit upper limit value................. \(90.00000^{\circ}\).
(b) Set the movement range of section \(B\) as follows.
- Software stroke limit lower limit value ................ \(90.00000^{\circ}\).
-Software stroke limit upper limit value................ \(315.00000^{\circ}\).
Fig. 12.21 Software stroke limit when the control unit is "degree"

\subsection*{12.4.4 Hardware stroke limit function}

\section*{WARNING}

When the hardware stroke limit is required to be wired, ensure to wire it in the negative logic using b-contact. If it is set in positive logic using a-contact, a serious accident may occur.

In the "hardware stroke limit function", limit switches are set at the upper/lower limit of the physical moveable range, and the control is stopped (by deceleration stop) by the input of a signal from the limit switch. Damage to the machine can be prevented by stopping the control before the upper/lower limit of the physical moveable range is reached.
Hardware stroke limit switches are normally "installed inside the stroke limit/stroke end on the drive unit side", and the control is stopped before the stroke limit/stoke end on the drive unit side is reached.

The details shown below explain about the "hardware stroke limit function".
[1] Control details
[2] Wiring the hardware stroke limit
[3] Control Precautions
[4] When the hardware stroke limit is not used

\section*{[1] Control details}

The following drawing shows the operation of the hardware stroke limit function.


Fig. 12.22 Hardware stroke limit function operation

\section*{[2] Wiring the hardware stroke limit}

When using the hardware stroke limit function, wire the terminals of the QD75 upper/lower limit stroke limit as shown in the following drawing.
(When " Pr. 22 Input signal logic selection" is set to the initial value)


Note) Connect the upper/lower limit switches to the directions of increasing and decreasing current feed values respectively. When these switches are connected in wrong directions, the hardware stroke limit function does not operate properly and the motor does not stop. For " Pr. 6 Rotation direction setting", refer to "5.2.1 Basic parameters 1".

Fig. 12.23 Wiring when using the hardware stroke limit

\section*{[3] Control Precautions}
(1) If the machine is stopped outside the QD75 control range (outside the upper/lower limit switches), or if stopped by hardware stroke limit detection, the "OPR control", "major positioning control", and "high-level positioning control" cannot start. To carry out these types of control again, return the workpiece to the QD75 control range by a "JOG operation", "inching operation" or "manual pulse generator operation".
(2) When " Pr. 22 Input signal logic selection" is set to the initial value, the QD75 cannot carry out the positioning control if FLS (upper limit signal) is separated from COM or RLS (lower limit signal) is separated from COM (including when wiring is not carried out).
[4] When the hardware stroke limit function is not used
When not using the hardware stroke limit function, wire the terminals of the QD75 upper/lower limit stroke limit as shown in the following drawing.
When the logic of FLS and RLS is set to "positive logic" using " Pr. 22 Input signal logic selection", positioning control can be carried out even if FLS and RLS are not wired.
(For details, refer to Section 13.4 "External I/O signal logic switching function".)


Fig. 12.24 Wiring when not using the hardware stroke limit function (When " Pr. 22 Input signal logic selection" is the initial value)

\subsection*{12.5 Functions to change the control details}

Functions to change the control details include the "speed change function", "override function", "acceleration/deceleration time change function" and "torque change function". Each function is executed by parameter setting or sequence program creation and writing.

Both the "speed change function" or "override function" change the speed, but the differences between the functions are shown below. Use the function that corresponds to the application.
"Speed change function"
- The speed is changed at any time, only in the control being executed.
- The new speed is directly set.
"Override function"
- The speed is changed for all control to be executed. (Note that this excludes manual pulse generator operation.)
- The new speed is set as a percent (\%) of the command speed.

\subsection*{12.5.1 Speed change function}

The "Speed change function" is used to change the speed during control to a newly designated speed at any time.
The new speed is directly set in the buffer memory, and the speed is changed by a speed change command (Cd.15 Speed change request) or external command signal. During the machine OPR, a speed change to the creep speed cannot be carried out after deceleration start because the near point dog ON is detected.

The details shown below explain about the "speed change function".
[1] Control details
[2] Control precautions
[3] Setting the speed change function from the CPU module
[4] Setting the speed change function using an external command signal

\section*{[1] Control details}

The following drawing shows the operation during a speed change.


Fig. 12.25 Speed change operation

\section*{[2] Control precautions}
(1) Control is carried out as follows at the speed change during continuous path control.
a) When no speed designation (current speed) is provided in the next positioning data:
\(\rightarrow\) The next positioning data is controlled at the " Cd. 14 New speed value".
b) When a speed designation is provided in the next positioning data: \(\rightarrow\) The next positioning data is controlled at its command speed (Da.8).


Fig. 12.26 Speed change during continuous path control
(2) When changing the speed during continuous path control, the speed change will be ignored if there is not enough distance remaining to carry out the change.
(3) When the stop command was given to make a stop after a speed change that had been made during position control, the restarting speed depends on the function version.
\begin{tabular}{|c|c|}
\hline Function version & Restarting speed \\
\hline A & Da.8 Command speed \\
\hline B or later & Cd.14 New speed value \\
\hline
\end{tabular}

Refer to Section 2.4 for the way to check the function version.


Fig. 12.27 Restarting speed after speed change made during position control (Function version B)
(4) When the speed is changed by setting " Cd. 14 New speed value" to "0", the operation is carried out as follows.
- When " Cd. 15 Speed change request" is turned ON, the speed change 0 flag (Md. 31 Status: b10) turns ON.
(During interpolation control, the speed change 0 flag on the reference axis side turns ON.)
- The axis stops, but " Md. 26 Axis operation status" does not change, and the BUSY signal remains ON. (If a stop signal is input, the BUSY signal will turn OFF, and " Md. 26 Axis operation status" will change to "Stopped".)
*In this case, setting the " Cd. 14 New speed value" to a value besides " 0 " will turn OFF the speed change 0 flag (Md.31 Status: b10), and enable continued operation.


Fig. 12.28 Speed change at new speed value "0"
(5) A warning "Deceleration/stop speed change" (warning code: 500) occurs and the speed cannot be changed in the following cases.
- During deceleration by a stop command
- During automatic deceleration during positioning control
(6) A warning "Speed limit value over" (warning code: 501) occurs and the speed is controlled at the " Pr. 8 Speed limit value" when the value set in " Cd. 14 New speed value" exceeds the " Pr. 8 Speed limit value".
(7) When the speed is changed during interpolation control, the required speed is set in the reference axis.
(8) When carrying out consecutive speed changes, be sure there is an interval between the speed changes of 100 ms or more.
(If the interval between speed changes is short, the QD75 will not be able to track, and it may become impossible to carry out commands correctly.)
(9) When a speed change is requested simultaneously for multiple axes, change the speed one by one. Therefore, the start timing of speed change is different for each axis.
(10) The speed cannot be changed to 0 during the machine OPR. The speed change request is ignored.
(11) When deceleration is started by the speed change function, the deceleration start flag does not turn ON.
[3] Setting the speed change function from the CPU module The following shows the data settings and sequence program example for changing the control speed of axis 1 from the CPU module. (In this example, the control speed is changed to " \(20.00 \mathrm{~mm} / \mathrm{min} "\).)
(1) Set the following data.
(Use the start time chart shown in section (2) below as a reference, and set using the sequence program shown in section (3).)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis
\[
1
\] & \[
\begin{array}{|c|c}
\text { Axis } \\
2
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
3
\end{array}
\] & Axis
\[
4
\] \\
\hline Cd. 14 & New speed value & 2000 & Set the new speed. & \[
\begin{array}{|l|}
\hline 1514 \\
1515
\end{array}
\] & \[
\begin{aligned}
& 1614 \\
& 1615
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 1714 \\
1715
\end{array}
\] & \[
\begin{aligned}
& 1814 \\
& 1815
\end{aligned}
\] \\
\hline Cd. 15 & Speed change request & 1 & Set "1: Change the speed". & 1516 & 1616 & 1716 & 1816 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
(2) The following shows the speed change time chart.


Fig. 12.29 Time chart for changing the speed from the CPU module
(3) Add the following sequence program to the control program, and write it to the CPU module.


\section*{[4] Setting the speed change function using an external command signal}

The speed can also be changed using an "external command signal".
The following shows the data settings and sequence program example for changing the control speed of axis 1 using an "external command signal". (In this example, the control speed is changed to " \(10000.00 \mathrm{~mm} / \mathrm{min} "\).)
(1) Set the following data to change the speed using an external command signal.
(Use the start time chart shown in section (2) below as a reference, and set using the sequence program shown in section (3).)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \begin{tabular}{l}
Axis \\
1
\end{tabular} & Axis 2 & Axis 3 & \[
\begin{array}{|c}
\hline \text { Axis } \\
4
\end{array}
\] \\
\hline Pr. 42 & External command function selection & 1 & Set "1: External speed change request". & 62 & 212 & 362 & 512 \\
\hline Cd. 8 & External command valid & 1 & Set "1: Validate the external command". & 1505 & 1605 & 1705 & 1805 \\
\hline Cd. 14 & New speed value & 1000000 & Set the new speed. & \[
\begin{aligned}
& 1514 \\
& 1515 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 1614 \\
1615 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 1714 \\
1715 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 1814 \\
1815 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
(2) The following shows the speed change time chart.


Fig. 12.30 Time chart for changing the speed using an external command signal
(3) Add the following sequence program to the control program, and write it to the CPU module.


\subsection*{12.5.2 Override function}

The "override function" changes the command speed by a designated percentage ( 1 to \(300 \%\) ) for all control to be executed.
The speed can be changed by setting the percentage (\%) by which the speed is changed in " Cd. 13 Positioning operation speed override".
[1] Control details
[2] Control precautions
[3] Setting method

\section*{[1] Control details}

The following shows that operation of the override function.
1) A value changed by the override function is monitored by " Md. 22 Feedrate". (When Md. 22 " becomes " 0 ", the warning "Less than minimum speed" (warning code: 110) is generated and the axis is controlled in the then speed unit of "1".)
2) If " Cd. 13 Positioning operation speed override" is set to \(100 \%\), the speed will not change.
3) If " Cd. 13 Positioning operation speed override" is set a value \(100 \%\) or less, the warning "Less than minimum speed" (warning code: 110) is generated, and control will be carried out at speed unit "1" at the time "Feedrate" becomes a value of "1" or less.
4) If there is not enough remaining distance to change the speed by the "override function" during the "position control" or position control by the "speed-position switching control" or "position-speed switching control", the operation will be carried out at the possible speed for the distance.
5) If the speed changed by the "override function" is greater than the " Pr. 8 Speed limit value", a warning "Speed limit value over" (warning code: 501) will occur and the speed will be controlled at the "Pr. 8 Speed limit value". The " Md. 39 In speed limit flag" will turn ON.


Fig. 12.31 Override function operation

\section*{[2] Control precautions}
(1) When changing the speed by the "override function" during continuous path control, the speed change will be ignored if there is not enough distance remaining to carry out the change.
(2) A warning "Deceleration/stop speed change" (warning code: 500) occurs and the speed cannot be changed by the "override function" in the following cases.
(The value set in " Cd. 13 Positioning operation speed override" is validated after a deceleration stop.)
- During deceleration by a stop command
- During automatic deceleration during positioning control
(3) When the speed is changed by the "override function" during interpolation control, the required speed is set in the reference axis.
(4) When carrying out consecutive speed changes by the "override function", be sure there is an interval between the speed changes of 100 ms or more. (If the interval between speed changes is short, the QD75 will not be able to track, and it may become impossible to carry out commands correctly.)
(5) When a machine OPR is performed, the speed change by the "override function" cannot be carried out after a deceleration start to the creep speed following the detection of near-point dog ON. In this case, a request for speed change is ignored.
(6) When deceleration is started by the override function, the deceleration start flag does not turn ON.

\section*{[3] Setting method}

The following shows the data settings and sequence program example for setting the override value of axis 1 to " \(200 \%\) ".
(1) Set the following data. (Use the start time chart shown in section (2) below as a reference, and set using the sequence program shown in section (3).)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \[
\begin{array}{|c}
\text { Axis } \\
1
\end{array}
\] & \[
\begin{array}{|c}
\text { Axis } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { Axis } \\
3
\end{gathered}
\] & Axis 4 \\
\hline Cd. 13 & Positioning operation speed override & 200 & Set the new speed as a percentage (\%). & 1513 & 1613 & 1713 & 1813 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
(2) The following shows a time chart for changing the speed using the override function.


Fig. 12.32 Time chart for changing the speed using the override function
(3) Add the following sequence program to the control program, and write it to the CPU module.


\subsection*{12.5.3 Acceleration/deceleration time change function}

The "acceleration/deceleration time change function" is used to change the acceleration/deceleration time during a speed change to a random value when carrying out the speed change by the "speed change function" and "override function". In a normal speed change (when the acceleration/deceleration time is not changed), the acceleration/deceleration time previously set in the parameters (Pr.9, Pr.10, and Pr. 25 to Pr. 30 values) is set in the positioning parameter data items Da. 3 and Da. 4 , and control is carried out with that acceleration/deceleration time. However, by setting the new acceleration/deceleration time (Cd.10, Cd.11) in the control data, and issuing an acceleration/deceleration time change enable command (Cd. 12 Acceleration/deceleration time change during speed change, enable/disable selection) to change the speed when the acceleration/deceleration time change is enabled, the speed will be changed with the new acceleration/deceleration time (Cd.10, Cd.11).

The details shown below explain about the "acceleration/deceleration time change function".
[1] Control details
[2] Control precautions
[3] Setting method

\section*{[1] Control details}

After setting the following two items, carry out the speed change to change the acceleration/deceleration time during the speed change.
- Set change value of the acceleration/deceleration time (" Cd. 10 New acceleration time value", " Cd. 11 New deceleration time value")
- Setting acceleration/deceleration time change to enable
(" Cd. 12 Acceleration/deceleration time change during speed change, enable/disable selection")
The following drawing shows the operation during an acceleration/deceleration time change.
[For an acceleration/deceleration time change disable setting]

[For an acceleration/deceleration time change enable setting]


Fig. 12.33 Operation during an acceleration/deceleration time change

\section*{[2] Control precautions}
(1) When " 0 " is set in " Cd. 10 New acceleration time value" and " Cd. 11 New deceleration time value", the acceleration/deceleration time will not be changed even if the speed is changed. In this case, the operation will be controlled at the acceleration/deceleration time previously set in the parameters.
(2) The "new acceleration/deceleration time" is valid during execution of the positioning data for which the speed was changed. In continuous positioning control and continuous path control, the speed is changed and control is carried out with the previously set acceleration/deceleration time at the changeover to the next positioning data, even if the acceleration/deceleration time is changed to the "new acceleration/deceleration time (Cd.10, Cd.11)".
(3) Even if the acceleration/deceleration time change is set to disable after the "new acceleration/deceleration time" is validated, the positioning data for which the "new acceleration/deceleration time" was validated will continue to be controlled with that value. (The next positioning data will be controlled with the previously set acceleration/deceleration time.)

(4) If the "new acceleration/deceleration time" is set to " 0 " and the speed is changed after the "new acceleration/deceleration time" is validated, the operation will be controlled with the previous "new acceleration/deceleration time".


\section*{POINT}

If the speed is changed when an acceleration/deceleration change is enabled, the "new acceleration/deceleration time" will become the acceleration/deceleration time of the positioning data being executed. The "new acceleration/deceleration time" remains valid until the changeover to the next positioning data. (The automatic deceleration processing at the completion of the positioning will also be controlled by the "new acceleration/deceleration time".)

\section*{[3] Setting method}

To use the "acceleration/deceleration time change function", write the data shown in the following table to the QD75 using the sequence program.
The set details are validated when a speed change is executed after the details are written to the QD75.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis
\[
1
\] & Axis
\[
2
\] & Axis
\[
3
\] & \[
\begin{gathered}
\text { Axis } \\
4
\end{gathered}
\] \\
\hline Cd. 10 & New acceleration time value & \(\rightarrow\) & Set the new acceleration time. & \[
\begin{aligned}
& \hline 1508 \\
& 1509
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 1608 \\
1609 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 1708 \\
1709
\end{array}
\] & \[
\begin{array}{|l|}
\hline 1808 \\
1809
\end{array}
\] \\
\hline Cd. 11 & New deceleration time value & \(\rightarrow\) & Set the new deceleration time. & \[
\begin{aligned}
& 1510 \\
& 1511
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 1610 \\
1611 \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
1710 \\
1711 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 1810 \\
1811 \\
\hline
\end{array}
\] \\
\hline Cd. 12 & Acceleration/ deceleration time change during speed change, enable/disable selection & 1 & Set "1: Acceleration/deceleration time change enable". & 1512 & 1612 & 1712 & 1812 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.


\subsection*{12.5.4 Torque change function}

The "torque change function" is used to change the torque limit value during torque limiting.
The torque limit value during torque limiting is normally the value set in the " Pr. 17 Torque limit setting value" that was previously set in the parameters. However, by setting the new torque limit value in the axis control data " Cd. 22 New torque value", and writing it to the QD75, the torque generated by the servomotor during control can be limited with the new torque value.
(The " Cd. 22 New torque value" is validated when written to the QD75.)
The details shown below explain about the "torque change function".
[1] Control details
[2] Control precautions
[3] Setting method

\section*{[1] Control details}

The torque value of the axis control data can be changed at all times. The torque can be limited with a new torque value from the time the new torque value has been written to the QD75. (a torque change is made only during operation.) The toque limiting is not carried out from the time the power supply is turned ON to the time the PLC READY signal (YO) is turned ON.
The torque setting range is from 0 to " Pr. 17 Torque limit setting value".
When the new torque value is 0 , a torque change is considered not to be carried out.
The torque change range is 1 to " Pr. 17 Torque limit setting value".
The following drawing shows the torque change operation.


Fig. 12.34 Torque change operation

\section*{[2] Control precautions}
(1) If a value besides " 0 " is set in the " Cd. 22 New torque value", the torque generated by the servomotor will be limited by that value. To limit the torque with the value set in " Pr. 17 Torque limit setting value", set the " Cd. 22 New torque value" to "0".
(2) The " Cd. 22 New torque value" is validated when written to the QD75. (Note that it is not validated from the time the power supply is turned ON to the time the PLC READY signal (YO) is turned ON.)
(3) If the setting value is outside the setting range, an axis warning "Outside new torque value range" (warning code: 113) will occur and the torque will not be changed.
(4) If the time to hold the new torque value is not more than 100 ms , a torque change may not be executed.
[3] Setting method
To use the "torque change function", write the data shown in the following table to the QD75 using the sequence program.
The set details are validated when written to the QD75.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \begin{tabular}{l}
Axis \\
1
\end{tabular} & Axis & \[
\begin{array}{|c}
\text { Axis } \\
3
\end{array}
\] & Axis
\[
\begin{gathered}
\text { xis } \\
\hline
\end{gathered}
\] \\
\hline Cd. 22 & New torque value & \(\rightarrow\) & Set the new torque limit value. & 1525 & 1625 & 1725 & 1825 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

\subsection*{12.5.5 Target position change function}

The "target position change function" is a function to change a target position to a newly designated target position at any timing during the position control (1-axis linear control). A command speed can also be changed simultaneously.
The target position and command speed changed are set directly in the buffer memory, and the target position change is executed by turning ON " Cd. 29 Target position change request flag".

The following shows the details of the "target position change function".
[1] Control details
[2] Control precautions
[3] Setting method

\section*{[1] Control details}

The following charts show the details of control of the target position change function.
(a) When the address after change is positioned away from the start point more than the positioning address:

(b) When the speed is changed simultaneously with changing the address:

(c) When the direction of the operation is changed:


Fig. 12.35 Target position change operation

\section*{[2] Control precautions}
(1) If the positioning movement direction from the stop position to a new target position is reversed, stop the operation once and then position to the new target position. (Refer to Fig. 12.35 (c).)
(2) If a command speed exceeding the speed limit value is set to change the command speed, the warning "Speed limit value over" (warning code: 501) will occur, and the new command speed will be the speed limit value. Also, if the command speed change disables the remaining distance to the target value from being assured, the warning "Insufficient remaining distance" (warning code: 509) will occur.
(3) In the following cases, the target position change request is ignored, and the warning "Target position change not possible" (warning code: 518) will occur.
- During interpolation control
- A new target position value (address) is outside the software stroke limit range.
- The axis is decelerating to a stop by a stop cause.
- While the positioning data whose operation pattern is continuous path control is executed.
- When the speed change 0 flag (Md.31 Status: b10) is ON.
(4) When a command speed is changed, the current speed is also changed. When the next positioning speed uses the current speed in the continuous positioning, the next positioning operation is carried out at the new speed value. When the speed is set with the next positioning data, that speed becomes the current speed and the operation is carried out at the current speed.
(5) When a target position change request is given during automatic deceleration in position control, positioning control to a new position is exercised after the axis has stopped once if the moving direction is reversed. If the moving direction is not reversed, the axis is accelerated to the command speed again and positioned to the new position.
(6) If the constant speed status is regained or the output is reversed by a target position change made while " Md. 48 Deceleration start flag" is ON, the deceleration start flag remains ON. (For details, refer to Section 12.7.8.)
(7) Carrying out the target position change to the ABS linear 1 in degrees may carry out the positioning to the new target position after the operation decelerates to stop once, even the movement direction is not is reversed.

\section*{POINT}

When carrying out the target position change continuously, take an interval of 100 ms or longer between the times of the target position changes.
Also, take an interval of 100 ms or longer when the speed change and override is carried out after changing the target position or the target position change is carried out after the speed change and override.

\section*{[3] Setting method}

The following table and chart show the example of a data setting and program used to change the target position of the axis 1 by the command from CPU module, respectively."
(In this example, the target position and command speed is changed to " \(300.0 \mu \mathrm{~m}\) " and "10000.00 mm/min".)
(1) The following data is set.
(Referring to the starting time chart shown in item (2) below, carry out the setting with the program shown in item (3).)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Setting item} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis 2 & Axis 3 & \[
\begin{array}{|c}
\hline \text { Axis } \\
4
\end{array}
\] \\
\hline Cd. 27 & Target position change value (new address) & 3000 & Set the new address. & \[
\begin{aligned}
& 1534 \\
& 1535
\end{aligned}
\] & \[
\begin{aligned}
& 1634 \\
& 1635
\end{aligned}
\] & \[
\begin{aligned}
& 1734 \\
& 1735
\end{aligned}
\] & \[
\begin{array}{|l|l}
1834 \\
1835
\end{array}
\] \\
\hline Cd. 28 & Target position change value (new speed) & 1000000 & Set the new speed. & \[
\left.\begin{aligned}
& 1536 \\
& 1537
\end{aligned} \right\rvert\,
\] & \[
\begin{aligned}
& 1636 \\
& 1637
\end{aligned}
\] & & \[
\begin{array}{|l|l}
1836 \\
1837
\end{array}
\] \\
\hline Cd. 29 & Target position change request flag & 1 & Set "1: Carry out speed change". & 1538 & 1638 & 1738 & 1838 \\
\hline
\end{tabular}

Refer to Section 5.7 "List of control data" for details on the setting details.
(2) The following shows the time chart for target position change.


Fig. 12.36 Time chart for target position change from CPU module
(3) The following program is added to the control program, and written to the CPU module.


\subsection*{12.6 Absolute position restoration function}

\section*{CAUTION}

An absolute position restoration by the positioning function may turn off the servo-on signal (servo off) for approximately \(60 \mathrm{~ms}+\) scan time, and the motor may run unexpectedly. If this causes a problem, provide an electromagnetic brake to lock the motor during absolute position restoration.

The "absolute position restoration function" is a function to restore the absolute position of the designated axis by the absolute position detection system. By this function, the OPR after power OFF such as instantaneous power interruption and emergency stop is not required, and the restoration operation at site can be carried out easily.
The details of the "absolute position restoration function" are described below.
[1] Configuration and preparation of absolute position detection system
[2] Outline of absolute position detection data communication
[3] Absolute position signal transmission procedure
[4] Control precautions
[1] Configuration and preparation of absolute position detection system
(1) Configuration

The following drawing shows the configuration of the absolute position detection system.


Fig. 12.37 Configuration of absolute position detection system
(2) Preparation

Prepare the absolute position detection system taking care of the following.
\begin{tabular}{|c|c|}
\hline Component & Details \\
\hline 1) Servo amplifier & \begin{tabular}{l}
- Use a Mitsubishi General-Purpose AC Servo which has an absolute position detection function (absolute position data transference protocol) equivalent to that of MR-J3- \(\square\) A). \\
- Install the battery to the servo amplifier. \\
- Validate the absolute position detection function of the servo amplifier. \\
Refer to the servo amplifier manual for details.
\end{tabular} \\
\hline 2) Servomotor & - Use a servomotor with absolute position detector. Refer to the servomotor manual for details. \\
\hline 3) Detector cable & \begin{tabular}{l}
- Add a battery power connection cable (BAT/LG signal) for wiring the incremental detector cable. \\
Refer to the cable operation manual for details.
\end{tabular} \\
\hline 4) Programmable controller system & \begin{tabular}{l}
- Carry out the transmission and receiving of the absolute position detection data by the I/O modules (input 3 points/output 3 points). \\
- As input/output modules, use the "16 point input module" and "16 point output module". \\
- Place the 3 points of input signals so that the \(\square \square\) is the same among the input number \(\square \square 0\) to \(\square \square \mathrm{F}\). The same for the 3 points of output signals.
\end{tabular} \\
\hline
\end{tabular}
[2] Outline of absolute position detection data communication As shown in Fig. 12.38 System block diagram, the detector comprises an encoder for detecting its position in one rotation in addition to the \(A, B, Z\) phase signal for position control in normal operation and a cumulative rotation counter for detecting the number of rotations.
The absolute position detection system detects the absolute position of the machine constantly and stores it with the backup of the battery irrespective of whether the programmable controller system power is turned ON/OFF. Thus, once the OP initial setting is carried out at the time of installation of the machine, the OPR is not required even when the power is later turned ON. The restoration can be carried out easily when an instantaneous power interruption or emergency stop occurs.
In addition, because the absolute position data is backed up by a super condenser built in the detector, the absolute position data will be stored for a specified time even if the cable is disconnected or broken.


Fig. 12.38 System block diagram

\section*{[3] Absolute position signal transmission procedure}
(1) Figure 12.39 shows the outline of the absolute position signal transmission procedure between the servo amplifier and the programmable controller system (CPU module, QD75, I/O module).
Refer to the operation manual of the servo amplifier for details on the communication between the servo amplifier and the programmable controller system.
(2) Errors during communication
(a) If the system expires during communication, an error "ABS transmission time" (error code: 213) will occur.
(b) If the transmission data causes a sum error, an error "ABS transmission SUM" (error code: 214) will occur.
*Refer to Section 15.3 "List of errors" for the remedial method to be taken when an error occurs.


Fig. 12.39 Absolute position signal transmission procedure
* Refer to CHAPTER 14 "DEDICATED INSTRUCTIONS" for details of the dedicated instructions.

\section*{(3) Connection example}

The following diagram shows the example of connection between the programmable controller system and the Mitsubishi Electric servo amplifier (MR-J3-A).

*: The \(X\) and \(Y\) devices can be set arbitrarily with the program.
Details of servo amplifier connector pins
The following table shows the pins for setting the "absolute position detection system".
\begin{tabular}{|c|c|c|l|}
\hline Signal name & Abbreviation & Pin No. & \multicolumn{1}{c|}{ Function and application } \\
\hline ABS transfer mode & ABSM & \(17 *\) & \begin{tabular}{l} 
While the ABSM is turned ON, the servo amplifier is in the ABS transfer \\
mode, and the CN1-22•23 25 functions are as shown in this table.
\end{tabular} \\
\hline ABS request & ABSR & \(18 *\) & \begin{tabular}{l} 
The ABSR is turned ON when ABS data is requested in the ABS \\
transfer mode.
\end{tabular} \\
\hline \begin{tabular}{c} 
ABS transmission \\
data bit 0
\end{tabular} & ABSB0 & 22 & \begin{tabular}{l} 
This indicates the lower order bit among 2 bits of ABS data to be \\
transferred from the servo amplifier to the programmable controller \\
system in the ABS transfer mode. The ABSB0 turns ON when this \\
signal occurs.
\end{tabular} \\
\hline \begin{tabular}{c} 
ABS transmission \\
data bit 1
\end{tabular} & ABSB1 & 23 & \begin{tabular}{l} 
This indicates the upper order bit among 2 bits of ABS data to be \\
transferred from the servo amplifier to the programmable controller \\
system in the ABS transfer mode. The ABSB1 turns ON when this \\
signal occurs.
\end{tabular} \\
\hline \begin{tabular}{c} 
ABS Transmission \\
data ready
\end{tabular} & ABST & 25 & \begin{tabular}{l} 
This indicates the ABS transmission data preparation completed in the \\
ABS transfer mode. When the preparation is completed, the ABST is \\
turned ON.
\end{tabular} \\
\hline
\end{tabular}
* When "use in the absolute position detection system" is selected in the parameter No. PA03, the pin 17 is the ABS transfer mode (ABSM), and the pin 18 is the ABS request (ABSR). The signals do not return to the original signal even after the data transfer is completed.

For details on signals of the pin 17 and 18 when the ABS transfer mode is off and I/O interface, refer to the manual of the servo amplifier (MR-J3-A).

The following drawing shows an operation when data is transferred to the servo amplifier.

* 1: Approx. 60ms + scan time

Fig. 12.40 Signal state during the absolute position detection
1) The BUSY signal is turned \(O N\) and the axis operation status is set to "Analyzing" by the dedicated instruction "ABRST \(\square\) ".
At this time, the signal is controlled to turn OFF the servo amplifier.
The servo is powered OFF in \(60 \mathrm{~ms}+\) scan time.
2) When the servo is turned ON, the ABS transfer mode is simultaneously turned ON.
After receiving the ABS transfer mode, detecting the absolute position and calculating the absolute position, the servo amplifier will turn ON the ABS transmission data ready (ABST) and answer back to QD75 notifying that the send data is ready.
3) After recognizing that the ABS transmission data ready (ABST) turned ON, QD75 turns ON the ABS request (ABSR).
4) The servo amplifier outputs the ABS lower 2 bits and ABS transmission data ready (ABST) OFF by the ABS request (ABSR).
5) After recognizing that the ABS transmission data ready (ABST) turned OFF (the ABS2bit data is output), QD75 reads the lower 2bits of ABS and turns OFF the ABS request (ABSR).
6) The servo amplifier turns ON the ABS transmission data ready (ABST) and prepares for the next transmission. After that, procedures 3 ) to 6 ) are repeated until the data corresponding to 32bits and the checksum corresponding to 6bits are sent.
7) After the sum check, the QD75 turns OFF the ABS transfer mode (ABSM). If the ABS transfer mode (ABSM) is turned OFF during the data transmission, the ABS transfer mode will be interrupted.

\section*{[4] Control precautions}
(1) When an absolute position detection system is constructed, absolute position restoration must be made at least once after power supply on or resetting. Also, the servo amplifier does not switch on unless the absolute position restoration is completed.
(2) For use of positioning in an absolute position detection system, the following controls cannot be carried out:
-Limitless-feed control which exercises control only in the fixed direction, e.g. turntable
- Control where the movement amount from the OP address exceeds the range of the following conditions 1 and 2
When performing positioning in an absolute position detection system, use it in the range which satisfies Conditions 1 and 2 given below.
In the range which does not satisfy Conditions 1 and 2, positioning cannot be used in the absolute position detection system since the normal current value cannot be provided during absolute position restoration.

\section*{Condition 1. Number of output pulses}
a) Indicates the number of pulses that may be output to a servo amplifier when an axis is to be positioned from the OP in an absolute position detection system. In the absolute position detection system, pulses within the range of the following expression can be output to the servo amplifier.
\([-32768 \times(\) number of feedback pulses \()] \leq[\) number of output pulses \(] \leq[32768 \times\) (number of feedback pulses) -1\(]\)
b) Pulses are positive in the address increasing direction from the OP, and negative in the address decreasing direction from the OP.

Unit: \(\mu \mathrm{m}\)

\(\stackrel{\text { Negative pulse outputs }}{\longleftrightarrow} \xrightarrow{\text { Positive pulse outputs }}\)
c) The number of output pulses varies with the number of feedback pulses as indicated below:
- When the number of feedback pulses is 8192 (pulse): -268435456 (pulse) to 268435455 (pulse)
- When the number of feedback pulses is 16384 (pulse): -536870912 (pulse) to 536870911 (pulse)
When the electronic gear of the servo amplifier is used, the electronic gear ratio must be considered. The actual range of the number of output pulses is the value of the range of output pulses above multiplied by the inverse number of the electronic gear ratio.

\section*{Condition 2. Positioning address}
a) The following positioning addresses can be specified on the QD75:
- When the unit is \(\mathrm{mm}:-214748364.8(\mu \mathrm{~m})\) to \(214748364.7(\mu \mathrm{~m})\)
- When the unit is inch: -21474.83648 (inch) to 21474.83647 (inch)
- When the unit is pulse: -2147483648 (pulse) to 2147483647 (pulse)
- When the unit is degree: \(0^{\circ}\) to \(359.99999^{\circ}\)

\section*{[Calculation of positioning address and concept of absolute position detection system] \\ Use the following expression to calculate the positioning address. \\ \[
\begin{aligned}
&(\text { Positioning address })=(\text { movement amount per pulse }) \times(\text { number of output pulses }) \\
&+(\text { OP address }) \ldots \ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ E x p r e s s i o n ~ \\
& 1
\end{aligned}
\]}

\section*{1. Concept for the unit of mm , inch or pulse}

The range which satisfies Conditions 1 and 2 can be used as the positioning address of the absolute position detection system.
The range which does not satisfy Conditions 1 and 2 cannot be used as the positioning address of the absolute position detection system.

The concepts of the positioning addresses in mm, inch and pulse are identical, the following examples provide those of the mm unit.

\section*{Example 1.}
(1) There are the following conditions to calculate the positioning address:
- Movement amount per pulse: 0.1 ( \(\mu \mathrm{m}\) )
- OP address: 0.0 ( \(\mu \mathrm{m}\) )
- Feedback pulses = 8192 (pulse)
(2) Calculate the upper/lower limit values of the positioning address which can be specified from the output pulse count using range in Condition 1 and the positioning address calculation expression (Expression 1).
- Lower limit value of positioning address (the number of negative pulses in Condition 1 is used for calculation)
\[
\begin{aligned}
&(\text { Positioning address })=(\text { Movement amount per pulse }) \\
& \times(\text { number of output pulses })+(\text { OP address }) \\
&= 0.1 \times(-268435456)+0.0 \\
&=-26843545.6(\mu \mathrm{~m})
\end{aligned}
\]
- Upper limit value of positioning address (the number of positive pulses in Condition 1 is used for calculation)
\[
\begin{aligned}
(\text { Positioning address })= & (\text { Movement amount per pulse }) \\
& \times(\text { number of output pulses })+(\text { OP address }) \\
= & 0.1 \times(268435456)+0.0 \\
= & 26843545.5(\mu \mathrm{~m})
\end{aligned}
\]
(3) The upper/lower limit values of the positioning address calculated are within the range of Condition 2.
Hence, the positioning range [-26843545.6 ( \(\mu \mathrm{m}\) ) to \(26843545.5(\mu \mathrm{~m})\) ] calculated in Condition 1 can be used in the absolute position detection system. Positioning outside of the range -26843545.6 ( \(\mu \mathrm{m}\) ) to 26843545.5 ( \(\mu \mathrm{m}\) ) cannot be used in the absolute position detection system.

Unit: \(\mu \mathrm{m}\)


\section*{Example 2.}
(1) Using Expression 1, calculate the positioning address which can be specified in the system where the OP address in Example 1 is \(214740000.0(\mu \mathrm{~m})\).
- Lower limit value of positioning address
\((\) Positioning address \()=0.1 \times(-268435456)+214740000.0\)
\[
=187896454.4(\mu \mathrm{~m})
\]
- Upper limit value of positioning address
(Positioning address) \(=0.1 \times 268435455+214740000.0\)
\[
=241583545.5(\mu \mathrm{~m})
\]
(2) Since the lower limit value of the positioning address calculated is within the range of Condition 2, the calculated address \(187896454.4(\mu \mathrm{~m})\) is the lower limit for positioning in the absolute position detection system.
Since the upper limit of the positioning address calculated is outside of the range of Condition 2, the upper limit value \(214748364.7(\mu \mathrm{~m})\) is the upper limit for positioning in the absolute position detection system.
In the absolute position detection system, use the positioning address within the range \(187896454.4(\mu \mathrm{~m})\) to \(214748364.7(\mu \mathrm{~m})\).
Positioning in excess of \(187896454.4(\mu \mathrm{~m})\) cannot be used in the absolute position detection system.

Unit: \(\mu \mathrm{m}\)


Example 3.
(1) There are the following conditions to calculate the positioning address:
- Movement amount per pulse: 0.9 ( \(\mu \mathrm{m}\) )
- OP address: 0.0 ( \(\mu \mathrm{m}\) )
- Feedback pulses = 8192 (pulse)
(2) Calculate the positioning address from the output pulse count using range in

Condition 1 and the positioning address calculation expression (Expression 1).
- Lower limit value of positioning address (the number of negative pulses in Condition 1 is used for calculation)
(Positioning address) \(=\) (Movement amount per pulse)
\(\times\) (number of output pulses) + (OP address)
\[
=0.9 \times(-268435456)+0.0
\]
\[
=-241591910.4(\mu \mathrm{~m})
\]
- Upper limit value of positioning address (the number of positive pulses in Condition 1 is used for calculation)
(Positioning address) \(=\) (Movement amount per pulse)
\[
\begin{aligned}
& \times(\text { number of output pulses })+(\text { OP address }) \\
= & 0.9 \times 268435455+0.0 \\
= & 241591909.5(\mu \mathrm{~m})
\end{aligned}
\]
(3) Since the upper/lower limit values of the positioning address calculated are outside of the range of Condition 2, use the positioning address within the positioning range of Condition \(2(-214748364.8(\mu \mathrm{~m})\) to \(214748364.7(\mu \mathrm{~m})\) ).


\section*{2. Concept for the unit of degree}
- The positioning address is within the range \(0^{\circ}\) to \(359.99999^{\circ}\) at the position to which a machine OPR was made.

When the OP position is not \(0^{\circ}\), the range is also \(0^{\circ}\) to \(359.99999^{\circ}\).
- For positioning in the same direction, control from maximum to minimum (for address increase: \(359.99999^{\circ}\) to \(0^{\circ} /\) for address decrease: \(0^{\circ}\) to \(359.99999^{\circ}\) ) cannot be exercised. (See below)

- When positioning is to be used in the absolute position detection system, set the upper/lower limit values of the software stroke limit within the range \(0^{\circ}\) to \(359.99999^{\circ}\).

\subsection*{12.7 Other functions}

Other functions include the "step function", "skip function", "M code output function", "teaching function", "command in-position function", "acceleration/deceleration processing function", "pre-reading start function", "deceleration start flag function" and "stop command processing for deceleration stop function". Each function is executed by parameter setting or sequence program creation and writing.

\subsection*{12.7.1 Step function}

The "step function" is used to confirm each operation of the positioning control one by one.
It is used in debugging work for major positioning control, etc.
A positioning operation in which a "step function" is used is called a "step operation". In step operations, the timing for stopping the control can be set. (This is called the "step mode".) Control stopped by a step operation can be continued by setting "step continue" (to continue the control)" in the "step start information".

The details shown below explain about the "step function".
[1] Relation between the step function and various controls
[2] Step mode
[3] Step start information
[4] Using the step operation
[5] Control details
[6] Control precautions
[7] Setting method
[1] Relation between the step function and various controls The following table shows the relation between the "step function" and various controls.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Control type} & Step function & Step applicability \\
\hline \multirow{2}{*}{OPR control} & \multicolumn{2}{|l|}{Machine OPR control} & \(\times\) & \multirow[b]{2}{*}{Step operation not possible} \\
\hline & \multicolumn{2}{|l|}{Fast OPR control} & \(\times\) & \\
\hline \multirow{9}{*}{Major positioning control} & \multirow{5}{*}{Position control} & 1-axis linear control & \(\bigcirc\) & \multirow{5}{*}{Step operation possible} \\
\hline & & 2- to 4-axis linear interpolation control & \(\bigcirc\) & \\
\hline & & 1-axis fixed-feed control & \(\bigcirc\) & \\
\hline & & 2- to 4-axis fixed-feed control (interpolation) & \(\bigcirc\) & \\
\hline & & 2-axis circular interpolation control & \(\bigcirc\) & \\
\hline & \multicolumn{2}{|l|}{1- to 4-axis Speed control} & \(\times\) & Step operation not possible \\
\hline & \multicolumn{2}{|l|}{Speed-position switching control Position-speed switching control} & \(\bigcirc\) & \multirow[t]{2}{*}{Step operation possible} \\
\hline & \multirow[b]{2}{*}{Other control} & Current value changing & \(\bigcirc\) & \\
\hline & & JUMP instruction, NOP instruction, LOOP to LEND & \(\times\) & Step operation not possible \\
\hline \multirow[t]{2}{*}{Manual control} & \multicolumn{2}{|l|}{JOG operation, Inching operation} & \(\times\) & \multirow[b]{2}{*}{Step operation not possible} \\
\hline & \multicolumn{2}{|l|}{Manual pulse generator operation} & \(\times\) & \\
\hline
\end{tabular}

\footnotetext{
\(\bigcirc\) : Set when required. \(\times\) : Setting not possible
}

\section*{[2] Step mode}

In step operations, the timing for stopping the control can be set. This is called the "step mode". (The "step mode" is set in the control data " Cd. 34 Step mode".)
The following shows the two types of "step mode" functions.
(1) Deceleration unit step

The operation stops at positioning data requiring automatic deceleration. (A normal operation will be carried out until the positioning data requiring automatic deceleration is found. Once found, that positioning data will be executed, and the operation will then automatically decelerate and stop.)
(2) Data No. unit step

The operation automatically decelerates and stops for each positioning data. (Even in continuous path control, an automatic deceleration and stop will be forcibly carried out.)

\section*{[3] Step start information}

Control stopped by a step operation can be continued by setting "step continue" (to continue the control) in the "step start information". (The "step start information" is set in the control data " Cd. 36 Step start information".) The following table shows the results of starts using the "step start information" during step operation.
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{c} 
Stop status in the step \\
operation
\end{tabular} & \begin{tabular}{c} 
Md.26 \\
Axis \\
operation \\
status
\end{tabular} & Cd.36 \begin{tabular}{l} 
Step start \\
information
\end{tabular} & Step start results \\
\hline \begin{tabular}{l}
1 step of positioning \\
stopped normally
\end{tabular} & Step standby & 1: Step continue & The next positioning data is executed. \\
\hline
\end{tabular}

The warnings "Step not possible" (warning code: 511) will occur and the step operation will not be continued if the " Md. 26 Axis operation status" is other than "Step standby" or the step valid flag is OFF when step start information is set.
[4] Using the step operation
The following shows the procedure for checking positioning data using the step operation.


\section*{[5] Control details}
(1) The following drawing shows a step operation during a "deceleration unit step".


Fig. 12.41 Operation during step execution by deceleration unit step
(2) The following drawing shows a step operation during a "data No. unit step".


Fig. 12.42 Operation during step execution positioning data No. unit step

\section*{[6] Control precautions}
(1) When step operation is carried out using interpolation control positioning data, the step function settings are carried out for the reference axis.
(2) When the step valid flag is ON, the step operation will start from the beginning if the positioning start signal is turned ON while " Md. 26 Axis operation status" is "Step standby". (The step operation will be carried out from the positioning data set in " Cd. 3 Positioning start No.".)
[7] Setting method
To use the "step function", write the data shown in the following table to the QD75 using the sequence program. Refer to section [4] "Using the step operation" for the timing of the settings.
The set details are validated when written to the QD75.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \begin{tabular}{l}
Axis \\
1
\end{tabular} & Axis
\[
2
\] & Axis
\[
3
\] & Axis 4 \\
\hline Cd. 34 & Step mode & \(\rightarrow\) & Set "0: Deceleration unit step" or "1: Data No. unit step". & 1544 & 1644 & 1744 & 1844 \\
\hline Cd. 35 & Step valid flag & 1 & Set "1: Carry out step operation". & 1545 & 1645 & 1745 & 1845 \\
\hline Cd. 36 & Step start information & \(\rightarrow\) & Set "1: Step continue", depending on the stop status. & 1546 & 1646 & 1746 & 1846 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

\subsection*{12.7.2 Skip function}

The "skip function" is used to stop (deceleration stop) the control of the positioning data being executed at the time of the skip signal input, and execute the next positioning data.
A skip is executed by a skip command (Cd.37 Skip command) or external command signal.
The "skip function" can be used during control in which positioning data is used.
The details shown below explain about the "skip function".
[1] Control details
[2] Control precautions
[3] Setting the skip function from the CPU module
[4] Setting the skip function using an external command signal

\section*{[1] Control details}

The following drawing shows the skip function operation.


Fig. 12.43 Operation when a skip signal is input during positioning control
[2] Control precautions
(1) If the skip signal is turned ON at the last of an operation, a deceleration stop will occur and the operation will be terminated.
(2) When a control is skipped (when the skip signal is turned ON during a control), the positioning complete signals (X14, X15, X16, X17) will not turn ON.
(3) When the skip signal is turned ON during the dwell time, the remaining dwell time will be ignored, and the next positioning data will be executed.
(4) When a control is skipped during interpolation control, the reference axis skip signal is turned ON. When the reference axis skip signal is turned ON, a deceleration stop will be carried out for every axis, and the next reference axis positioning data will be executed.
(5) The M code ON signals ( \(X 4, X 5, X 6, X 7\) ) will not turn \(O N\) when the \(M\) code output is set to the AFTER mode (when "1: AFTER mode" is set in " Pr. 18 M code ON signal output timing").
(In this case, the M code will not be stored in " Md. 25 Valid M code".)
(6) The skip cannot be carried out by the speed control and position-speed switching control.
(7) If the skip signal is turned \(O N\) with the \(M\) code signal turned \(O N\), the transition to the next data is not carried out until the M code signal is turned OFF.

\section*{[3] Setting the skip function from the CPU module}

The following shows the settings and sequence program example for skipping the control being executed in axis 1 with a command from the CPU module.
(1) Set the following data.
(The setting is carried out using the sequence program shown below in section (2)).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \begin{tabular}{l}
Axis \\
1
\end{tabular} & \[
\begin{gathered}
\text { Axis } \\
2
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Axis } \\
3
\end{array}
\] & \[
\begin{array}{|c}
\text { Axis } \\
4
\end{array}
\] \\
\hline Cd. 37 & Skip command & 1 & Set "1: Skip request". & 1547 & 1647 & 1747 & 1847 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
(2) Add the following sequence program to the control program, and write it to the CPU module.
1) When the "skip command" is input, the value "1" (skip request) set in " Cd.37 Skip command" is written to the QD75 buffer memory (1547).


\section*{[4] Setting the skip function using an external command signal} The skip function can also be executed using an "external command signal". The following shows the settings and sequence program example for skipping the control being executed in axis 1 using an "external command signal".
(1) Set the following data to execute the skip function using an external command signal.
(The setting is carried out using the sequence program shown below in section (2)).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis
\[
1
\] & Axis 2 & Axis 3 & Axis
\[
4
\] \\
\hline Pr. 42 & External command function selection & 3 & Set "3: Skip request". & 62 & 212 & 362 & 512 \\
\hline Cd. 8 & External command valid & 1 & Set "1: Validate external command". & 1505 & 1605 & 1705 & 1805 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
(2) Add the following sequence program to the control program, and write it to the CPU module.


\subsection*{12.7.3 M code output function}

The "M code output function" is used to command sub work (clamping, drill rotation, tool replacement, etc.) related to the positioning data being executed. When the M code ON signal ( \(\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7\) ) is turned ON during positioning execution, a No. called the M code is stored in " Md. 25 Valid M code".
These " Md. 25 Valid M code" are read from the CPU module, and used to command auxiliary work. M codes can be set for each positioning data. (Set in setting item " Da. 10 M code" of the positioning data.)
The timing for outputting (storing) the \(M\) codes can also be set in the "M code output function".

The details shown below explain about the "M code output function".
[1] M code ON signal output timing
[2] M code OFF request
[3] Control precautions
[4] Setting method
[5] Reading M codes
[1] M code ON signal output timing
The timing for outputting (storing) the \(M\) codes can be set in the " \(M\) code output function". (The M code is stored in " Md. 25 Valid M code" when the M code ON signal is turned ON.)
The following shows the two types of timing for outputting M codes: the "WITH" mode and the "AFTER" mode.
(1) WITH mode

The M code ON signal \((\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7)\) is turned ON at the positioning start, and the \(M\) code is stored in " Md. 25 Valid M code".


Fig. 12.44 M code ON/OFF timing (WITH mode)

\section*{(2) AFTER mode}

The \(M\) code \(O N\) signal ( \(\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7\) ) is turned ON at the positioning completion, and the M code is stored in " Md. 25 Valid M code".


Fig. 12.45 M code ON/OFF timing (AFTER mode)

\section*{[2] M code OFF request}

When the M code ON signal ( \(\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7\) ) is ON , it must be turned OFF by the sequence program.
To turn OFF the M code ON signal, set "1" (turn OFF the M code signal) in
" Cd. 7 M code OFF request".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis & Axis & \[
\begin{gathered}
\text { Axis } \\
3
\end{gathered}
\] & Axis 4 \\
\hline Cd. 7 & M code OFF
request & 1 & Set "1: Turn OFF the M code ON signal". & 1504 & 1604 & 1704 & 1804 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

The next positioning data will be processed as follows if the M code ON signal is not turned OFF. (The processing differs according to the " Da. 1 Operation pattern".)
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|c|}{} & Da. 1 \\
O Operation pattern & \multicolumn{1}{c|}{ Processing } \\
\hline 00 & \begin{tabular}{l} 
Independent positioning control \\
(Positioning complete)
\end{tabular} & \begin{tabular}{l} 
The next positioning data will not be executed until the M code ON \\
signal is turned OFF.
\end{tabular} \\
\hline 01 & Continuous positioning control & \\
\hline 11 & Continuous path control & \begin{tabular}{l} 
The next positioning data will be executed. If the M code is set to \\
the next positioning data, a warning "M code ON signal ON start" \\
(warning code: 503) will occur. (Refer to Fig. 12.46.)
\end{tabular} \\
\hline
\end{tabular}


Fig. 12.46 Warning due to an M code ON signal during continuous path control
\begin{tabular}{|c|l|}
\hline POINT \\
\hline \begin{tabular}{l} 
If the M code output function is not required, set a " 0 " in setting item " Da. 10 M \\
code" of the positioning data.
\end{tabular} \\
\hline
\end{tabular}

\section*{[3] Control precautions}
(1) During interpolation control, the reference axis \(M\) code \(O N\) signal is turned ON.
(2) The M code ON signal will not turn ON if " 0 " is set in " Da. 10 M code". (The M code will not be output, and the previously output value will be held in
" Md. 25 Valid M code".)
(3) If the M code ON signal is ON at the positioning start, an error "M code ON signal start" (error code: 536) will occur, and the positioning will not start.
(4) If the PLC READY signal (Y0) is turned OFF, the M code ON signal will turn OFF and " 0 " will be stored in " Md. 25 Valid M code".
(5) If the positioning operation time is short during continuous path control, there will not be enough time to turn OFF the M code ON signal, and a warning " M code ON signal ON" (warning code: 503) may occur. In this case, set a "0" in the " Da. 10 M code" of that section's positioning data.
(6) In the AFTER mode during speed control, the M code is not output and the M code ON signal does not turn ON.
(7) If current value changing where "9003" has been set to " Cd. 3 Positioning start No." is performed, the M code output function is made invalid.

\section*{[4] Setting method}

The following shows the settings to use the "M code output function".
(1) Set the M code No. in the positioning data " Da. 10 M code".
(2) Set the timing to output the M code ON signal ( \(\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7\) ).

Set the required value in the following parameter, and write it to the QD75.
The set details are validated at the rising edge (OFF \(\rightarrow\) ON) of the PLC READY signal (YO).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \begin{tabular}{l}
Axis \\
1
\end{tabular} & Axis & \[
\begin{array}{|c}
\hline \text { Axis } \\
3
\end{array}
\] & \[
\begin{gathered}
\text { Axis } \\
4
\end{gathered}
\] \\
\hline Pr. 18 & M code ON signal output timing & \(\rightarrow\) & \begin{tabular}{l}
Set the timing to output the \(M\) code ON signal. \\
0 : WITH mode \\
1: AFTER mode
\end{tabular} & 27 & 177 & 327 & 477 \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.

\section*{[5] Reading M codes}
"M codes" are stored in the following buffer memory when the M code ON signal turns ON.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Monitor item}} & \multirow[b]{2}{*}{Monitor value} & \multirow[b]{2}{*}{Storage details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & \begin{tabular}{l}
Axis \\
1
\end{tabular} & \[
\begin{gathered}
\hline \text { Axis } \\
2 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
3
\end{array}
\] & Axis
\[
4
\] \\
\hline Md. 25 & Valid M code & \(\rightarrow\) & The M code No. (Da. 10 M code) set in the positioning data is stored. & 808 & 908 & 1008 & 1108 \\
\hline
\end{tabular}
* Refer to Section 5.6 "List of monitor data" for information on the storage details.

The following shows a sequence program example for reading the " Md. 25 Valid M code" to the CPU module data register (D110). (The read value is used to command the sub work.)
Read M codes not as "rising edge commands", but as "ON execution commands".


\subsection*{12.7.4 Teaching function}

The "teaching function" is used to set addresses aligned using the manual control (JOG operation, inching operation, and manual pulse generator operation) in the positioning data addresses (" Da. 6 Positioning address/movement amount", " Da. 7 Arc address").

The details shown below explain about the "teaching function".
[1] Control details
[2] Control precautions
[3] Data used in teaching
[4] Teaching procedure
[5] Teaching program example
[1] Control details

\section*{(1) Teaching timing}

Teaching is executed using the sequence program when the BUSY signal (XC, XD, XE, XF) is OFF. (During manual control, teaching can be carried out as long as the axis is not BUSY, even when an error or warning has occurred.)
(2) Addresses for which teaching is possible

The addresses for which teaching is possible are "current feed values" (Md.20 Current feed value) having the OP as a reference. The settings of the "movement amount" used in incremental system positioning cannot be used. In the teaching function, these "current feed values" are set in the " Da. 6 Positioning address/movement amount" or " Da. 7 Arc address".

(3) Dedicated instructions "ZP.TEACH 1, ZP.TEACH 2, ZP.TEACH 3, ZP.TEACH 4, ZP.PFWRT"
When the dedicated instructions "ZP.TEACH 1, ZP.TEACH 2, ZP.TEACH 3, ZP.TEACH 4, ZP.PFWRT" are used to execute the teaching function, the programming becomes easier. Refer to CHAPTER 14 "DEDICATED INSTRUCTIONS" for details.

\section*{[2] Control precautions}
(1) Before teaching, a "machine OPR" must be carried out to establish the OP. (When a current value changing, etc., is carried out, " Md. 20 Current feed value" may not show absolute addresses having the OP as a reference.)
(2) Teaching cannot be carried out for positions to which movement cannot be executed by manual control (positions to which the workpiece cannot physically move). (During center point designation circular interpolation control, etc., teaching of " Da. 7 Arc address" cannot be carried out if the center point of the arc is not within the moveable range of the workpiece.)
(3) Writing to the flash ROM can be executed up to 100,000 times. If writing to the flash ROM exceeds 100,000 times, the writing may become impossible (assured value is up to 100,000 times). If the error "Flash ROM write number error" (error code: 805) occurs when writing to the flash ROM has been completed, check whether or not the program is created so as to write continuously to the flash ROM.
[3] Data used in teaching
The following control data is used in teaching.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & Axis
\[
2
\] & \[
\begin{gathered}
\text { Axis } \\
3
\end{gathered}
\] & Axis 4 \\
\hline Cd. 1 & Flash ROM write request & 1 & Write the set details to the flash ROM (backup the changed data). & \multicolumn{4}{|c|}{1900} \\
\hline Cd. 38 & Teaching data selection & \(\rightarrow\) & \begin{tabular}{l}
Sets to which "current feed value" is written. \\
0 : Written to " Da. 6 Positioning address/movement amount". \\
1: Written to " Da. 7
\(\square\) Arc address".
\end{tabular} & 1548 & 1648 & 1748 & 1848 \\
\hline Cd. 39 & Teaching positioning data No. & \(\rightarrow\) & \begin{tabular}{l}
Designates the data to be taught. \\
(Teaching is carried out when the setting value is 1 to 600.) \\
When teaching has been completed, this data is cleared to zero.
\end{tabular} & 1549 & 1649 & 1749 & 1849 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
[4] Teaching procedure
The following shows the procedure for a teaching operation.
(1) When teaching to the " Da. 6 Positioning address/movement amount" (Teaching example on axis 1)

(2) When entering teaching data into " Da. 7 Arc address" and then into " Da. 6 Positioning address/movement amount" (Teaching example for 2axis circular interpolation control with sub point designation on axes 1 and 2)


[Motion path]


\section*{[5] Teaching program example}

The following shows a sequence program example for setting (writing) the positioning data obtained with the teaching function to the QD75.
(1) Setting conditions
- When setting the current feed value as the positioning address, write it when the BUSY signal is OFF.
(2) Program example
- The following example shows a program to carry out the teaching of axis 1 by the dedicated instruction "ZP.TEACH 1".
1) Move the workpiece to the target position using a JOG operation (or an inching operation, a manual pulse generator operation).

2) Carry out the teaching operation with the following program.


\section*{POINT}
(1) Confirm the teaching function and teaching procedure before setting the positioning data.
(2) The positioning addresses that are written are absolute address (ABS) values.
(3) If the positioning operation is correctly completed with the written positioning data, it is recommended that the positioning data be registered in the QD75 flash ROM.

\subsection*{12.7.5 Command in-position function}

The "command in-position function" checks the remaining distance to the stop position during the automatic deceleration of positioning control, and set a flag to 1 . This flag is called the "command in-position flag". The command in-position flag is used as a frontloading signal indicating beforehand the completion of the position control.

The details shown below explain about the "command in-position function".
[1] Control details
[2] Control precautions
[3] Setting method
[4] Confirming the command in-position flag

\section*{[1] Control details}

The following shows control details of the command in-position function.
(1) When the remaining distance to the stop position during the automatic deceleration of positioning control becomes equal to or less than the value set in " Pr. 16 Command in-position width", "1" is stored in the command in-position flag (Md.31 Status: b2).
(Command in-position width check)
Remaining distance \(\leq\) " Pr. 16 Command in-position width" setting value


Fig. 12.47 Command in-position operation
(2) A command in-position width check is carried out every 0.9 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 1.8 ms (QD75P \(\square /\) QD75D \(\square\) ).

\section*{[2] Control precautions}
(1) A command in-position width check will not be carried out in the following cases.
- During speed control
- During speed control in speed-position switching control
- During speed control in position-speed switching control


Fig. 12.48 Command in-position width check
(2) The command in-position flag will be turned OFF in the following cases. ("0" will be stored in " Md. 31 Status: b2".)
- At the positioning control start
- At the speed control start
- At the speed-position switching control, position-speed switching control start
- At the OPR control start
- At the JOG operation start
- At the inching operation start
- When the manual pulse generator operation is enabled.
(3) The " Pr. 16 Command in-position width" and command in-position flag (Md.31 Status: b2) of the reference axis are used during interpolation control. When the " Pr. 20 Interpolation speed designation method" is "Composite speed", the command in-position width check is carried out in the remaining distance on the composite axis (line/arc connecting the start point address and end point address).

\section*{[3] Setting method}

To use the "command in-position function", set the required value in the parameter shown in the following table, and write it to the QD75.
The set details are validated at the rising edge (OFF \(\rightarrow\) ON) of the PLC READY signal (YO).
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & Setting details & \begin{tabular}{c} 
Factory-set \\
initial value
\end{tabular} \\
\hline Pr.16 & \begin{tabular}{l} 
Command in- \\
position width
\end{tabular} & \(\rightarrow\) & \begin{tabular}{l} 
Turn ON the command in-position flag, and set the \\
remaining distance to the stop position of the position \\
control.
\end{tabular} & 100 \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.
[4] Confirming the command in-position flag
The "command in-position flag" is stored in the following buffer memory.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Monitor item}} & \multirow[b]{2}{*}{Monitor value} & \multirow[b]{2}{*}{Storage details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis & \[
\begin{gathered}
\text { Axis } \\
2
\end{gathered}
\] & Axis 3 & Axis
\[
4
\] \\
\hline Md. 31 & Status & \(\rightarrow\) & The command in-position flag is stored in the "b2" position. & 817 & 917 & 1017 & 1117 \\
\hline
\end{tabular}
* Refer to Section 5.6 "List of monitor data" for information on the storage details.

\section*{REMARK}
- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\subsection*{12.7.6 Acceleration/deceleration processing function}

The "acceleration/deceleration processing function" adjusts the acceleration/deceleration of each control to the acceleration/deceleration curve suitable for devices.
Setting the acceleration/deceleration time changes the slope of the acceleration/deceleration curve.
The following two methods can be selected for the acceleration/deceleration curve:
- Trapezoidal acceleration/deceleration
- S-curve acceleration/deceleration

The details shown below explain about the "acceleration/deceleration processing function".
[1] "Acceleration/deceleration time 0 to 3" control details and setting
[2] "Acceleration/deceleration method setting" control details and setting
[1] "Acceleration/deceleration time 0 to 3 " control details and setting In the QD75, four types each of acceleration time and deceleration time can be set. By using separate acceleration/deceleration times, control can be carried out with different acceleration/deceleration times for positioning control, JOG operation, OPR, etc.
Set the required values for the acceleration/deceleration time in the parameters shown in the following table, and write them to the QD75.
The set details are validated when written to the QD75.
\begin{tabular}{|c|c|c|c|c|}
\hline & Setting item & Setting value & Setting details & Factory-set initial value \\
\hline Pr. 9 & Acceleration time 0 & \(\rightarrow\) & \multirow{4}{*}{Set the acceleration time at a value within the range of 1 to 8388608 ms .} & 1000 \\
\hline Pr. 25 & Acceleration time 1 & \(\rightarrow\) & & 1000 \\
\hline Pr. 26 & Acceleration time 2 & \(\rightarrow\) & & 1000 \\
\hline Pr. 27 & Acceleration time 3 & \(\rightarrow\) & & 1000 \\
\hline Pr. 10 & Deceleration time 0 & \(\rightarrow\) & \multirow{4}{*}{Set the deceleration time at a value within the range of 1 to 8388608 ms .} & 1000 \\
\hline Pr. 28 & Deceleration time 1 & \(\rightarrow\) & & 1000 \\
\hline Pr. 29 & Deceleration time 2 & \(\rightarrow\) & & 1000 \\
\hline Pr. 30 & Deceleration time 3 & \(\rightarrow\) & & 1000 \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for setting details.
[2] "Acceleration/deceleration method setting" control details and setting
In the "acceleration/deceleration method setting", the acceleration/deceleration processing method is selected and set. The set acceleration/deceleration processing is applied to all acceleration/deceleration (except for inching operation and manual pulse generator operation).
The two types of "acceleration/deceleration method setting" are shown below.
(1) Trapezoidal acceleration/deceleration processing method This is a method in which linear acceleration/deceleration is carried out based on the acceleration time, deceleration time, and speed limit value set by the user.


Fig. 12.49 Trapezoidal acceleration/deceleration processing method
(2) S-curve acceleration/deceleration processing method In this method, the motor burden is reduced during starting and stopping. This is a method in which acceleration/deceleration is carried out gradually, based on the acceleration time, deceleration time, speed limit value, and " Pr. 35 S-curve ratio" (1 to 100\%) set by the user.
When the stepping motor is used, the acceleration around the inflection point on the s shape is faster compared with the trapezoidal acceleration/deceleration. This may cause step-out. *1 In this case, adjust the acceleration/deceleration time to decrease the acceleration around the inflection point, or use a servo motor.
*1: When comparing the trapezoidal acceleration/deceleration and S-curve acceleration/deceleration processing method in the same acceleration/deceleration time.


Fig. 12.50 S-curve acceleration/deceleration processing method

When a speed change request or override request is given during S-curve acceleration/deceleration processing, S-curve acceleration/deceleration processing begins at the start of a speed change request or an override request.


Fig. 12.51 Speed change during S-curve acceleration/deceleration processing
Set the required values for the "acceleration/deceleration method setting" in the parameters shown in the following table, and write them to the QD75. The set details are validated when written to the QD75.
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \(\begin{array}{c}\text { Setting } \\
\text { value }\end{array}\) & \multicolumn{1}{c|}{ Setting details } & \(\begin{array}{c}\text { Factory-set } \\
\text { initial value }\end{array}\) \\
\hline Pr.34 & \(\begin{array}{l}\text { Acceleration/ } \\
\text { deceleration } \\
\text { process selection }\end{array}\) & \(\rightarrow\) & \(\begin{array}{l}\text { Set the acceleration/deceleration method. } \\
\text { 0: Trapezoidal acceleration/deceleration } \\
\text { processing }\end{array}\) \\
1: S-curve acceleration/deceleration processing
\end{tabular}\(]\)
* Refer to Section 5.2 "List of parameters" for setting details.

\section*{REMARK}
- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Configurator-QP. Execution by sequence program uses many sequence programs and devices. The execution becomes complicated, and the scan times will increase.

\subsection*{12.7.7 Pre-reading start function}

The "pre-reading start function" does not output pulses while the execution prohibition flag is ON if a positioning start request is given with the execution prohibition flag ON, and starts outputting pulses within 1.3 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 3ms (QD75P \(\square /\) QD75D \(\square\) ) after OFF of the execution prohibition flag is detected. The positioning start request is given when the axis is in a standby status, and the execution prohibition flag is turned OFF at the axis operating timing. This shortens the virtual start time. The QD75 normally takes 1.5 to 2.0 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 6 to 7 ms (QD75P \(\square /\) QD75D \(\square\) ) from when it receives a positioning start request until it starts pulse output (start time). Some systems often need the start time to be shortened. This "pre-reading start function" can improve the tact time of the system.

The "pre-reading start function" will be explained below.
[1] Control details
[2] Control precautions
[3] Program examples
[1] Control details
The pre-reading start function is performed by turning ON the positioning start signal [Y10, Y11, Y12, Y13] with the execution prohibition flag [Y14, Y15, Y16, Y17] ON, or by executing the dedicated instruction (ZP.PSTRT1, ZP.PSTRT2, ZP.PSTRT3, ZP.PSTRT4). However, if positioning is started with the execution prohibition flag ON, the positioning data is analyzed but pulse output is not provided. While the execution prohibition flag is ON, " Md. 26 Axis operation status" remains unchanged from "5: Analyzing". Pulse output starts within 1.3 ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 3ms (QD75P \(\square\) QD75D \(\square\) ) after the execution prohibition flag [Y14, Y15, Y16, Y17] has turned OFF, and " Md. 26 Axis operation status" changes to the status (e.g. "Position control", "Speed control") that matches the control system. (Refer to Fig. 12.52)


Fig. 12.52 Operations of pre-reading start function

The pre-reading start function is effective for the system as shown below.


Fig. 12.53 System example using pre-reading start function
Fig. 12.53 shows a system example which repeats:
1) Feeding a stock with a feed shaft; and
2) Cutting it with a cutter
to cut the stock to fixed size. The operations of the feed shaft and cutter shaft are represented as shown in Fig. 12.54.


Fig. 12.54 Operation timings of system example

The cutter shaft starts from the moment the feed shaft has completed feeding the stock " \({ }^{(1) \text { ", and the feed shaft starts from the moment the cutter shaft has }}\) returned to the standby position "(2)". Actually, however, there is a delay of start time Ts (1.5 to 2.0ms (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) or 6 to 7 ms (QD75P \(\square / Q D 75 D \square\) )) from when the QD75 receives a start request until it outputs pulses. The system's tact time can be reduced by the shortening of this delay with the Pre-reading start function.
In Fig. 12.54, the feed shaft stands by during the stop time Tw.
Hence, pre-reading of the next data starts during the stop time Tw. If Tw is a certain period of time, the analysis of the next data is completed during that period, and the system is placed in an execution prohibition flag OFF waiting status. Therefore, replacing the positioning start timing at (2) with the execution prohibition flag OFF allows the time from when the axis operation request turns ON until pulse output starts to be reduced to within 1.3 ms (QD75P \(\square\) N/QD75D \(\square \mathrm{N}\) ) or 3ms (QD75P \(\square /\) QD75D \(\square\) ) in the sequence program. (Refer to Fig. 12.52.)

\section*{[2] Control precautions}
(1) The time required to analyze the positioning data is up to 7 ms .
(2) After positioning data analysis, the system is put in an execution prohibition flag OFF waiting status. Any change made to the positioning data in the execution prohibition flag OFF waiting status is not reflected on the positioning data. Change the positioning data before turning ON the positioning start signal.
(3) The pre-reading start function is invalid if the execution prohibition flag is turned OFF between when the positioning start signal has turned ON and when positioning data analysis is completed (Ta<start time, Ta: Refer to Fig. 12.52).
(4) The data No. which can be executed positioning start using
" Cd. 3 Positioning start No." with the pre-reading start function are No. 1 to 600 only. Performing the pre-reading start function at the setting of No. 7000 to 7004 or 9001 to 9004 will result in an error "Outside start No. range" (error code: 543).
(5) Always turn ON the execution prohibition flag at the same time or before turning ON the positioning start signal. Pre-reading may not be started if the execution prohibition flag is turned ON during Ta after the positioning start signal is turned ON. The pre-reading start function is invalid if the execution prohibition flag is turned ON after positioning start (pulse output) with the execution prohibition flag OFF. (It is made valid at the next positioning start.)

\section*{[3] Program examples}
* Pre-reading start function (when positioning start signal Y10 is used) *

*
* Pre-reading start function (when dedicated instruction PSTRT1 is used)
*


\subsection*{12.7.8 Deceleration start flag function}

The "deceleration start flag function" turns ON the flag when the constant speed status or acceleration status switches to the deceleration status during position control whose operation pattern is "Positioning complete". This function can be used as a signal to start the operation to be performed by other equipment at each end of position control or to perform preparatory operation, etc. for the next position control.

For the "deceleration start flag function", the following will be explained.
[1] Control details
[2] Control precautions
[3] Setting method
[4] Checking of deceleration start flag
[1] Control details
When deceleration for a stop is started in the position control whose operation pattern is "Positioning complete", "1" is stored into " Md. 48 Deceleration start flag". When the next operation start is made or the manual pulse generator operation enable status is gained, " 0 " is stored. (Refer to Fig. 12.55.)
(1) Start made with positioning data No. specified


Fig. 12.55 Operation of deceleration start flag
(2) Block start

At a block start, this function is valid for only the position control whose operation pattern is "Positioning complete" at the point whose shape has been set to "End". (Refer to Fig. 12.56.)

The following table indicates the operation of the deceleration start flag in the case of the following block start data and positioning data.
\begin{tabular}{|c|l|c|l|}
\hline \begin{tabular}{c} 
Block start \\
data
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{|c|c|}
\hline Da.11 \\
Shape
\end{tabular}} & \begin{tabular}{c} 
Da.12 \\
Start data No.
\end{tabular} & \begin{tabular}{c} 
Da.13 \\
Special start \\
instruction
\end{tabular} \\
\hline 1st point & 1: Continue & 1 & 0: Block start \\
\hline 2nd point & 1: Continue & 3 & 0: Block start \\
\hline 3rd point & 0: End & 4 & \(0:\) Block start \\
\hline • & & & \\
\hline\(\cdot\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Positioning \\
Data No.
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Da.1 \\
Operation pattern
\end{tabular}} \\
\hline 1 & 01: Continuous positioning control \\
\hline 2 & 00: Positioning complete \\
\hline 3 & 00: Positioning complete \\
\hline 4 & \(11:\) Continuous path control \\
\hline 5 & 00: Positioning complete \\
\hline • & \\
\hline • & \\
\hline
\end{tabular}


Fig. 12.56 Operation of deceleration start flag at block start

\section*{[2] Control precautions}
(1) The deceleration start flag function is valid for the control system of "1-axis linear control", "2-axis linear interpolation control", "3-axis linear interpolation control", "4-axis linear interpolation control", "speed-position switching control" or "position-speed switching control". (In the case of linear interpolation control, the function is valid for only the reference axis.) Refer to Section 3.2.4 "Combination of QD75 main functions and sub functions".
(2) The deceleration start flag does not turn ON when the operation pattern is "continuous positioning control" or "continuous path control".
(3) The deceleration start flag function is invalid for an OPR, JOG operation, inching operation, manual pulse generator operation, and deceleration made with a stop signal.
(4) The deceleration start flag does not turn ON when a speed change or override is used to make deceleration.
(5) If a target position change is made while the deceleration start flag is ON, the deceleration start flag remains ON.

(6) When the movement direction is reversed by a target position change, the deceleration start flag turns ON.

(7) During position control of position-speed switching control, the deceleration start flag is turned ON by automatic deceleration.
The deceleration start flag remains ON if position control is switched to speed control by the position-speed switching signal after the deceleration start flag has turned ON.
(8) If the condition start of a block start is not made since the condition is not satisfied, the deceleration start flag turns ON when the shape is "End".
(9) When a continuous operation interrupt request is issued, the deceleration start flag turns ON at a start of deceleration in the positioning data being executed.

\section*{[3] Setting method}

To use the "deceleration start flag function", set "1" to the following control data using a sequence program.
The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0].
\begin{tabular}{|c|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & Setting details & Buffer memory address \\
\hline Cd.41 & \begin{tabular}{l} 
Deceleration start \\
flag valid
\end{tabular} & \(\rightarrow\) & \begin{tabular}{l} 
Set whether the deceleration start flag function \\
is made valid or invalid. \\
0: Deceleration start flag invalid \\
\(1:\) Deceleration start flag valid
\end{tabular} & 1905 \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.
[4] Checking of deceleration start flag
The "deceleration start flag" is stored into the following buffer memory addresses.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Monitor item}} & \multirow[b]{2}{*}{Monitor value} & \multirow[b]{2}{*}{Storage details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis
\[
1
\] & Axis & \[
\begin{array}{|c}
\hline \text { Axis } \\
3
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Axis } \\
4 \\
\hline
\end{array}
\] \\
\hline Md. 48 & Deceleration start flag & \(\rightarrow\) & \begin{tabular}{l}
0: Status other than below \\
1: Status from deceleration start to next operation start
\end{tabular} & 899 & 999 & 1099 & 1199 \\
\hline
\end{tabular}
* Refer to Section 5.6 "List of monitor data" for information on the storage details.

\subsection*{12.7.9 Stop command processing for deceleration stop function}

The "stop command processing for deceleration stop function" is provided to set the deceleration curve if a stop cause occurs during deceleration stop processing (including automatic deceleration).
This function is valid for both trapezoidal and S-curve acceleration/deceleration processing methods.
(For the stop cause, refer to Section 1.2.3 Outline of stopping.)
The "stop command processing for deceleration stop function" performs the following two operations:
(1) Deceleration curve re-processing

Re-processes a deceleration curve starting from the speed at stop cause occurrence to stop, according to the preset deceleration time.
(2) Deceleration curve continuation

Continues the current deceleration curve after a stop cause has occurred.

This section explains the "stop command processing for deceleration stop function" as follows:
[1] Control details
[2] Control precautions
[3] Setting method

\section*{[1] Control details}

The operation of "stop command processing for deceleration stop function" is explained below.

\section*{(1) Deceleration curve re-processing}

A deceleration curve is re-processed starting from the speed at stop cause occurrence to stop, according to the preset deceleration time.
If a stop cause occurs during automatic deceleration of position control, the deceleration stop processing stops as soon as the target has reached the positioning address specified in the positioning data that is currently executed.


Fig. 12.57 Deceleration curve re-processing operation (for position control or S-curve acceleration/deceleration processing)

\section*{(2) Deceleration curve continuation}

The current deceleration curve is continued after a stop cause has occurred. If a stop cause occurs during automatic deceleration of position control, the deceleration stop processing may be complete before the target has reached the positioning address specified in the positioning data that is currently executed.


Fig. 12.58 Deceleration curve continuation operation (for position control or S-curve acceleration/deceleration processing)

\section*{[2] Control precautions}
(1) In manual control (JOG operation, inching operation, manual pulse generator operation), the stop command processing for deceleration stop function is invalid.
(2) The stop command processing for deceleration stop function is valid when " 0 : Normal deceleration stop" is set in " Pr. 37 Stop group 1 sudden stop selection" to " Pr. 39 Stop group 3 sudden stop selection" as the stopping method for stop cause occurrence.
(3) The stop command processing for deceleration stop function is invalid when "1: Sudden stop" is set in " Pr. 37 Stop group 1 sudden stop selection" to " Pr. 39 Stop group 3 sudden stop selection". (A deceleration curve is reprocessed, according to the " Pr. 36 Sudden stop deceleration time" (starting from the speed at stop cause occurrence to a stop)) In the position control (including position control of speed/position changeover control or position/speed changeover control) mode, positioning may stop immediately depending on the stop cause occurrence timing and
" Pr. 36 Sudden stop deceleration time" setting.


Fig. 12.59 Sudden stop operation (for position control or S-curve acceleration/deceleration processing)

\section*{[3] Setting method}

To use the "stop command processing for deceleration stop function", set the following control data in a sequence program.
The set data are made valid as soon as they are written to the buffer memory. The PLC READY signal [Y0] is irrelevant.
\begin{tabular}{|c|c|c|l|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \begin{tabular}{l} 
Setting \\
value
\end{tabular} & Setting details & Buffer memory address \\
\hline Cd.42 & \begin{tabular}{l} 
Stop command \\
processing for \\
deceleration stop \\
selection
\end{tabular} & \(\rightarrow\) & \begin{tabular}{l} 
Set the stop command processing for \\
deceleration stop function. \\
0: Deceleration curve re-processing \\
1: Deceleration curve continuation
\end{tabular} & 1907 \\
\hline
\end{tabular}
* For details of the setting details, refer to "Section 5.7 Control data list".

\section*{MEMO}
\(\qquad\)

\section*{CHAPTER 13 COMMON FUNCTIONS}

The details and usage of the "common functions" executed according to the user's requirements are explained in this chapter.

Common functions include functions required when using the QD75, such as parameter initialization and execution data backup.
Read the setting and execution procedures for each common function indicated in this chapter thoroughly, and execute the appropriate function where required.
13.1 Outline of common functions ..... 13- 2
13.2 Parameter initialization function ..... 13- 3
13.3 Execution data backup function ..... 13- 5
13.4 External I/O signal logic switching function ..... 13- 7
13.5 External I/O signal monitor function ..... 13- 8

\subsection*{13.1 Outline of common functions}
"Common functions" are executed according to the user's requirements, regardless of the control system, etc. These common functions are executed by peripheral devices or using sequence programs.

The following table shows the functions included in the "common functions".
\begin{tabular}{|l|l|c|c|}
\hline \multirow{2}{|c|}{ Common function } & \multicolumn{1}{c|}{ Details } & \multicolumn{2}{|c|}{ Means } \\
\cline { 3 - 4 } & & \begin{tabular}{c} 
Sequence \\
program
\end{tabular} & \begin{tabular}{c} 
Peripheral \\
devices
\end{tabular} \\
\hline Parameter initialization \\
function & \begin{tabular}{l} 
This function returns the \\
parameter stored in the QD75 \\
buffer memory and flash ROM to \\
the factory-set initial value.
\end{tabular} & O & (
\end{tabular}
* For the QD75P■/QD75D■, this function is available in GX Developer (SW6D5C-GPPW-E or later).
For the QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\), external I/O signals cannot be monitored on GX Developer. Use the system monitor of GX Works2.

\subsection*{13.2 Parameter initialization function}

The "parameter initialization function" is used to return the setting data set in the QD75 buffer memory and flash ROM to their factory-set initial values.

The details shown below explain about the "parameter initialization function".
[1] Parameter initialization means
[2] Control details
[3] Control Precautions
[4] Parameter initialization method
[1] Parameter initialization means
- Initialization is executed with a sequence program.
- Initialization is executed by peripheral device.

Refer to GX Configurator-QP Operating Manual for the execution method by peripheral device.
[2] Control details
The following table shows the setting data initialized by the "parameter initialization function".
(The data initialized are "buffer memory" and " flash ROM " setting data.)


\section*{[3] Control Precautions}
(1) Parameter initialization is only executed when the positioning control is not carried out (when the PLC READY signal (YO) is OFF).
The warning "In PLC READY" (warning code: 111) will occur if executed when the PLC READY [Y0] is ON.
(2) Writing to the flash ROM can be executed up to 100,000 times. If writing to the flash ROM exceeds 100,000 times, the writing may become impossible, and the error "Flash ROM write error" (error code: 801) will occur.
(3) A "CPU module reset" or "CPU module power restart" must be carried out after the parameters are initialized.
(4) If an error occurs on the parameter set in the QD75 when the PLC READY signal [Y0] is turned ON, the QD75 READY signal [X0] will not be turned ON and the control cannot be carried out.

\section*{Important}

Parameter initialization takes about 10 seconds. (Up to 30 seconds are sometimes required.)
Do not turn the power ON/OFF; reset the CPU module, etc., during parameter initialization. If the power is turned OFF or the CPU module is reset to forcibly end the process, the data backed up in the flash ROM will be lost.
[4] Parameter initialization method
(1) Parameter initialization is carried out using the dedicated instruction "ZP.PINIT".
(Refer to CHAPTER 14 "DEDICATED INSTRUCTIONS" for details.)
(2) Parameter initialization can also be carried out by the writing of the data shown in the table below to the buffer memory using the TO instruction /intelligent function device.
The initialization of the parameter is executed at the time point the data is written to the QD75 buffer memory.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Setting item } & \multirow{2}{*}{\begin{tabular}{c} 
Setting \\
value
\end{tabular}} & \multirow{2}{|c|}{ Setting details } & \multicolumn{3}{|c|}{\begin{tabular}{c} 
Buffer memory address \\
\cline { 4 - 7 }
\end{tabular}} \\
\hline Cd.2 & \begin{tabular}{c} 
Axis \\
1
\end{tabular} & \begin{tabular}{c} 
Axis \\
Parameter
\end{tabular} & \begin{tabular}{c} 
Axis \\
3
\end{tabular} & \begin{tabular}{c} 
Axis \\
4
\end{tabular} \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

When the initialization is complete, " 0 " will be set in " Cd. 2 Parameter initialization request" by the QD75 automatically.

\subsection*{13.3 Execution data backup function}

When the QD75 buffer memory data is rewritten from the CPU module, "the data backed up in the QD75 flash ROM" may differ from "the data (buffer memory data) for which control is being executed".
In cases like these, the data being executed will be lost when the programmable controller power is turned OFF. (Refer to CHAPTER 7 "MEMORY CONFIGURATION AND DATA PROCESS")
In cases like these, the "execution data backup function" backs up the data being executed by writing it to the flash ROM. The data that was backed up is then written to the buffer memory when the power is turned ON next.

The details shown below explain about the "execution data backup function".
[1] Execution data backup means
[2] Control details
[3] Control Precautions
[4] Execution data backup method
[1] Execution data backup (written to flash ROM) means
- The backup is executed with a sequence program.
- The backup is executed by peripheral device.

Refer to GX Configurator-QP Operating Manual for execution data backup method by peripheral device.

\section*{[2] Control details}

The following shows the data that can be written to the flash ROM using the "execution data backup function".

Buffer memory
\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Parameters \\
\hline\((\) Pr. 1 to Pr. 57, Pr. 150 ) \()\) \\
\hline Positioning data (No. 1 to No. 600) \\
\hline Block start data (No. 7000 to 7004) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Flash ROM
\(\rightarrow\)\begin{tabular}{|l|}
\hline Parameters ( \((\mathrm{Pr} .1\) to \(\operatorname{Pr} .57\), Pr. 150\()\) \\
\hline
\end{tabular}
[3] Control Precautions
(1) Parameter initialization is only executed when the positioning control is not carried out (when the PLC READY signal (YO) is OFF). The warning "In PLC READY" (warning code: 111) will occur if executed when the PLC READY [YO] is ON.
(2) Writing to the flash ROM can be executed up to 100,000 times. If writing to the flash ROM exceeds 100,000 times, the writing may become impossible, and the error "Flash ROM write error" (error code: 801) will occur.
(3) After one power ON/CPU module reset operation, writing to the flash ROM using a sequence program is limited to up to 25 times.
If the 26 th writing is executed, the error "Flash ROM write number error" (error code: 805) will occur. If this error occurs, carry out the power OFF \(\rightarrow\) ON/CPU module reset operation again.
Refer to Md. 19 of Section 5.1.7 "Types and roles of monitor data" for details.

\footnotetext{
Important
If the power is turned OFF or the CPU module is reset to forcibly end the process, the data backed up in the flash ROM will be lost.
}

\section*{[4] Execution data backup method}
(1) Execution data backup (writing to the flash ROM) is carried out using the dedicated instruction "PFWRT". (Refer to CHAPTER 14 "DEDICATED INSTRUCTIONS" for details.)
(2) Refer to Section 7.2 "Data transmission process" for the data transmission processing at the backup of the execution data.
(3) Execution data backup can also be carried out by the writing of the data shown in the table below to the QD75 buffer memory using the TO instruction /intelligent function device.
The writing to the flash ROM is executed at the time point the data is written to the QD75 buffer memory.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Setting item} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis 1 & \[
\begin{array}{|c}
\hline \text { Axis } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { Axis } \\
3
\end{gathered}
\] & Axis
4 \\
\hline Cd. 1 & Flash ROM write request & 1 & Set "1" (flash ROM write request). & \multicolumn{4}{|c|}{1900} \\
\hline
\end{tabular}
* Refer to Section 5.7 "List of control data" for details on the setting details.

When the writing to the flash ROM is complete, " 0 " will be set in " Cd. 1 Flash ROM write request" by the QD75 automatically.

\subsection*{13.4 External I/O signal logic switching function}

This function switches the signal logic according to the external equipment connected to the QD75.
For the system in which drive unit READY with b-contact, upper limit switch, and lower limit switch are not used, the parameter logic setting can be controlled without wiring if it is changed to a "positive logic".
When the drive unit READY, upper limit switch, and lower limit switch are used, ensure to use them with b-contact.

The details shown below explain about the "external I/O signal logic switching function".
[1] Parameter setting details
[2] Precautions on parameter setting

\section*{[1] Parameter setting details}

To use the "external I/O signal logic switching function", set the parameters shown in the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Setting item} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Setting details}} & \multirow[t]{2}{*}{Factory-set initial value} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & & & Axis 1 & Axis 2 & Axis 3 & Axis 4 \\
\hline \multirow{11}{*}{Pr. 22} & \multirow{11}{*}{Input signal logic selection} & \multicolumn{3}{|l|}{- Selection of logic of signals input from external source to QD75} & \multirow{11}{*}{0} & \multirow{11}{*}{31} & \multirow{11}{*}{181} & \multirow{11}{*}{331} & \multirow{11}{*}{481} \\
\hline & & b0 & Lower limit & \multirow[t]{7}{*}{\begin{tabular}{l}
0: Negative logic, \\
1: Positive logic
\end{tabular}} & & & & & \\
\hline & & b1 & Upper limit & & & & & & \\
\hline & & b2 & Drive unit READY & & & & & & \\
\hline & & b3 & Stop signal & & & & & & \\
\hline & & b4 & External command signal & & & & & & \\
\hline & & b5 & Zero signal & & & & & & \\
\hline & & b6 & Near-point dog signal & & & & & & \\
\hline & & b7 & Unused & Set "0". & & & & & \\
\hline & & b8 & Manual pulse
generator input & \begin{tabular}{l}
0 : Negative logic, \\
1: Positive logic
\end{tabular} & & & & & \\
\hline & & b9 to b15 & Unused & Set "0". & & & & & \\
\hline & & - Selection of log source & nals output from & D75 to external & & & & & \\
\hline & Output signal logic & b0 & Command pulse signal & \begin{tabular}{l}
0: Negative logic, \\
1: Positive logic
\end{tabular} & 0 & 32 & 18 & 332 & 2 \\
\hline & selection & b1 to b3 & Unused & Set "0". & 0 & 32 & 182 & 332 & 482 \\
\hline & & b4 & Deviation counter clear signal & \begin{tabular}{l}
0: Negative logic, \\
1: Positive logic
\end{tabular} & & & & & \\
\hline & & b5 to b15 & Unused & Set "0". & & & & & \\
\hline
\end{tabular}
* Refer to Section 5.2 "List of parameters" for the information on detail settings.
[2] Precautions on parameter setting
(1) The external I/O signal logic switching parameters are validated when the PLC READY signal [Y0] is turned OFF to ON. (The logic is negative right after power-on.)
(2) If each signal logic is set erroneously, the operation may not be carried out correctly.
Before setting, check the specifications of the equipment to be used.

\subsection*{13.5 External I/O signal monitor function}

The "external I/O signal monitor function" monitors the module's information and external I/O signal monitor information in the module's detailed information which can be displayed on the system monitor of GX Developer*1.

The information that can be monitored are the module's information (same as the QD75 front "RUN", "ERR" LED indicators) and the following external I/O signals. (Set the logic of the external I/O signals in " Pr. 22 Input signal logic selection" and " Pr. 23 Output signal logic selection".)

*1: For the QD75P \(\square /\) QD75D \(\square\), this function is available in GX Developer (SW6D5C-GPPW-E or later). For details, refer to GX Developer Operating Manual.
For the QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\), external I/O signals cannot be monitored on GX Developer. Use the system monitor of GX Works2. For details on the system monitor of GX Works2, refer to GX Works2 Version 1 Operating Manual (Common).

\section*{CHAPTER 14 DEDICATED INSTRUCTIONS}

The QD75 dedicated instructions are explained in this chapter.
These instructions are used to facilitate the programming for the use of the functions of the intelligent function module.
Using the dedicated instructions, the programming can be carried out without being aware of the QD75 buffer memory address and interlock signal.
14.1 List of dedicated instructions ..... 14- 2
14.2 Interlock during dedicated instruction is executed ..... 14- 2
14.3 Z.ABRST1, Z.ABRST2, Z.ABRST3, Z.ABRST4 ..... 14- 3
14.4 ZP.PSTRT1, ZP.PSTRT2, ZP.PSTRT3, ZP.PSTRT4 ..... 14- 8
14.5 ZP.TEACH1, ZP.TEACH2, ZP.TEACH3, ZP.TEACH4 ..... 14-12
14.6 ZP.PFWRT ..... 14-16
14.7 ZP.PINIT ..... 14-20

\subsection*{14.1 List of dedicated instructions}

The dedicated instructions explained in this Chapter are listed in Table 14.1.
Table 14.1 List of dedicated instructions
\begin{tabular}{|c|c|c|c|}
\hline Application & Dedicated instruction & Outline of functions & Reference \\
\hline \multirow{4}{*}{Absolute position restoration} & Z.ABRST1 & \multirow{4}{*}{This function restores the absolute position of the designated axis of the QD75.} & \multirow{4}{*}{Section 14.3} \\
\hline & Z.ABRST2 & & \\
\hline & Z.ABRST3 & & \\
\hline & Z.ABRST4 & & \\
\hline \multirow{4}{*}{Positioning start} & ZP.PSTRT1 & \multirow{4}{*}{This function starts the positioning control of the designated axis of the QD75.} & \multirow{4}{*}{Section 14.4} \\
\hline & ZP.PSTRT2 & & \\
\hline & ZP.PSTRT3 & & \\
\hline & ZP.PSTRT4 & & \\
\hline \multirow{4}{*}{Teaching} & ZP.TEACH1 & \multirow{4}{*}{This function carries out teaching the designated axis of the QD75.} & \multirow{4}{*}{Section 14.5} \\
\hline & ZP.TEACH2 & & \\
\hline & ZP.TEACH3 & & \\
\hline & ZP.TEACH4 & & \\
\hline Writing to flash ROM & ZP.PFWRT & This function writes the buffer memory parameters, positioning data and block start data to the flash ROM. & Section 14.6 \\
\hline Parameter initialization & ZP.PINIT & This function initializes the buffer memory and flash ROM setting data to the factory-set data (initial values). & Section 14.7 \\
\hline
\end{tabular}

\subsection*{14.2 Interlock during dedicated instruction is executed}

The absolute position restoration instruction (Z.ABRST \(\square\) ), positioning start instruction (ZP.PSTRT \(\square\) ) and teaching instruction (ZP.TEACH \(\square\) ) cannot be executed simultaneously in each axis. If they are executed at the same time, the second and later instructions are ignored by an internal interlock (no error will occur).
The timing of the positioning start dedicated instruction (ZP.PSTRT \(\square\) ) is as shown below.


\subsection*{14.3 Z.ABRST1, Z.ABRST2, Z.ABRST3, Z.ABRST4}

These dedicated instructions restore the absolute position of the designated axis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Setting data} & \multicolumn{9}{|c|}{Usable device} \\
\hline & \multicolumn{2}{|l|}{Internal device} & \multirow[b]{2}{*}{File register} & \multicolumn{2}{|l|}{Link direct device J \(\square \square\)} & \multirow[t]{2}{*}{Intelligent function module UपIGロ} & \multirow[t]{2}{*}{Index register Zn} & Constant & \multirow[b]{2}{*}{Others} \\
\hline & Bit & Word & & Bit & Word & & & K, H & \\
\hline (S) & - & \multicolumn{2}{|c|}{\(\bigcirc\)} & \multicolumn{4}{|c|}{-} & - & - \\
\hline (D) & \(\bigcirc\) & \(\bigcirc\) & - & \multicolumn{4}{|c|}{-} & - & - \\
\hline
\end{tabular}

*1 If the originating station is a Basic model QCPU (function version B or later), universal model QCPU, or safety CPU, "" (double quotation) of the first argument can be omitted.

When Z.ABRST1, Z.ABRST2, Z.ABRST3, and Z.ABRST4 are common to each other, they are designated as
" Z.ABRSTD ".
[Setting data]
\begin{tabular}{|c|l|c|c|}
\hline Setting data & \multicolumn{1}{|c|}{ Setting details } & \begin{tabular}{c} 
Setting side \\
\((* 1)\)
\end{tabular} & Data type \\
\hline "Un" & \begin{tabular}{l} 
QD75 head I/O number \\
(00 to FE: High-order two digits of I/O number expressed in three digits)
\end{tabular} & User & BIN 16 bits \\
\hline\((S)\) & Head number of a device in which control data is stored & - & Device name \\
\hline (D) & \begin{tabular}{l} 
Head number of a bit device which turns ON the operation by one scan at the \\
time of completion of the instruction. \\
If the instruction is completed abnormally, ((D) + 1) will also be turned ON.
\end{tabular} & System & Bit \\
\hline
\end{tabular}

Note) The file register of each of the local device and the program cannot be used as a device for setting data.
*1: The data on the setting side is as follows.
- User
: Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.

\section*{[Control data]}
\begin{tabular}{|c|c|c|c|c|}
\hline Device & Item & Setting data & Setting range & \[
\begin{gathered}
\hline \text { Setting side } \\
(* 1) \\
\hline
\end{gathered}
\] \\
\hline (S)+0 & System area & - & - & - \\
\hline (S)+1 & Complete status & \begin{tabular}{l}
The state at the time of completion is stored. \\
- \(0 \quad\) :Normal completion \\
- Other than 0 :Abnormal completion (error code) (*2)
\end{tabular} & - & System \\
\hline (S)+2 & Signal received from servo amplifier & \begin{tabular}{l}
The following signal states taken in from the servo amplifier to the input module are written. \\
- b0: ABS data bit 0 \\
- b1: ABS data bit 1 \\
-b2: Transmission data READY flag
\end{tabular} & \[
\begin{aligned}
& \text { b0: 0/1 } \\
& \text { b1: } 0 / 1 \\
& \text { b2: } 0 / 1
\end{aligned}
\] & User \\
\hline (S)+3 & Signal transmitted to servo amplifier & \begin{tabular}{l}
The ON/OFF states of the following data which are calculated using the dedicated instructions by the "signals received from the servo amplifier" and output to the servo amplifier are stored. \\
- b0: Servo amplifier ON \\
- b1: ABS transfer mode \\
- b2: ABS request flag
\end{tabular} & - & System \\
\hline (S)+4 & Status & \begin{tabular}{l}
Status of communication with servo amplifier \\
- 0 : Communication completed \\
(Set by user at communication start) \\
- Other than 0: During communication (System stores)
\end{tabular} & 0 & User/system \\
\hline \[
\begin{gathered}
\hline(\mathrm{S})+5 \text { to } \\
(\mathrm{S})+7 \\
\hline
\end{gathered}
\] & System area & - & - & - \\
\hline
\end{tabular}
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.
*2: Refer to Section 15.3 for error codes at abnormal completion.
[Functions]
(1) The positioning data is read from the servo amplifier capable of processing the absolute positions of the axes to be set (See below), and the values converted with respect to a unit are stored in " Md. 20 Current feed value" and
" Md. 21 Machine feed value" area of the QD75.
- Z.ABRST1: Axis 1
- Z.ABRST2: Axis 2
- Z.ABRST3: Axis 3
- Z.ABRST4: Axis 4

For absolute position detection system, carry out the absolute position restoration operation each time the power is turned ON or CPU module is reset.

(2) An I/O module is used for communication (data read/write) with the servo amplifier capable of processing the absolute positions.
When using the Z.ABRST \(\square\), prepare the input/output with the following number of points, for each axis, for communication with the servo amplifier.
- Input : 3 points
- Output : 3 points

Refer to Section 12.6 for wiring of I/O signals.
(3) The Z.ABRST \(\square\) instruction completion can be confirmed using the complete devices ((D)+0) and ((D)+1).
(a) Complete device ((D)+0)

This device is turned ON by the END processing of the scan for which
Z.ABRST \(\square\) instruction is completed, and turned OFF by the next END processing.
(b) Complete state display device ((D)+1)

This device is turned ON and OFF according to the state in which Z.ABRST instruction is completed.
- When completed normally : Kept unchanged at OFF.
- When completed abnormally : This device is turned ON by the END processing of the scan for which Z.ABRST \(\square\) instruction is completed, and turned OFF by the next END processing (same ON/OFF operation as complete device).


The completion of absolute position restoration can be confirmed using the ((S)+4) "status".
(4) Using the Z.ABRST \(\square\) instruction, the absolute position restoration is carried out in the following procedure.

[Errors]
(1) When a dedicated instruction is completed abnormally, the error complete signal \(((\mathrm{D})+1)\) is turned ON , and the error code is stored in the complete status ((S)+1). Check and take a measure against the error referring to Section 15.3 "List of error codes".

\section*{[Precautions]}
(1) After the absolute position detection system is configured, the absolute position restoration must be carried out at least once after the power is turned ON or reset. Unless the absolute position restoration of the QD75 is completed, the servo amplifier will not be turned ON.
(2) Execute absolute position restoration when the PLC READY signal [Y0] is OFF.
(3) The restoration of the absolute position (Z.ABRST \(\square\) instruction execution) can also be carried out when the servo amplifier is turned ON. If this is carried out, however, the servo ON signal is turned OFF for approx. 60ms + scan time (servo OFF) and the motor may move.
When carrying out the absolute position restoration during servo OFF, install an electromagnetic brake and output the Z.ABRST \(\square\) instruction to that brake during the Z.ABRST \(\square\) instruction execution.
(4) The following dedicated instructions cannot be executed simultaneously for the same axis.
(Can be executed simultaneously for different axes.)
- Positioning start instructions (ZP.PSTRT1 to ZP.PSTRT4)
- Absolute position restoration instructions (Z.ABRST1 to Z.ABRST4)
- Teaching instructions (ZP.TEACH1 to ZP.TEACH4)
(5) When the remote I/O station* (Q Corresponding MELSECNET/H network remote I/O module) is used, the dedicated instruction (Z.ABRST \(\square\) ) is unusable.
(For the sequence program example for use when the dedicated instruction is not used, refer to the Mitsubishi General-Purpose AC Servo "Absolute Position Detection System" Installation Guide.)
*: For details of the remote I/O station, refer to Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O Network).
(6) If the \(\mathrm{Z.ABRST} \square\) instruction is executed in either of the following cases, an error "Dedicated instruction error" (error code: 804) will occur and absolute position restoration cannot be carried out.
- Any value other than 0 is set to "Status" (device: \((\mathrm{S})+4)\) of the control data (at communication start with servo amplifier).
- The instruction for a non-existent axis is specified.
(Example: The Z.ABRST2 instruction is specified when the QD75P1 is used.)
- "Status" (device: \((\mathrm{S})+4)\) of the control data is changed during absolute position restoration (during communication with servo amplifier).

\section*{[Program examples]}

Program to restore the absolute position of axis 1.
The X47 to X49 and Y50 to Y52 are used for communication with the servo amplifier.

X47: ABS data bit 0
X48: ABS data bit 1
X49: Transmission data READY flag
Y50: Servo ON signal
Y51: ABS transfer mode
Y52: ABS request flag


\subsection*{14.4 ZP.PSTRT1, ZP.PSTRT2, ZP.PSTRT3, ZP.PSTRT4}

These dedicated instructions are used to start the positioning of the designated axis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Setting data} & \multicolumn{9}{|c|}{Usable device} \\
\hline & \multicolumn{2}{|l|}{Internal device} & \multirow[b]{2}{*}{File register} & \multicolumn{2}{|l|}{Link direct device J \(\square \square\)} & \multirow[t]{2}{*}{Intelligent function module U \(\square\) IG \(\square\)} & \multirow[b]{2}{*}{Index register Zn} & Constant & \multirow[b]{2}{*}{Others} \\
\hline & Bit & Word & & Bit & Word & & & K, H & \\
\hline (S) & - & \multicolumn{2}{|c|}{\(\bigcirc\)} & \multicolumn{4}{|c|}{-} & - & - \\
\hline (D) & \(\bigcirc\) & \(\bigcirc\) & - & \multicolumn{4}{|c|}{-} & - & - \\
\hline
\end{tabular}

*1 If the originating station is a Basic model QCPU (function version B or later), universal model QCPU, or safety CPU, "" (double quotation) of the first argument can be omitted.
When ZP.PSTRT1, ZP.PSTRT2, ZP.PSTRT3, and ZP.PSTRT4 are common to each other, they are designated as
" ZP.PSTRT口".
[Setting data]
\begin{tabular}{|c|l|c|c|}
\hline Setting data & \multicolumn{1}{|c|}{ Setting details } & \begin{tabular}{c} 
Setting side \\
\((* 1)\)
\end{tabular} & Data type \\
\hline "Un" & \begin{tabular}{l} 
QD75 head I/O number \\
(00 to FE: High-order two digits of I/O number expressed in three digits)
\end{tabular} & User & BIN 16 bits \\
\hline (S) & Head number of a device in which control data is stored & - & Device name \\
\hline (D) & \begin{tabular}{l} 
Head number of a bit device which turns ON the operation by one scan at the \\
time of completion of the instruction. \\
If the instruction is completed abnormally, ((D) + 1) will also be turned ON.
\end{tabular} & System & Bit \\
\hline
\end{tabular}

Note) The file register of each of the local device and the program cannot be used as a device for setting data.
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.

\section*{[Control data]}
\begin{tabular}{|c|c|c|c|c|}
\hline Device & Item & Setting data & Setting range & Setting side
\[
(* 1)
\] \\
\hline (S)+0 & System area & - & - & - \\
\hline (S)+1 & Complete status & \begin{tabular}{l}
The state at the time of completion is stored. \\
- \(0 \quad\) : Normal completion \\
- Other than 0: Abnormal completion (error code)(*2)
\end{tabular} & - & System \\
\hline (S)+2 & Start No. & \begin{tabular}{l}
The following data Nos. to be started by the ZP.PSTRT \(\square\) instruction are designated. \\
- Positioning data No. : 1 to 600 \\
- Block start : 7000 to 7004 \\
- Machine OPR : 9001 \\
- Fast OPR :9002 \\
- Current value changing :9003 \\
- Multiple axes simultaneous start: 9004
\end{tabular} & \[
\begin{gathered}
1 \text { to } 600 \\
7000 \text { to } 7004 \\
9001 \text { to } 9004
\end{gathered}
\] & User \\
\hline
\end{tabular}
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.
*2: Refer to Section 15.3 for error codes at abnormal completion.
[Functions]
(1) The positioning start of the axes to be processed (See below) is carried out.
- ZP.PSTRT1: Axis 1
- ZP.PSTRT2: Axis 2
- ZP.PSTRT3: Axis 3
- ZP.PSTRT4: Axis 4
(2) The block start, OPR start, current value changing, and multiple axes simultaneous start can be carried out by the setting of "start number" 7000 to 7004/9001 to 9004 in ((S)+2).
(3) The ZP.PSTRT \(\square\) instruction completion can be confirmed using the complete devices ((D)+0) and ((D)+1).
(a) Complete device ((D)+0)

This device is turned ON by the END processing of the scan for which ZP.PSTRT \(\square\) instruction is completed, and turned OFF by the next END processing.
(b) Complete state display device ((D)+1)

This device is turned ON and OFF according to the state in which
ZP.PSTRT \(\square\) instruction is completed.
- When completed normally : Kept unchanged at OFF.
- When completed abnormally : This device is turned ON by the END processing of the scan for which ZP.PSTRT \(\square\) instruction is completed, and turned OFF by the next END processing (same ON/OFF operation as complete device).


\section*{[Errors]}
(1) When an ZP.PSTRT \(\square\) instruction is completed abnormally, the error complete signal ((D)+1) is turned ON, and the error code is stored in the complete status ((S) +1 ).
Check and take a measure against the error referring to Section 15.3 "List of error codes".

\section*{[Precautions]}
(1) When positioning is started by the ZP.PSTRT \(\square\) instruction, the positioning start signals ( Y 10 to Y 13 ) will not turn ON.
Therefore, the start complete signal (X10 to X13) cannot be used for confirming completion of start of positioning.
To confirm that positioning control is being executed, use the ZP.PSTRT \(\square\) start command or BUSY signals (XC to XF).
(2) If, after positioning has been started by the ZP.PSTRT■ instruction, a stop command is input before positioning is complete, the complete device (D) turns ON one scan and the execution of the ZP.PSTRTD instruction is completed.
(3) The following dedicated instructions cannot be executed simultaneously for the same axis.
(Can be executed simultaneously for different axes.)
- Positioning start instructions (ZP.PSTRT1 to ZP.PSTRT4)
- Absolute position restoration instructions (Z.ABRST1 to Z.ABRST4)
- Teaching instructions (ZP.TEACH1 to ZP.TEACH4)
(4) The ZP.PSTRT \(\square\) instruction can only be executed when the QD75 READY signal (XO) is turned ON.
Even if the ZP.PSTRT \(\square\) instruction execution request is given when the QD75 READY signal is turned OFF, the ZP.PSTRT \(\square\) instruction will not be executed. (not processed.)
Before executing the ZP.PSTRT \(\square\) instruction, turn ON the PLC READY signal (Y0), and turn ON the QD75 READY signal (XO).
(5) When the remote I/O station* (Q Corresponding MELSECNET/H network remote I/O module) is used, the dedicated instruction (ZP.PSTRT \(\square\) ) is unusable.
*: For details of the remote I/O station, refer to Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O Network).
(6) If the ZP.PSTRT \(\square\) instruction is executed in either of the following cases, an error "Dedicated instruction error" (error code: 804) will occur and positioning cannot be started.
- Any value other than 1 to 600, 7000 to 7004 , and 9001 to 9004 is set to "Starting number" (device: (S)+2) of the control data.
- The instruction for a non-existent axis is specified.
(Example: The ZP.PSTRT2 instruction is specified when the QD75P1 is used.)
(7) When the multiple axes simultaneous start is executed by ZP.PSTRT \(\square\) instruction, the completion device (D) will turn ON when the positioning of the axes executed by ZP.PSTRT \(\square\) instructions is completed. (When the instructions is ZP.PSTRT1, the axis will be axis 1.)

\section*{[Program examples]}
- The following program executes the positioning start of positioning data No. 1 when X100 turns ON.
Use D30 to D32 as the control data devices of positioning data No. 1, and M32 and M33 as the completion devices.
(1) Positioning start program

(2) Positioning start program (when the dedicated instruction is not used)


\subsection*{14.5 ZP.TEACH1, ZP.TEACH2, ZP.TEACH3, ZP.TEACH4}

This dedicated instruction is used to teach the designated axis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Setting data} & \multicolumn{9}{|c|}{Usable device} \\
\hline & \multicolumn{2}{|l|}{Internal device} & \multirow[b]{2}{*}{File register} & \multicolumn{2}{|l|}{Link direct device J \(\square \square\)} & \multirow[t]{2}{*}{Intelligent function module U \(\square\) IG \(\square\)} & \multirow[b]{2}{*}{Zn} & Constant & \multirow[b]{2}{*}{Others} \\
\hline & Bit & Word & & Bit & Word & & & K, H & \\
\hline (S) & - & \multicolumn{2}{|c|}{\(\bigcirc\)} & \multicolumn{4}{|c|}{-} & - & - \\
\hline (D) & \(\bigcirc\) & \(\bigcirc\) & - & \multicolumn{4}{|c|}{-} & - & - \\
\hline
\end{tabular}

*1 If the originating station is a Basic model QCPU (function version B or later), universal model QCPU, or safety CPU, "" (double quotation) of the first argument can be omitted.

When ZP.TEACH1, ZP.TEACH2, ZP.TEACH3, and ZP.TEACH4 are common to each other, they are designated as "ZP.TEACH口".
[Setting data]
\begin{tabular}{|c|l|c|c|}
\hline Setting data & \multicolumn{1}{|c|}{ Setting details } & \begin{tabular}{c} 
Setting side \\
\((* 1)\)
\end{tabular} & Data type \\
\hline "Un" & \begin{tabular}{l} 
QD75 head I/O number \\
(00 to FE: High-order two digits of I/O number expressed in three digits)
\end{tabular} & User & BIN 16 bits \\
\hline (S) & Head number of a device in which control data is stored & - & Device name \\
\hline (D) & \begin{tabular}{l} 
Head number of a bit device which turns ON the operation by one scan at the \\
time of completion of the instruction. \\
If the instruction is completed abnormally, ((D) + 1) will also be turned ON.
\end{tabular} & System & Bit \\
\hline
\end{tabular}

Note) The file register of each of the local device and the program cannot be used as a device for setting data.
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.
[Control data]
\begin{tabular}{|c|c|c|c|c|}
\hline Device & Item & Setting data & Setting range & Setting side
\[
(* 1)
\] \\
\hline (S)+0 & System area & - & - & - \\
\hline (S)+1 & Complete status & The state at the time of completion is stored. & - & System \\
\hline (S)+2 & Teaching data selection & \begin{tabular}{l}
The address (positioning address/arc address) to which the current feed value is written is set. \\
0 : Current feed value is written to positioning address. \\
1: Current feed value is written to arc address.
\end{tabular} & 0, 1 & User \\
\hline (S)+3 & Positioning data No. & The positioning data No. for which teaching is carried out is set. & 1 to 600 & User \\
\hline
\end{tabular}
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.
*2: Refer to Section 15.3 for error codes at abnormal completion.

\section*{[Functions]}
(1) The "current feed value" of the axes to be set (See below) is set in the positioning address or arc address.
The positioning data other than the positioning addresses and arc addresses are set by peripheral device or using a sequence program.
- ZP.TEACH1: Axis 1
- ZP.TEACH2: Axis 2
- ZP.TEACH3: Axis 3
- ZP.TEACH4: Axis 4
(2) Teaching can be carried out for the positioning data No. 1 to 600.
(3) The movement of the machine to the address (position) set in the positioning address/arc address of the positioning data is carried out by the JOG operation, inching operation, or manual pulse generator operation.
(4) The ZP.TEACH \(\square\) instruction completion can be confirmed using the complete devices \(((D)+0)\) and \(((D)+1)\).
(a) Complete device ((D)+0)

This device is turned ON by the END processing of the scan for which ZP.TEACH \(\square\) instruction is completed, and turned OFF by the next END processing.
(b) Complete state display device ((D)+1)

This device is turned ON and OFF according to the state in which
ZP.TEACH \(\square\) instruction is completed.
- When completed normally : Kept unchanged at OFF.
- When completed abnormally : This device is turned ON by the END processing of the scan for which ZP.TEACH \(\square\) instruction is completed, and turned OFF by the next END processing (same ON/OFF operation as complete device).


\section*{[Errors]}
(1) When a ZP.TEACH instruction is completed abnormally, the error complete signal \(((D)+1)\) is turned ON, and the error code is stored in the complete status (S)+1. Check and take a measure against the error referring to Section 15.3 "List of error codes".

\section*{[Precautions]}
(1) The following dedicated instructions cannot be executed simultaneously for the same axis.
(Can be executed simultaneously for different axes.)
- Positioning start instructions (ZP.PSTRT1 to ZP.PSTRT4)
- Absolute position restoration instructions (Z.ABRST1 to Z.ABRST4)
- Teaching instructions (ZP.TEACH1 to ZP.TEACH4)
(2) The ZP.TEACH \(\square\) instruction can only be executed when the BUSY signal (XC, \(X D, X E, X F)\) is turned OFF.
When the BUSY signal is turned ON, the ZP.TEACH \(\square\) instruction will not be executed. (not processed.)
Before executing the ZP.TEACH \(\square\) instruction, make sure that the BUSY signal for the axis to be processed is turned OFF.
(3) When the remote I/O station* (Q Corresponding MELSECNET/H network remote I/O module) is used, the dedicated instruction (ZP.TEACH \(\square\) ) is unusable.
*: For details of the remote I/O station, refer to Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O Network).
(4) If the ZP.TEACH \(\square\) instruction is executed in any of the following cases, an error "Dedicated instruction error" (error code: 804) will occur and teaching cannot be performed.
- Any value other than 0 and 1 is set to "Teaching selection" (device: \((\mathrm{S})+2\) ) of the control data.
- Any value other than 1 to 600 is set to "Positioning No." (device: \((\mathrm{S})+3\) ) of the control data.
- The instruction for a non-existent axis is specified.
(Example: The ZP.TEACH2 instruction is specified when the QD75P1 is used.)

\section*{[Program example]}

Program to execute the teaching of the positioning data No. 3 of the axis 1 when X39 is turned ON.
(1) Teaching program

Positioning is carried out for a target position by manual operation.

(2) Teaching program (when the dedicated instruction is not used)

Positioning is carried out for a target position by manual operation.


\subsection*{14.6 ZP.PFWRT}

These dedicated instructions are used to write the QD75 parameters, positioning data and block start data to the flash ROM.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Setting data} & \multicolumn{9}{|c|}{Usable device} \\
\hline & \multicolumn{2}{|l|}{Internal device} & \multirow[b]{2}{*}{File register} & \multicolumn{2}{|l|}{Link direct device \(\mathrm{J} \square \square\)} & \multirow[t]{2}{*}{Intelligent function module UपIGロ} & \multirow[b]{2}{*}{Index register Zn} & Constant & \multirow[b]{2}{*}{Others} \\
\hline & Bit & Word & & Bit & Word & & & K, H & \\
\hline (S) & - & \multicolumn{2}{|c|}{\(\bigcirc\)} & \multicolumn{4}{|c|}{-} & - & - \\
\hline (D) & \(\bigcirc\) & \(\bigcirc\) & - & \multicolumn{4}{|c|}{-} & - & - \\
\hline
\end{tabular}

*1 If the originating station is a Basic model QCPU (function version B or later), universal model QCPU, or safety CPU, "" (double quotation) of the first argument can be omitted.
[Setting data]
\begin{tabular}{|c|l|c|c|}
\hline Setting data & \multicolumn{1}{|c|}{ Setting details } & \begin{tabular}{c} 
Setting side \\
\((* 1)\)
\end{tabular} & Data type \\
\hline "Un" & \begin{tabular}{l} 
QD75 head I/O number \\
(00 to FE: High-order two digits of I/O number expressed in three digits)
\end{tabular} & User & BIN 16 bits \\
\hline (S) & Head number of a device in which control data is stored & - & Device name \\
\hline (D) & \begin{tabular}{l} 
Head number of a bit device which turns ON the operation by one scan at the \\
time of completion of the instruction. \\
If the instruction is completed abnormally, ((D) + 1) will also be turned ON.
\end{tabular} & System & Bit \\
\hline
\end{tabular}

Note) The file register of each of the local device and the program cannot be used as a device for setting data.
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.
[Control data]
\begin{tabular}{|c|c|c|c|c|}
\hline Device & \multicolumn{1}{|c|}{ Item } & Setting data & \begin{tabular}{c} 
Setting \\
Range
\end{tabular} & \begin{tabular}{c} 
Setting side \\
\((* 1)\)
\end{tabular} \\
\hline\((\mathrm{S})+0\) & System area & - & - & - \\
\hline\((\mathrm{S})+1\) & Complete status & \begin{tabular}{l} 
The state at the time of completion is stored. \\
\(0 \quad\) Normal completion \\
Other than 0 :Abnormal completion (error code) \((* 2)\)
\end{tabular} & - & System \\
\hline
\end{tabular}
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.
*2: Refer to Section 15.3 for error codes at abnormal completion.

\section*{[Functions]}
(1)The ZP.PFWRT instruction completion can be confirmed using the complete devices ((D)+0) and ((D)+1).
(a) Complete device ((D)+0)

This device is turned ON by the END processing of the scan for which ZP.PFWRT instruction is completed, and turned OFF by the next END processing.
(b) Complete state display device ((D)+1)

This device is turned ON and OFF according to the state in which ZP.PFWRT instruction is completed.
- When completed normally : Kept unchanged at OFF.
- When completed abnormally : This device is turned ON by the END processing of the scan for which ZP.PFWRT instruction is completed, and turned OFF by the next END processing (same ON/OFF operation as complete device).


\section*{[Errors]}
(1) When a dedicated instruction is completed abnormally, the error complete signal \(((\mathrm{D})+1)\) is turned ON , and the error code is stored in the complete status ((S)+1). Check and take measures against the error referring to Section 15.3 "List of error codes".

\section*{[Precautions]}
(1) Do not turn ON the power and reset the CPU module while parameters, positioning data and block start data are written to the flash ROM using the ZP.PFWRT instruction.
A parameter error will occur or normal positioning start will become impossible because the parameters, positioning data and block start data are not written normally to the flash ROM.
If this occurs, restart the operation by the method shown below.
- For GX Configurator-QP or GX Works2, write the parameters, positioning data and block start data again to the flash ROM.
- For a sequence program, write the parameters, positioning data and block start data to the QD75 after initializing the parameters (ZP.PINIT instruction execution and others).
Then execute the ZP.PFWRT instruction again.
(2) Writing to the flash ROM can be executed up to 100,000 times.

If writing to the flash ROM exceeds 100,000 times, the writing may become impossible.
(3) After the power ON and CPU module reset operation, writing to the flash ROM using a sequence program is limited to up to 25 times. (Not limited to up to 25 times when writing to the flash ROM is carried out by peripheral device.) If the 26th or more writing is requested after the power ON/CPU module reset operation, an error "flash ROM write number error" (error code: 805) will occur, and the writing will be disabled. If a flash ROM write error occurs by one writing to the flash ROM, check and correct the flash ROM writing program. Then reset the error or turn ON the power and reset the CPU module again.
(4) The ZP.PFWRT instruction can only be executed when the QD75 READY signal (X0) is turned OFF.
When the QD75 READY signal is turned ON, the ZP.PFWRT instruction cannot be executed.
Before executing the ZP.PFWRT instruction, turn OFF the PLC READY signal (YO) and then turn OFF the QD75 READY signal.
(5) When the remote I/O station* (Q Corresponding MELSECNET/H network remote I/O module) is used, the dedicated instruction (ZP.PFWRT) is unusable.
*: For details of the remote I/O station, refer to Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O Network).

\section*{[Program example]}

Program used to write the parameters and positioning data stored in the buffer memory to the flash ROM when X3D is turned ON.
(1) Flash ROM write program

[Program example for use when dedicated instruction is not used]
(2) Flash ROM write program (when the dedicated instruction is not used)


\subsection*{14.7 ZP.PINIT}

This dedicated instruction is used to initialize the setting data of the QD75.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Setting data} & \multicolumn{9}{|c|}{Usable device} \\
\hline & \multicolumn{2}{|l|}{Internal device} & \multirow[b]{2}{*}{File register} & \multicolumn{2}{|l|}{Link direct device J \(\square \square \square\)} & \multirow[b]{2}{*}{U \(\square \backslash \mathrm{G} \square\)} & \multirow[t]{2}{*}{Index register Zn} & Constant & \multirow[b]{2}{*}{Others} \\
\hline & Bit & Word & & Bit & Word & & & K, H & \\
\hline (S) & - & \multicolumn{2}{|c|}{\(\bigcirc\)} & \multicolumn{4}{|c|}{-} & - & - \\
\hline (D) & \(\bigcirc\) & \(\bigcirc\) & - & & & & & - & - \\
\hline
\end{tabular}

*1 If the originating station is a Basic model QCPU (function version B or later), Universal model QCPU, or safety CPU, "" (double quotation) of the first argument can be omitted.
[Setting data]
\begin{tabular}{|c|l|c|c|}
\hline Setting data & \multicolumn{1}{|c|}{ Setting details } & \begin{tabular}{c} 
Setting side \\
\((* 1)\)
\end{tabular} & Data type \\
\hline "Un" & \begin{tabular}{l} 
QD75 head I/O number \\
(00 to FE: High-order two digits of I/O number expressed in three digits)
\end{tabular} & User & BIN 16 bits \\
\hline (S) & Head number of a device in which control data is stored & - & Device name \\
\hline (D) & \begin{tabular}{l} 
Head number of a bit device which turns ON the operation by one scan at the \\
time of completion of the instruction. \\
If the instruction is completed abnormally, ((D) + 1) will also be turned ON.
\end{tabular} & System & Bit \\
\hline
\end{tabular}

Note) The file register of each of the local device and the program cannot be used as a device for setting data.
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.
[Control data]
\begin{tabular}{|c|l|c|c|c|}
\hline Device & \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Setting data } & Setting range & \begin{tabular}{c} 
Setting side \\
\((* 1)\)
\end{tabular} \\
\hline\((\mathrm{S})+0\) & System area & - & - & - \\
\hline\((\mathrm{S})+1\) & Complete status & \begin{tabular}{c} 
The state at the time of completion is stored. \\
\(0 \quad: \quad\) Normal completion \\
Other than 0: Abnormal completion (error code) \((* 2)\)
\end{tabular} & - & System \\
\hline
\end{tabular}
*1: The data on the setting side is as follows.
- User : Data before the execution of dedicated instructions is stored by user.
- System : Data after the execution of dedicated instruction is stored by CPU module.
*2: Refer to Section 15.3 for error codes at abnormal completion.

\section*{[Functions]}
(1) This dedicated instruction is used to return the setting data set in the QD75 buffer memory and flash ROM to their factory-set data (initial values).
\begin{tabular}{|l|}
\multicolumn{1}{c}{ Initialized setting data } \\
\hline Parameters (Pr. 1 to Pr.57, Pr. 150 ) \\
\hline Positioning data (No. 1 to No. 600) \\
\hline Block start data (No. 7000 to 7004) \\
\hline
\end{tabular}
(2) The ZP.PINIT instruction completion can be confirmed using the complete devices \(((D)+0)\) and ((D)+1).
(a) Complete device ((D)+0)

This device is turned ON by the END processing of the scan for which ZP.PINIT instruction is completed, and turned OFF by the next END processing.
(b) Complete state display device ((D)+1)

This device is turned ON and OFF according to the state in which ZP.PINIT instruction is completed.
- When completed normally : Kept unchanged at OFF.
- When completed abnormally : This device is turned ON by the END processing of the scan for which ZP.PINIT instruction is completed, and turned OFF by the next END processing (same ON/OFF operation as complete device).


\section*{[Errors]}
[Precautions]
(1) When a dedicated instruction is completed abnormally, the error complete signal \(((\mathrm{D})+1)\) is turned ON , and the error code is stored in the complete status ((S)+1). Check and take measures against the error referring to Section 15.3 "List of error codes".
(1) The ZP.PINIT instruction can only be executed when the QD75 READY signal (XO) is turned OFF.
When the QD75 READY signal is turned ON, the ZP.PINIT instruction cannot be executed.
Before executing the ZP.PINIT instruction, turn OFF the PLC READY signal (YO) and then turn OFF the QD75 READY signal.
(2) When the remote I/O station* (Q Corresponding MELSECNET/H network remote I/O module) is used, the dedicated instruction (ZP.PINIT) is unusable.
*: For details of the remote I/O station, refer to Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O Network).
(3) Writing to the flash ROM can be executed up to 100,000 times. If writing to the flash ROM exceeds 100,000 times, the writing may become impossible.
(4) After the power ON and CPU module reset operation, writing to the flash ROM using a sequence program is limited to up to 25 times. (Not limited to up to 25 times when writing to the flash ROM is carried out by peripheral device.) If the 26th or more writing is requested after the power ON/CPU module reset operation, an error "flash ROM write number error" (error code: 805) will occur, and the writing will be disabled. If a flash ROM write error occurs by one writing to the flash ROM, check and correct the flash ROM writing program. Then reset the error or turn ON the power and reset the CPU module again.

\section*{[Program example]}

The following program initializes the parameters in buffer memory and flash ROM when X3C turns ON.
(1) Parameter initialization program

(2) Parameter initialization program (when the dedicated instruction is not used)


\section*{MEMO}

\section*{CHAPTER 15 TROUBLESHOOTING}

The "errors" and "warnings" detected by the QD75 are explained in this chapter.
Errors can be confirmed with the QD75 LED display and peripheral devices.
When an error or warning is detected, confirm the detection details and carry out the required measures.
15.1 Troubleshooting ..... 15- 2
15.2 Error and warning details ..... 15- 6
15.3 List of errors ..... 15-10
15.4 List of warnings ..... 15-40

\subsection*{15.1 Troubleshooting}
(1) Troubleshooting using the LEDs

Check items and corrective actions for troubleshooting using the indicator LEDs of the QD75 are described below.
(a) When the RUN LED turns off
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check item } & \multicolumn{1}{c|}{ Action } \\
\hline Is the power supplied? & \begin{tabular}{l} 
Check that the voltage supplied to the power supply module \\
is within the rated range.
\end{tabular} \\
\hline \begin{tabular}{l} 
Is the power supply \\
capacity sufficient?
\end{tabular} & \begin{tabular}{l} 
Calculate the total current consumption of the connected \\
modules (CPU module, I/O modules, and intelligent function \\
modules) and check that the power supply capacity is not \\
insufficient.
\end{tabular} \\
\hline \begin{tabular}{l} 
Is the module connected \\
correctly?
\end{tabular} & \begin{tabular}{l} 
Check that the module is correctly connected to the base \\
unit.
\end{tabular} \\
\hline
\end{tabular}

If there is no problem on the above check items, a watchdog timer error may have occurred. Reset the CPU module and check that the RUN LED turns on.
If not, the possible cause is a hardware failure. Please consult your local Mitsubishi representative.
(b) When the ERR. LED turns on
\begin{tabular}{|c|l|}
\hline Check item & \multicolumn{1}{|c|}{ Action } \\
\hline Is there a system error? & \begin{tabular}{l} 
An error may have occurred in the CPU module. Check the \\
error and take a corrective action.
\end{tabular} \\
\hline
\end{tabular}
(c) When the ERR. LED and axis LED flash
\begin{tabular}{|c|l|}
\hline Check item & \multicolumn{1}{c|}{ Action } \\
\hline Is there an axis error? & \begin{tabular}{l} 
Check the error code and take the action described in \\
Section 15.3.
\end{tabular} \\
\hline
\end{tabular}
(d) When all LEDs turn on

Reset the CPU module and check that the module is in the normal status. If all LEDs still turn on, the possible cause is a hardware failure. Please consult your local Mitsubishi representative.

\section*{(2) Troubleshooting when a motor does not rotate}

Check items and corrective actions for troubleshooting when a motor does not rotate are described below.
POINT
The following signals must be ON for the QD75 to operate (excluding when the positioning test function of GX Works2 is used).
- QD75 READY signal (X0)
- Drive unit READY signal
- Upper limit signal and Lower limit signal

The status of the drive unit READY signal and upper/lower limit signals can be checked in b0 to b2 of " Md. 30 External I/O signal".
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check item } & \multicolumn{1}{c|}{ Action } \\
\hline \begin{tabular}{l} 
Are the QD75 READY signal (X0), drive \\
unit READY signal, and upper/lower \\
limit signals ON?
\end{tabular} & \begin{tabular}{l} 
Review and correct the program and wiring so that all the \\
QD75 READY signal (X0), drive unit READY signal, and \\
upper/lower limit signals turn ON.
\end{tabular} \\
\hline \begin{tabular}{l} 
Is there an error in the QD75? (ERR. \\
LED is on or flashing)
\end{tabular} & Check the error code and take a corrective action. \\
\hline Is the drive unit powered ON? & Power on the drive unit. \\
\hline Is there an error in the drive unit? & \begin{tabular}{l} 
Check the error code of the drive unit and take a corrective \\
action.
\end{tabular} \\
\hline \begin{tabular}{l} 
Is the wiring between the QD75 and \\
drive unit correct?
\end{tabular} & \begin{tabular}{l} 
Check the wiring between the QD75 and drive unit, and \\
correct it.
\end{tabular} \\
\hline \begin{tabular}{l} 
Is the wiring between the drive unit and \\
motor correct?
\end{tabular} & \begin{tabular}{l} 
Check the wiring between the drive unit and motor, and \\
correct it.
\end{tabular} \\
\hline \begin{tabular}{l} 
Is the value in " \\
value" changed after positioning control \\
is performed?
\end{tabular} & \begin{tabular}{l} 
Review the start program.
\end{tabular} \\
\hline \begin{tabular}{l} 
Is the number of the input pulses for \\
monitoring changed after positioning \\
control is performed? \(* 1\)
\end{tabular} & \begin{tabular}{l} 
Refer to the drive unit operating manual and check that the \\
function to suppress the motor rotation is not working.
\end{tabular} \\
\hline \begin{tabular}{l} 
Isn't the value in " \\
operation status" "1: Stopped"?
\end{tabular} & \begin{tabular}{l} 
Axis \\
Review the stop program. \\
Check that the stop signal (STOP) is not input.
\end{tabular} \\
\hline \begin{tabular}{l} 
Does the pulse output mode setting \\
meet the specifications of the drive \\
unit?
\end{tabular} & \begin{tabular}{l} 
Set the value in " Pr.5 Pulse output mode" so that it \\
satisfies the specifications of the drive unit.
\end{tabular} \\
\hline \begin{tabular}{l} 
Does the output logic setting of the \\
command pulse signal meet the \\
specifications of the drive unit?
\end{tabular} & \begin{tabular}{l} 
Set the value of the logic selection of the command pulse \\
signal ( Pr.23 Output signal logic selection: b0) so that it \\
satisfies the specifications of the drive unit.
\end{tabular} \\
\hline
\end{tabular}
*1: This check item applies only for the drive unit having a monitor function for the number of input pulses.

If a motor does not rotate even after the above items are checked, the possible cause is a hardware failure.

Please consult your local Mitsubishi representative.
(3) Troubleshooting when a motor does not rotate as intended. Check items and corrective actions for troubleshooting when a motor does not rotate as intended are described below.
(a) When a motor rotates only in one direction
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check item } & \multicolumn{1}{c|}{ Action } \\
\hline Is the wiring correct? & \begin{tabular}{l} 
Check that the signal line of the pulse output (for axis 1, \\
connector pin No. "1A15 to 18") is correctly wired or not \\
disconnected.
\end{tabular} \\
\hline \begin{tabular}{l} 
Does the pulse output mode \\
setting meet the \\
specifications of the drive \\
unit?
\end{tabular} & \begin{tabular}{l} 
Set the value in " Pr.5 Pulse output mode" so that it \\
satisfies the specifications of the drive unit.
\end{tabular} \\
\hline
\end{tabular}
(b) When a motor rotates in the opposite direction
\begin{tabular}{|c|c|}
\hline Check item & Action \\
\hline Is the wiring correct? & Check that the signal line of the pulse output (for axis 1, connector pin No. "1A15 to 18") is wired correctly. (CW and CCW or phase A and phase B should be correctly wired.) \\
\hline \begin{tabular}{l}
Do the values in " Pr. 6 \\
Rotation direction setting" and \\
" Pr. 23 Output signal logic selection (b0: Command pulse signal) " match the settings of the drive unit?
\end{tabular} & Check that the values in " Pr. 6 Rotation direction setting" and " Pr. 23 Output signal logic selection (bO: Command pulse signal)" match the settings of the drive unit. \\
\hline
\end{tabular}
(c) When a motor does not rotate at the set speed
\begin{tabular}{|c|c|}
\hline Check item & Action \\
\hline & \begin{tabular}{l}
[When " Md. 28 Axis feedrate" indicates the set speed] \\
- Check that the values in " Pr. 2 No. of pulses per rotation", " Pr. 3 Movement amount per rotation", and " Pr. 4 Unit magnification" meet the system. \\
- When the drive unit has the electronic gear function, check that the settings meet the system.
\end{tabular} \\
\hline Does the value in " Md. 28 Axis feedrate" indicate the set speed? & \begin{tabular}{l}
When " Md. 28 Axis feedrate" does not indicate the set speed] \\
- Check that the speed is not limited by the value in \\
" Pr. 8 Speed limit value". \\
- In the JOG operation, Check that the speed is not limited by the value in " Pr. 31 JOG speed limit value". \\
- In the JOG operation, check that Forward/Reverse run JOG start signals (Y8 to YF) do not repeatedly turn ON and OFF.
\end{tabular} \\
\hline
\end{tabular}
(d) When the set position is not reached
\begin{tabular}{|c|c|}
\hline Check item & Action \\
\hline \multirow[t]{2}{*}{Does the value in " Md. 20 Current feed value" indicate the intended position when the motor stops?} & \begin{tabular}{l}
[When " Md. 20 Current feed value" reaches the set position] \\
- Check that the values in " Pr. 2 No. of pulses per rotation", " Pr. 3 Movement amount per rotation", and " Pr. 4 Unit magnification" meet the system. \\
- When the drive unit has the electronic gear function, check that the settings meet the system.
\end{tabular} \\
\hline & \begin{tabular}{l}
[When " Md. 20 Current feed value" does not reaches the set position] \\
- Check that the motor is not stopped by Axis stop signals (Y4 to Y7) or a stop signal (STOP). If a motor is stopped by them, the value "1: Stopped" is stored in " Md. 26 Axis operation status".
\end{tabular} \\
\hline
\end{tabular}

\subsection*{15.2 Error and warning details}

\section*{[1] Errors}

\section*{Types of errors}

Errors detected by the QD75 include parameter setting range errors and errors at the operation start or during operation.
(1) Parameter setting range errors

The parameters are checked when the power is turned ON and at the rising edge (OFF \(\rightarrow\) ON) of the PLC READY signal [Y0]. An error will occur if there is a mistake in the parameter setting details at that time.
When this kind of error occurs, the QD75 READY signal does not turn ON. To cancel this kind of error, set the correct value in the parameter for which the error occurred, and then turn ON the PLC READY signal [Y0].
(2) Errors at the operation start or during operation

These are errors that occur at the operation start or during operation when the positioning control, JOG operation, or inching operation is used. If an axis error occurs during interpolation operation, the error No. will be stored in both the reference axis and the interpolation axis.
Note that, in the following cases (a) and (b), the axis error No. will be stored only in the reference axis during analysis of the positioning data set in each point of the positioning start data table.
(a) When the interpolation axis is BUSY.
(b) When the error occurred in positioning data or parameters unrelated to interpolation control.
If the error occurred at the simultaneous start of a positioning operation, the axis error storage details will differ depending on whether the error occurred before or after the simultaneous start.
- If the error occurred before the simultaneous start (illegal axis No., other axis BUSY, etc.), an error "Error before simultaneous start" (error code: 501) will occur.
- If the error occurred after the simultaneous start (positioning data error, software stroke limit error, etc.), an error code corresponding to the axis in which the error occurred will be stored. Because a simultaneous start cannot be carried out due to this, an error "Simultaneous start not possible" (error code: 532) error code will be stored in all axes in which an error has not occurred.
The axis operation status will be displayed as "error occurring" for axes in which an error occurred.
If an error occurs during operation, any moving axes will deceleration stop, and their operation status will be displayed as "error occurring".
All axes will decelerate to a stop during interpolation operations, even if the error occurs in only one axis.
(3) Types of error codes
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error code } & \multicolumn{1}{|c|}{ Error type } \\
\hline 001 to 009 & Fatal error \\
\hline 100 to 199 & Common error \\
\hline 200 to 299 & Error at OPR or absolute position restoration \\
\hline 300 to 399 & \begin{tabular}{l} 
Error during JOG operation or during inching \\
operation
\end{tabular} \\
\hline 500 to 599 & Error during positioning operation \\
\hline 800 to 899 & I/F (Interface) error \\
\hline 900 to 999 & Error during parameter setting range check \\
\hline
\end{tabular}

15-6

Error storage
When an error occurs, the error detection signal turns ON, and the error code corresponding to the error details is stored in the following buffer memory address (Md. 23 Axis error No.) for axis error No. storage.
\begin{tabular}{|c|c|c|}
\hline Axis No. & Error detection signal & Buffer memory address \\
\hline 1 & X8 & 806 \\
\hline 2 & X9 & 906 \\
\hline 3 & XA & 1006 \\
\hline 4 & XB & 1106 \\
\hline
\end{tabular}

A new error code is stored in the buffer memory address (Md. 23 Axis error No.) for axis error storage every time an error occurs.

\section*{POINT}

When any of the following errors is detected, it is stored in the axis error No. of axis 1. Error code: 001, 002, 107, 800, 801, 802, 805

\section*{[2] Warnings}

\section*{- Types of warnings}
(1) Warnings include system warnings and axis warnings.

The types of system warnings are shown below.
- System control data setting warnings

An axis warning for axis 1 will occur.
- Positioning data setting warnings

An axis warning for each axis will occur.
Note that a warning will occur for the reference axis when an interpolation designation or axis setting warning occurs.
(2) Axis warnings occur due to setting warnings from operations such as positioning operations, JOG operations, manual pulse generator operations, or system errors. They can be canceled by turning ON the " Cd. 5 Axis error reset".
Note that some warnings cannot be canceled unless the cause of the warning is eliminated.
The axis operation status does not change even if an axis warning occurs.
(3) Types of warning codes
\begin{tabular}{|c|l|}
\hline Warning code & \multicolumn{1}{|c|}{ Warning type } \\
\hline 100 to 199 & Common warning \\
\hline 300 to 399 & Warning during JOG operation \\
\hline 400 to 499 & Warning during manual pulse generator operation \\
\hline 500 to 599 & Warning during positioning operation \\
\hline
\end{tabular}

Warning storage
(1) When an axis warning occurs, the warning code corresponding to the warning details is stored in the following buffer memory (Md.24 Axis warning No.) for axis warning No. storage.
\begin{tabular}{|c|c|}
\hline Axis No. & Buffer memory address \\
\hline 1 & 807 \\
\hline 2 & 907 \\
\hline 3 & 1007 \\
\hline 4 & 1107 \\
\hline
\end{tabular}
(2) When an axis warning occurs in a positioning operation, etc., "1" is set in bit 9 (b9) of the following buffer memory (Md.31 Status) for axis status storage.
\begin{tabular}{|c|c|}
\hline Axis No. & Buffer memory address \\
\hline 1 & 817 \\
\hline 2 & 917 \\
\hline 3 & 1017 \\
\hline 4 & 1117 \\
\hline
\end{tabular}
[3] Resetting errors and warnings
Remove the cause of error or warning following the actions described in Section 15.3 and 15.4 , before cancel an error or warning state by resetting the error.
\(\square\) How to clear errors or warnings
An error or warning state is canceled after the following processing has been carried out by setting a " 1 " in the address [1502 (for axis 1)], [1602 (for axis 2)], [1702 (for axis 3)], and [1802 (for axis 4)] of the buffer memory for axis error resetting (Cd. 5 Axis error reset).
- Axis error detection signal turned OFF
- " Md. 23 Axis error No." cleared
- " Md. 24 Axis warning No." cleared
- Changing of " Md. 26 Axis operation status" from "Error" to "Standby".
- Axis warning detection "(Md.31 Status : b9)" turned OFF
[4] Confirming the error and warning definitions
The error and warning definitions can be confirmed with the error and warning codes. Confirming them requires GX Developer or GX Configurator-QP. For details, refer to GX Developer Operating Manual or GX Configurator-QP Operating Manual. (Refer to Section 15.3 and Section 15.4 for details of the error and warning codes.)

\section*{MEMO}

\subsection*{15.3 List of errors}

The following table shows the error details and remedies to be taken when an error occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline Classification of errors & Error code & Error name & Error & Operation status at error occurrence \\
\hline - & 000 & (Normal status) & - & - \\
\hline \multirow[b]{2}{*}{Fatal errors} & 001 & Faults & \multirow[b]{2}{*}{Hardware is faulty.} & \multirow[b]{2}{*}{The system stops.} \\
\hline & 002 & Internal circuit fault & & \\
\hline \multirow{6}{*}{Common} & 101 & PLC READY OFF during operation & A PLC READY signal (YO) is turned OFF during operation. & \begin{tabular}{l}
The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 2). \\
(Note that the deceleration stop only occurs during the manual pulse generator operation.)
\end{tabular} \\
\hline & & & The drive unit READY signal is turned OFF during operation. & The system stops immediately. \\
\hline & 102 & Drive unit READY OFF & The start of an operation is requested when the drive unit READY signal is OFF. & The system does not start. \\
\hline & 103 & Test mode faults during operation & The personal computer cannot communicate with the CPU unit. & The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 2). (Note that the deceleration stop only occurs during the manual pulse generator operation.) \\
\hline & \multirow{2}{*}{104} & \multirow{2}{*}{Hardware stroke limit (+)} & The hardware stroke limit (upper limit signal FLS) is turned OFF during operation. & The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 1). (Note that the deceleration stop only occurs during the manual pulse generator operation.) \\
\hline & & & The start of an operation is requested when the hardware stroke limit (upper limit signal FLS) is OFF. & The system does not start. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline - & - & - & - & - & - \\
\hline - & - & - & - & - & Check that there is no influence from noise. \\
\hline - & - & - & - & - & Review the sequence program which turns ON/OFF PLC READY signal (YO). \\
\hline - & - & - & - & - & Check the power, wiring, and connector connection status of the drive unit. \\
\hline - & - & - & - & - & \begin{tabular}{l}
- Check the power, wiring, and connector connection status of the drive unit. \\
- Check the values in Pr. 22 Input signal logic selection. \\
- When a drive unit without READY signal output is used, wire the system so that the drive unit READY signal input of the QD75 is always ON.
\end{tabular} \\
\hline - & - & - & - & - & \begin{tabular}{l}
- Check that there is no error on the personal computer side I/F to which a cable is connected. \\
- Because communication takes a long time between the personal computer and a CPU module, ensure high-speed communication by setting the transmission speed to high at the transfer setup of GX Configurator-QP or GX Works2, or connecting the personal computer directly to the communication I/F of the CPU module. \\
- Reduce the load of communication by stopping the access to a CPU module from GX Developer or GX Works2 (such as monitor function).
\end{tabular} \\
\hline - & - & - & - & - & After making an axis error reset (refer to [3] in Section 15.2), perform manual control operation (refer to CHAPTER 11) to move the axis to the other position in order that the upper limit signal (FLS) will not turn OFF. \\
\hline - & - & - & - & - & \begin{tabular}{l}
- Check the wiring of the upper limit signal (FLS). \\
- Check if the values in Pr. 22 Input signal logic selection meet the specifications of the limit switch. \\
- In a system which does not require a hardware stroke limit (limit switch), wire the system so that the upper limit signal (FLS) input of the QD75 is always ON.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l}
\hline \(\begin{array}{c}\text { Classification } \\
\text { of errors }\end{array}\) & \(\begin{array}{l}\text { Error } \\
\text { code }\end{array}\) & Error name & & \multicolumn{1}{c|}{\(\begin{array}{l}\text { Error }\end{array}\)} & Operation status at error occurrence
\end{tabular}\(]\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline - & - & - & - & - & After making an axis error reset (refer to [3] in Section 15.2), perform manual control operation (refer to CHAPTER 11) to move the axis to the other position in order that the lower limit signal (RLS) will not turn OFF. \\
\hline - & - & - & - & - & \begin{tabular}{l}
- Check the wiring of the lower limit signal (RLS). \\
- Check if the values in Pr. 22 Input signal logic selection meet the specifications of the limit switch. \\
- In a system which does not require a hardware stroke limit (limit switch), wire the system so that the lower limit signal (RLS) input of the QD75 is always ON.
\end{tabular} \\
\hline - & - & - & - & - & \begin{tabular}{l}
The start timing is reviewed so that the operation starts after the stop command is reset. \\
- Output signals to QD75 \\
Axis 1: Y 4 , Axis 2: Y 5, Axis 3: Y6, Axis 4: Y7 \\
- External input \\
Connectors for external device connection: \\
Stop signals (STOP)
\end{tabular} \\
\hline - & - & - & - & - & Turn ON the PLC READY signal (Y0) with the BUSY signals of all axes OFF. \\
\hline 78 & 228 & 378 & 528 & <OPR retry> & \begin{tabular}{l}
- Validate the OPR retry function (set value: 1). (Refer to Section 12.1.1) \\
- Move the workpiece from the current position (on OP) using the manual control operation (refer to CHAPTER 11), then carry out a machine OPR again.
\end{tabular} \\
\hline \[
\begin{aligned}
& 74 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 224 \\
& 225
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 524 \\
& 525
\end{aligned}
\] & <OPR speed> QD75P \(\square N / Q D 75 D \square N\) : 1 to 4000000 [pulse/s] & \begin{tabular}{l}
- Lower the OPR speed. \\
- Increase the dog signal input time. (Refer to Section 8.2.3)
\end{tabular} \\
\hline \[
\begin{aligned}
& 74 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 224 \\
& 225
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 524 \\
& 525
\end{aligned}
\] & \begin{tabular}{l}
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] QD75P \(\square\) QD75D \(\square\) : \\
1 to 1000000 [pulse/s] 1 to 2000000000
\end{tabular} & \begin{tabular}{l}
- Lower the OPR speed. \\
- Input external zero signals during the movement at a creep speed. (Refer to Section 8.2.5)
\end{tabular} \\
\hline \[
\begin{aligned}
& 74 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 224 \\
& 225
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 524 \\
& 525
\end{aligned}
\] & [ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] & - Lower the OPR speed. \\
\hline 79 & 229 & 379 & 529 & <OPR dwell time>
0 to 65535 & (Refer to Section 8.2.4) \\
\hline \[
\begin{aligned}
& 80 \\
& 81
\end{aligned}
\] & \[
\begin{aligned}
& 230 \\
& 231
\end{aligned}
\] & \[
\begin{aligned}
& 380 \\
& 381
\end{aligned}
\] & \[
\begin{aligned}
& 530 \\
& 531
\end{aligned}
\] & <Movement amount setting after near-point dog ON> 0 to 2147483647 & - Calculate the movement distance using a speed limit, \\
\hline \[
\begin{aligned}
& 74 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 224 \\
& 225
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 524 \\
& 525
\end{aligned}
\] & \begin{tabular}{l}
<OPR speed> \\
QD75P \(\square N / Q D 75 D \square N\) : \\
1 to 4000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] QD75P \(\square\) QD75D \(\square\) : \\
1 to 1000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others]
\end{tabular} & \begin{tabular}{l}
OPR speed, and deceleration time, and set the movement amount after near-point dog ON so that the distance becomes a deceleration distance or longer. \\
- Lower the OPR speed. \\
- Adjust the near-point dog position so that the movement amount after near-point dog ON becomes longer. (Refer to Section 8.2.7, 8.2.8)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l}
\hline \begin{tabular}{c} 
Classification \\
of errors
\end{tabular} & \begin{tabular}{l} 
Error \\
code
\end{tabular} & \multicolumn{1}{c|}{ Error name } & \multicolumn{1}{c|}{ Error } & Operation status at error occurrence & \\
\hline & 207 & OPR request ON & \begin{tabular}{l} 
The OPR request flag is turned ON \\
when a fast-OPR is started \\
(positioning start No. 9002).
\end{tabular} & The fast OPR is not started. & \\
\cline { 2 - 6 } OPR & 209 & \begin{tabular}{l} 
OPR restart not \\
possible
\end{tabular} & \begin{tabular}{l} 
The restart command is turned ON \\
after the machine OPR is stopped \\
using a stop signal.
\end{tabular} & The restart is not carried out.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline 1500 & 1600 & 1700 & 1800 & <Positioning start No.> 1 to 600 7000 to 7004 9001 to 9004 & Execute the machine OPR (positioning No. 9001). (Refer to Section 8.2) \\
\hline 1500 & 1600 & 1700 & 1800 & <Positioning start No.> 1 to 600 7000 to 7004 9001 to 9004 & Start the machine OPR (positioning start No. 9001) again. (Refer to Section 8.2) \\
\hline - & - & - & - & - & \begin{tabular}{l}
- Review the wiring. (Refer to Section 12.6) \\
- Review the sequence program.
\end{tabular} \\
\hline - & - & - & - & - & \begin{tabular}{l}
- Review the wiring. (Refer to Section 12.6) \\
- Review the sequence program. \\
- Review the dedicated instruction parameters. (Refer to Section 14.3)
\end{tabular} \\
\hline \[
\begin{aligned}
& 1518 \\
& 1519
\end{aligned}
\] & \[
\begin{aligned}
& 1618 \\
& 1619
\end{aligned}
\] & \[
\begin{aligned}
& 1718 \\
& 1719
\end{aligned}
\] & \[
\left|\begin{array}{c}
1818 \\
1819
\end{array}\right|
\] & \begin{tabular}{l}
<JOG speed> \\
QD75P■N/QD75D■N: \\
1 to 4000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] \\
QD75P■QD75D \(\square:\) \\
1 to 1000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others]
\end{tabular} & Bring the JOG speed into the setting range. (Refer to Section 11.2) \\
\hline 1517 & 1617 & 1717 & 1817 & <Inching movement amount> 0 to 65535 & \begin{tabular}{l}
Reduce the inching movement amount to satisfy setting conditions. \\
(Refer to Section 11.3)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Classification of errors & Error code & Error name & Error & Operation status at error occurrence \\
\hline \multirow{3}{*}{Positioning operation} & 500 & Illegal condition data No. & The condition data No. is outside the setting range when a block using the condition data is started by a special starting (conditional start, wait start, simultaneous start, FOR (condition)). ( \(1 \leq\) Condition data No. \(\leq 10\) ) & The operation is terminated. \\
\hline & & & \begin{tabular}{l}
\(<\) When blocks are started simultaneously> \\
- The partner axis for simultaneous
\end{tabular} & \\
\hline & 501 & Error before simultaneous start & \begin{tabular}{l}
<When multiple axes are started and controlled simultaneously> \\
- The partner axis for simultaneous start is BUSY. \\
- The "Simultaneous start axis start data No." of the start axis is 0 or is outside the setting range. \\
- The "Simultaneous start axis start data No." of those axes other than the start axis is outside the setting range.
\end{tabular} & \begin{tabular}{l}
At start: The system will not operate. During operation: \\
The system stops immediately.
\end{tabular} \\
\hline \multirow{2}{*}{Positioning operation} & 502 & Illegal data No. & \begin{tabular}{l}
- The positioning data No. tried to be executed is outside the ranges of 1 to 600,7000 to 7004 , and 9001 to 9004. \\
- The designation of a JUMP destination is executed currently. \\
- The designation of a JUMP destination is outside the ranges of 1 to 600.
\end{tabular} & The positioning data is not executed. \\
\hline & 503 & No command speed & \begin{tabular}{l}
- At the start of positioning, a current speed \((-1)\) is set for the command speed of the positioning data to be initially executed. \\
- The current speed is set by speed control. \\
- The current speed is set for speedposition switching control or position-speed switching control.
\end{tabular} & At the start of positioning, operation does not start. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Set range (Setting with sequence program)}} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & \\
\hline \multicolumn{4}{|l|}{Refer to Section 5.4 "List of block start data"} & \multicolumn{2}{|l|}{<Condition data No.> 1 to 10} & Review the condition data No. (Refer to Section 5.4 Da.14) \\
\hline \multicolumn{4}{|l|}{Refer to Section 5.5 "List of condition data"} & \multicolumn{2}{|l|}{\begin{tabular}{l}
<Condition operators> \\
Axis designation:
\[
\begin{aligned}
& 10 \mathrm{H}, 20 \mathrm{H}, 30 \mathrm{H}, 40 \mathrm{H}, 50 \mathrm{H}, \\
& 60 \mathrm{H}, 70 \mathrm{H}, 80 \mathrm{H}, 90 \mathrm{H}, \text { АО } \\
& \text { BOH, СОн, DOн, ЕOH }
\end{aligned}
\]
\end{tabular}} & Normalize the condition operators. (Refer to Section 5.5 Da.16) \\
\hline 1540 & 1640 & 1740 & 1840 & Axis 1 start data No. & \multirow{4}{*}{Simultaneous start axis start data No. 0 to 600} & \multirow{4}{*}{Normalize the simultaneous start axis start data No. (Refer to Section 10.5)} \\
\hline 1541 & 1641 & 1741 & 1841 & Axis 2 start data No. & & \\
\hline 1542 & 1642 & 1742 & 1842 & Axis 3 start data No. & & \\
\hline 1543 & 1643 & 1743 & 1843 & Axis 4 start data No. & & \\
\hline 1500 & 1600 & 1700 & 1800 & <Positioning s
1 to 600
7000 to 70
9001 to 9 & \[
\begin{aligned}
& \text { tart No.> } \\
& 0, \\
& 004, \\
& 004
\end{aligned}
\] & malize the positioning start No., positioning star \\
\hline & & & & <JUMP desti 1 to 60 & nation> & instruction) \\
\hline \[
\begin{array}{r}
\mathrm{Re} \\
\text { "List }
\end{array}
\] & fer to S of position & ection ioning & \[
\begin{aligned}
& 3 \\
& \text { lata" }
\end{aligned}
\] & \begin{tabular}{l}
<Command \\
QD75P \(\square N / Q D 75 D \square\) \\
1 to 4000000 [puls \\
1 to 2000000000 \\
\(\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.\) or \\
QD75P \(\square\) QD75D \(\square\) : \\
1 to 1000000 [puls \\
1 to 2000000000 \\
\(\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.\) or
\end{tabular} & \begin{tabular}{l}
speed> \\
N : \\
se/s] \\
others] \\
se/s] \\
others]
\end{tabular} & Normalize the positioning data. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{\begin{tabular}{l}
Set range \\
(Setting with sequence program)
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Remedy}} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Refer to Section 5.3 "List of positioning data"}} & \multirow[t]{2}{*}{```
<Positioning address/movement
    amount>
- ABS
    unit [mm] [pulse] [inch]
    -2147483648 to 2147483647
    Unit [degree] 0 to 35999999
- INC
    (When software stroke limits are
    valid)
    Unit [degree]:
    -35999999 to 35999999
    Unit [mm], [pulse], [inch]:
    -2147483648 to 2147483647
    (When software stroke limits are
    invalid)
    -2147483648 to 2147483647
- Speed-position switching
    INC mode: 0 to 2147483647
    ABS mode: 0 to 35999999
- Position-speed switching
    0 to 2147483647
<Arc address>
-2147483648 to 2147483647
```} & Review the positioning address. & \\
\hline & & & & & \begin{tabular}{l}
- Center point address (arc address) \\
- End address (positioning address)
\end{tabular} & \[
\} \text { Correct. }
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l}
\hline \(\begin{array}{c}\text { Classification } \\
\text { of errors }\end{array}\) & \(\begin{array}{l}\text { Error } \\
\text { code }\end{array}\) & Error name & & \multicolumn{1}{c|}{ Error } & Operation status at error occurrence
\end{tabular}\(]\)

\begin{tabular}{|c|c|c|c|c|}
\hline Classification of errors & Error code & Error name & Error & Operation status at error occurrence \\
\hline \multirow{7}{*}{Positioning operation} & 514 & Outside new current value range & The new current address is outside the ranges of 0 to 359.99999 , where the control unit is set to "degree". & \\
\hline & 515 & New current value not possible & \begin{tabular}{l}
- The operation pattern "continuous path control" is set in the positioning data in which the control system "current value changing" is set. \\
- The control system "current value changing" is set in the positioning data following the positioning data in which the operation pattern "continuous path control" is set.
\end{tabular} & The current value is not changed. \\
\hline & 516 & Continuous path control not possible & \begin{tabular}{l}
- The continuous path control is designated using a control system which is not allowed to use for continuous path control such as speed control, speed-position switching control, position-speed switching control, fixed-feed, and current value change. \\
- The previous data such as those on speed control, speed-position switching control, position-speed switching control, fixed-feed, and current value change shows a continuous path control. \\
- The continuous positioning control is designated for speed control or position-speed switching control.
\end{tabular} & At start, the system will not operate. \\
\hline & 518 & Outside operation pattern range & - The operation pattern set value is 2 . & \multirow{4}{*}{\begin{tabular}{l}
At start: The system will not operate. During operation: \\
The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). \\
(Note that the deceleration stop only occurs during the manual pulse generator operation.)
\end{tabular}} \\
\hline & 519 & Interpolation while interpolation axis BUSY & Interpolation is started during the operation of the interpolation axis. & \\
\hline & 520 & Unit group unmatched & The reference and interpolation axis units are different at the parameter "interpolation speed designation method" setting of "composite speed". & \\
\hline & 521 & Illegal interpolation description command & - In 2-axis interpolation, the axis to be interpolated is the self axis or an axis not present. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{\begin{tabular}{l}
Set range \\
(Setting with sequence program)
\end{tabular}} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis & Axis 2 & Axis 3 & Axis 4 & & \\
\hline \[
\begin{aligned}
& 1506 \\
& 1507
\end{aligned}
\] & \[
\begin{aligned}
& 1606 \\
& 1607
\end{aligned}
\] & \[
\begin{aligned}
& 1706 \\
& 1707
\end{aligned}
\] & \[
\begin{aligned}
& 1806 \\
& 1807
\end{aligned}
\] & <New current value> [degree] 0 to 35999999 & Bring the new current value into the setting range. (Refer to Section 9.2.19) \\
\hline \multicolumn{4}{|l|}{Refer to Section 5.3 "List of positioning data"} & \begin{tabular}{l}
<Control system> 01 н to 1 Ен, 80 н to 84 н \\
- 03н, 0Сн, 17н, 1Сн: \\
1 to 4 axis fixed-feed control \\
- 04н, 05н, 13н, 14н, 18н, 19н, 1Dн, 1Ен: \\
1 to 4 axis speed control \\
- 81н: current value changing \\
- Speed-position switching control: 06н, 07н \\
- Position-speed switching control: 08н, 09н \\
<Operation pattern> 00, 01, 11 \\
- 01: Continuous positioning control \\
- 11: Continuous path control
\end{tabular} & \begin{tabular}{l}
- Do not designate the "continuous path control" using the "current value changing". \\
- Do not designate the "current value changing" using the positioning data following the positioning data that the "continuous path control" is designated. (Refer to Section 9.2.19) \\
- Do not designate a speed control, fixed-feed, speedposition switching control, position-speed switching control, and current value change using the positioning data following the continuous path control data. \\
- Do not carry out the fixed-feed, speed control, speedposition switching control, position-speed switching control, and current value change using the continuous path control operation pattern. \\
- Do not carry out the speed control and position-speed switching control using the continuous path control operation pattern. \\
(Refer to CHAPTER 9)
\end{tabular} \\
\hline \multicolumn{5}{|r|}{\multirow[t]{2}{*}{Same as error codes 515 to 516}} & Correct the operation pattern. (Refer to Section 5.3 \(\square\) \\
\hline & & & & & Correct the control system. (Refer to Section 5.3 Da.2) \\
\hline 0 & 150 & 300 & 450 & <Unit setting> & \begin{tabular}{l}
Correct the positioning data or change the parameter "Unit setting" of the axis to be interpolated. \\
(Refer to Section 9.1.6)
\end{tabular} \\
\hline \multicolumn{5}{|r|}{Same as error codes 515 to 516} & \begin{tabular}{l}
- Correct the control system. (Refer to Section 5.3 Da.2) \\
- Correct the axis to be interpolated. (Refer to Section 5.3 Da.5)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Classification of errors & Error code & Error name & Error & Operation status at error occurrence & \\
\hline \multirow{4}{*}{Positioning operation} & 522 & Command speed setting error & \begin{tabular}{l}
The command speed is outside the setting range. \\
Linear interpolation, circular interpolation: \\
Reference axis is outside the setting range. \\
Speed control interpolation: Either of reference axis and interpolation axis is outside the speed range.
\end{tabular} & \multirow{3}{*}{\begin{tabular}{l}
At start: The system will not operate. During operation: \\
The system stops with the setting (deceleration stop/sudden stop) of the detail parameter 2 Sudden stop selection (stop group 3). \\
(Note that the deceleration stop only occurs during the manual pulse generator operation.)
\end{tabular}} & \multirow[t]{3}{*}{} \\
\hline & 523 & Interpolation mode error & \begin{tabular}{l}
- For starting, a composite speed is designated in the reference axis parameter "Interpolation speed designation method" using the speed interpolation control, 4-axis linear interpolation control, or 4axis fixed-feed control. \\
- For starting, a reference axis speed is designated in the reference axis parameter "Interpolation speed designation method" using the circular interpolation control.
\end{tabular} & & \\
\hline & 524 & Control system setting error & \begin{tabular}{l}
- The control system setting value is outside the specified limit. \\
- The number of control axes or the axis to be interpolated differs from the previous data when the operation is continuously performed by setting the continuous positioning control or continuous path control. \\
- Machine OPR, fast OPR, or speedposition or position-speed switching control was performed in the wiring-less mode. \\
- The NOP instruction was set to the control system of positioning data No. 600. \\
- Any value other than 0 was set at buffer memory address 1906 (use prohibited area).
\end{tabular} & & \\
\hline & 525 & Sub point setting error & \begin{tabular}{l}
Either of the following applies in the circular interpolation with sub points designated. \\
- Start point = sub point \\
- End point = sub point \\
- Start point, end point, and sub point are in line with each other. \\
- Sub point address and center point address are outside the range of -2147483648 to 2147483647.
\end{tabular} & \begin{tabular}{l}
At start: The system will not operate. During operation: \\
The system stops immediately.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Related buffer memory address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis & Axis 2 & Axis 3 & Axis 4 & & \\
\hline \multicolumn{4}{|l|}{Command speed storage addresses of positioning data No. 1 to 600} & \begin{tabular}{l}
<Command speed> \\
QD75P \(\square N / Q D 75 D \square N\) : \\
1 to 4000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] \\
QD75P■QD75D■: \\
1 to 1000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others]
\end{tabular} & \begin{tabular}{l}
Correct the command speed. \\
(Refer to Section 5.3 Da.8)
\end{tabular} \\
\hline 29 & 179 & 329 & 479 & \begin{tabular}{l}
<Interpolation speed designation method> \\
0 : Composite speed \\
1: Reference axis speed
\end{tabular} & \begin{tabular}{l}
Set the "Interpolation speed designation method" correctly. \\
(Refer to Section 9.1.6)
\end{tabular} \\
\hline \multicolumn{5}{|r|}{Same as error codes 515 to 516} & \begin{tabular}{l}
- Correct the control system axis to be interpolated, or parameter. \\
(Refer to Section 9.1.6, 9.2.20) \\
- Do not make setting at buffer memory address 1906 (use prohibited area).
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Refer to Section 5.3
"List of positioning data"} & \begin{tabular}{l}
```

<Positioning address/movement amount> <br>

- unit [mm] [pulse] [inch] -2147483648 to 2147483647 (Unit [degree] cannot be set.) <Arc address> -2147483648 to 2147483647

```
\end{tabular} & Correct the sub address (arc address). (Refer to Section 9.2.10) \\
\hline
\end{tabular}


\begin{tabular}{|l|l|l|l|l|l}
\hline \(\begin{array}{l}\text { Classification } \\
\text { of errors }\end{array}\) & \(\begin{array}{l}\text { Error } \\
\text { code }\end{array}\) & \multicolumn{1}{|c|}{ Error name } & & Error & Operation status at error occurrence
\end{tabular}\(]\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{\begin{tabular}{l}
Set range \\
(Setting with sequence program)
\end{tabular}} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline 1504 & 1604 & 1704 & 1804 & \begin{tabular}{l}
<M code OFF request> \\
1: M code ON signal is turned OFF
\end{tabular} & After turning OFF the M code ON signal, start the system. (Refer to Section 12.7.3) \\
\hline - & - & - & - & - & Check the sequence program which turns ON/OFF the PLC READY signal (YO), and turn ON the PLC READY signal. Then start the system. \\
\hline - & - & - & - & - & Check the QD75 READY ON signal, and then start the system. (Refer to Section 3.3.2) \\
\hline 1500 & 1600 & 1700 & 1800 & \[
\begin{gathered}
\text { <Positioning start No.> } \\
1 \text { to } 600, \\
7000 \text { to } 7004, \\
9001 \text { to } 9004
\end{gathered}
\] & Normalize the positioning start No. (Refer to Section 12.7.7) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Refer to Section 5.3 "List of positioning data"}} & <Maximum radius>
536870912 & Correct the positioning data. (Refer to Section 9.2.10, 9.2.11) \\
\hline & & & & <LOOP to LEND> 1 to 65535 & Set 1 to 65535 for number of repetitions of the "LOOP" (Refer to Section 9.2.22) \\
\hline \multicolumn{4}{|l|}{ABS setting direction in the unit of degree} & \multirow[t]{2}{*}{\begin{tabular}{l}
0 : Shortcut \\
1: ABS clockwise \\
2: ABS counterclockwise
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
- Set the ABS setting direction in the unit of degree within the setting range. \\
- Set "0" when the software stroke limits are valid. (Refer to Section 9.1.5)
\end{tabular}} \\
\hline 1550 & 1650 & 1750 & 1850 & & \\
\hline \multicolumn{4}{|c|}{Software stroke limit upper limit} & \multirow{4}{*}{\[
\begin{aligned}
& \cdot[\mathrm{mm}] \text { [inch] [pulse] } \\
& -2147483648 \text { to } 2147483647 \\
& \cdot \text { [degree] } \\
& 0 \text { to } 35999999
\end{aligned}
\]} & \multirow{4}{*}{\begin{tabular}{l}
Invalidate the software stroke limit. \\
(To invalidate, set the software stroke limit upper limit value to the software stroke limit lower limit value.) \\
(Refer to Section 9.1.5)
\end{tabular}} \\
\hline \[
\begin{aligned}
& \hline 18 \\
& 19 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 168 \\
& 169 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 318 \\
& 319 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
468 \\
469 \\
\hline
\end{array}
\] & & \\
\hline \multicolumn{4}{|c|}{Software stroke limit lower limit} & & \\
\hline \[
\begin{array}{r}
20 \\
21 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 170 \\
& 171 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 320 \\
& 321
\end{aligned}
\] & \[
\begin{array}{r}
470 \\
471 \\
\hline
\end{array}
\] & & \\
\hline - & - & - & - & - & Clear the setting of the CPU module parameter "Output at error stop". \\
\hline - & - & - & - & - & \begin{tabular}{l}
The flash ROM is expected to be at the end of its writable life. \\
Replace the flash ROM with a new one.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{1901} & \begin{tabular}{l}
<Parameter initialization request> \\
1: Parameter initialization is requested
\end{tabular} & Return the parameter to that set at the time of delivery from the plant. (Refer to Section 13.2) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory
address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline - & - & - & - & - & Check the error code of CPU module and refer to the QCPU User's Manual. \\
\hline - & - & - & - & \begin{tabular}{l}
\(<Z . A B R S T \square\) status> \\
0 : Communication complete (received from the servo amplifier) \\
< ZP.PSTRT \(\square\) start No.> 1 to 600 \\
7000 to 7004 \\
9001 to 9004 \\
<ZP.TEACH \(\square\) teaching data selection> \\
0 : The current feed value is written to the positioning address. \\
1: The current feed value is written to the arc address. \\
< ZP.TEACH \(\square\) positioning data No.> 1 to 600
\end{tabular} & \begin{tabular}{l}
- When executing the Z.ABRST \(\square\) instruction, set the status to 0 (refer to Section 14.3). \\
- Do not change the status during absolute position restoration by the Z.ABRST \(\square\) instruction. \\
- When executing the ZP.PSTRT \(\square\) instruction, set the start No. to within the setting range (refer to Section 14.4). \\
- When executing the ZP.TEACH \(\square\) instruction, set the teaching data selection and positioning data No. to within the setting range (refer to Section 14.5). \\
- Do not specify the instruction of a non-existent axis by the Z.ABRST \(\square\), ZP.PSTRT \(\square\) and ZP.TEACH \(\square\) instructions (refer to Section 14.3 to Section 14.5).
\end{tabular} \\
\hline - & - & - & - & - & \begin{tabular}{l}
Review the sequence program so that data is not written continuously to the flash ROM. \\
(Using Md. 19 in Section 5.6.1, the number of flash ROM write times can be monitored.) \\
(If this error has occurred in a proper using method, writing is enabled by resetting the error, switching power OFF, then ON, or resetting the CPU module.)
\end{tabular} \\
\hline - & - & - & - & - A & A trouble occurs. Repair. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Classification of errors & Error code & Error name & Error & Operation status at error occurrence & \\
\hline \multirow{12}{*}{Parameter} & 900 & Outside unit setting range & The set value of the basic parameter 1 "Unit setting" is outside the setting range. & \multirow{7}{*}{The QD75 READY signal (X0) is not turned ON.} & \multirow[t]{7}{*}{} \\
\hline & 901 & Outside pulse number per rotation range & The set value of the basic parameter 1 "No. of pulses per rotation" is outside the setting range. & & \\
\hline & 902 & Outside movement amount per rotation range & The set value of the basic parameter 1 "Movement amount per rotation" is outside the setting range. & & \\
\hline & 903 & Outside unit magnification range & The set value of the basic parameter 1 "Unit magnification" is outside the setting range. & & \\
\hline & 904 & Pulse output mode error & The set value of the basic parameter 1 "Pulse output mode" is outside the setting range. & & \\
\hline & 905 & Rotation direction setting error & The set value of the basic parameter 1 "Rotation direction setting" is outside the setting range. & & \\
\hline & 906 & Outside bias speed range & \begin{tabular}{l}
- The set value of the basic parameter 1 "Bias speed at start" is outside the setting range. \\
- The bias speed exceeds the speed limit.
\end{tabular} & & \\
\hline & 910 & Outside speed limit value range & \begin{tabular}{l}
- The set value of the basic parameter 2 "Speed limit value" is outside the setting range. \\
- The value obtained by the conversion of the speed limit value with respect to the frequency exceeds the maximum output frequency of the unit. \\
- The speed limit value is smaller than the OPR speed.
\end{tabular} & \begin{tabular}{l}
When the power is turned ON or PLC READY signal (YO) is turned from OFF to ON: \\
QD75 READY signal (X0) is not turned ON.
\end{tabular} & \\
\hline & 911 & Outside acceleration time 0 range & The set value of the basic parameter 2 "Acceleration time 0 " is outside the setting range. & \begin{tabular}{l}
At start: \\
The system will not operate.
\end{tabular} & \\
\hline & 912 & Outside deceleration time 0 range & The set value of the basic parameter 2 "Deceleration time 0 " is outside the setting range. & & \\
\hline & 920 & Backlash compensation amount error & The value converted into pulse number using the movement amount per pulse is 256 pulses or more. & & \\
\hline & 921 & Software stroke limit upper limit & \begin{tabular}{l}
- In the unit of degree, the set value of the detailed parameter 1 "Software stroke limit upper limit value" is outside the setting range. \\
- In a unit other than degree, the software stroke limit upper limit value is smaller than the software stroke limit lower limit value.
\end{tabular} & The QD75 READY signal (X0) is not turned ON . & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{\begin{tabular}{l}
Set range \\
(Setting with sequence program)
\end{tabular}} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline 0 & 150 & 300 & 450 & 0, 1, 2, 3 & \multirow{6}{*}{With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON.} \\
\hline 1 & 151 & 301 & 451 & 1 to 65535 & \\
\hline 2 & 152 & 302 & 452 & 1 to 65535 & \\
\hline 3 & 153 & 303 & 453 & 1,10,100, 1000 & \\
\hline 4 & 154 & 304 & 454 & 0, 1, 2, 3 & \\
\hline 5 & 155 & 305 & 455 & 0, 1 & \\
\hline \[
\begin{aligned}
& 6 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& 156 \\
& 157
\end{aligned}
\] & \[
\begin{aligned}
& 306 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& 456 \\
& 457
\end{aligned}
\] & QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}:\)
0 to 4000000 [pulse/s]
0 to 2000000000
\(\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.\) or others]
QD75P \(\square\) QD75D \(\square:\)
0 to 1000000 [pulse \(/ \mathrm{s}]\)
0 to 2000000000
\(\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.\) or others] & \begin{tabular}{l}
Set the bias speed to not more than the speed limit value. \\
With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON.
\end{tabular} \\
\hline \[
\begin{aligned}
& 10 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 161
\end{aligned}
\] & \[
\begin{aligned}
& 310 \\
& 311
\end{aligned}
\] & \[
\begin{aligned}
& 460 \\
& 461
\end{aligned}
\] & QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}:\)
1 to 4000000 [pulse/s]
1 to 2000000000
\(\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.\) or others]
QD75P \(\square\) QD75D \(\square:\)
1 to 1000000 [pulse \(/ \mathrm{s}]\)
1 to 2000000000
\(\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.\) or others] & \begin{tabular}{l}
- The value converted into the frequency should not exceed the maximum output frequency of the module. \\
- Set a value which is not less than the OPR speed. \\
- With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON.
\end{tabular} \\
\hline \[
\begin{aligned}
& 12 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 162 \\
& 163
\end{aligned}
\] & \[
\begin{aligned}
& 312 \\
& 313
\end{aligned}
\] & \[
\begin{aligned}
& 462 \\
& 463
\end{aligned}
\] & 1 to 8388608 & \\
\hline \[
\begin{aligned}
& 14 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 164 \\
& 165
\end{aligned}
\] & \[
\begin{aligned}
& 314 \\
& 315
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& 465
\end{aligned}
\] & 1 to 8388608 & PLC READY signal [Y0] from OFF to ON. \\
\hline 17 & 167 & 317 & 467 & 0 to 255 & Set the value converted into the pulse number using "the movement amount per pulse" to less than 256 pulses. (Refer to Section 12.3.1) \\
\hline \[
\begin{aligned}
& 18 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 168 \\
& 169
\end{aligned}
\] & \[
\begin{aligned}
& 318 \\
& 319
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& 469
\end{aligned}
\] & \begin{tabular}{l}
- [mm] [inch] [pulse] -2147483648 to 2147483647 \\
- [degree] 0 to 35999999
\end{tabular} & \begin{tabular}{l}
- Bring the setting into the setting range. \\
- In a unit other than degree, set the setting so that the lower limit value is smaller than the upper limit value.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{\begin{tabular}{l}
Set range \\
(Setting with sequence program)
\end{tabular}} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline \[
\begin{aligned}
& 20 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& 170 \\
& 171
\end{aligned}
\] & \[
\begin{aligned}
& 320 \\
& 321
\end{aligned}
\] & \[
\begin{aligned}
& 470 \\
& 471
\end{aligned}
\] & \begin{tabular}{l}
- [mm] [inch] [pulse] -2147483648 to 2147483647 \\
- [degree] 0 to 35999999
\end{tabular} & \begin{tabular}{l}
- Bring the setting into the setting range. \\
- In a unit other than degree, set so that the lower limit value is smaller than the upper limit value.
\end{tabular} \\
\hline 22 & 172 & 322 & 472 & 0,1 & \\
\hline 23 & 173 & 323 & 473 & 0, 1 & \\
\hline \[
\begin{aligned}
& 24 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 174 \\
& 175
\end{aligned}
\] & \[
\begin{aligned}
& 324 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& 474 \\
& 475
\end{aligned}
\] & 1 to 2147483647 & \\
\hline 26 & 176 & 326 & 476 & 1 to 500 & \\
\hline 27 & 177 & 327 & 477 & 0, 1 & With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. \\
\hline 28 & 178 & 328 & 478 & 0, 1 & \\
\hline 29 & 179 & 329 & 479 & 0, 1 & \\
\hline 30 & 180 & 330 & 480 & 0, 1, 2 & \\
\hline 33 & - & - & - & 0, 1, 2, 3 & \\
\hline 34 & 184 & 334 & 484 & 0, 2 & Speed-position switching control (ABS mode) should satisfy the conditions 1) to 3 ) given on the left. When speed-position switching control (ABS mode) is not to be exercised, set 0 to speed-position function selection and turn the PLC READY signal (YO) from OFF to ON. \\
\hline \[
\begin{aligned}
& 36 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& 186 \\
& 187
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& 486 \\
& 487
\end{aligned}
\] & 1 to 8388608 & \\
\hline \[
\begin{aligned}
& 38 \\
& 39
\end{aligned}
\] & \[
\begin{aligned}
& 188 \\
& 189
\end{aligned}
\] & \[
\begin{aligned}
& 338 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 488 \\
& 489
\end{aligned}
\] & 1 to 8388608 & \\
\hline \[
\begin{aligned}
& 40 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 190 \\
& 191
\end{aligned}
\] & \[
\begin{aligned}
& 340 \\
& 341
\end{aligned}
\] & \[
\begin{aligned}
& 490 \\
& 491
\end{aligned}
\] & 1 to 8388608 & READY signal [Y0] from OFF to ON. \\
\hline \[
\begin{aligned}
& 42 \\
& 43
\end{aligned}
\] & \[
\begin{aligned}
& 192 \\
& 193
\end{aligned}
\] & \[
\begin{aligned}
& 342 \\
& 343
\end{aligned}
\] & \[
\begin{aligned}
& 492 \\
& 493
\end{aligned}
\] & 1 to 8388608 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Classification of errors & Error code & Error name & Error & Operation status at error occurrence \\
\hline \multirow{14}{*}{Parameter} & 954 & Deceleration time 2 setting error & The set value of the detailed parameter 2 "Deceleration time 2" is outside the setting range. & \multirow[t]{13}{*}{\begin{tabular}{l}
At start: The system will not operate. \\
During operation: \\
The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). \\
(Note that the deceleration stop only occurs during the manual pulse generator operation.)
\end{tabular}} \\
\hline & 955 & Deceleration time 3 setting error & The set value of the detailed parameter 2 "Deceleration time 3" is outside the setting range. & \\
\hline & 956 & JOG speed limit value error & \begin{tabular}{l}
- The set value of the detailed parameter 2 "JOG speed limit value" is outside the setting range. \\
- The set range of the detailed parameter 2 "JOG speed limit value" exceeds the speed limit.
\end{tabular} & \\
\hline & 957 & JOG acceleration time selection setting error & The set value of the detailed parameter 2 "JOG acceleration time selection setting" is outside the setting range. & \\
\hline & 958 & JOG deceleration time selection setting error & The set value of the detailed parameter 2 "JOG deceleration time selection setting" is outside the setting range. & \\
\hline & 959 & Acceleration/ deceleration process selection setting error & The set value of the detailed parameter 2 "Acceleration/deceleration process selection setting" is outside the setting range. & \\
\hline & 960 & S-curve ratio setting error & The set value of the detailed parameter 2 " S -curve ratio" is outside the setting range. & \\
\hline & 961 & Illegal sudden stop deceleration time & The set value of the detailed parameter 2 "Sudden stop deceleration time" is outside the setting range. & \\
\hline & 962 & Stop group 1 sudden stop selection error & The set value of the detailed parameter 2 "Stop group 1 sudden stop selection" is outside the setting range. & \\
\hline & 963 & Stop group 2 sudden stop selection error & The set value of the detailed parameter 2 "Stop group 2 sudden stop selection" is outside the setting range. & \\
\hline & 964 & Stop group 3 sudden stop selection error & The set value of the detailed parameter 2 "Stop group 3 sudden stop selection" is outside the setting range. & \\
\hline & 966 & Outside allowance circular interpolation error width & The set value of the detailed parameter 2 "Allowance circular interpolation error width" is outside the setting range. & \\
\hline & 967 & External command function selection error & The set value of the detailed parameter 2 "External command function selection" is outside the setting range. & \\
\hline & 980 & OPR method error & The set value of the OPR basic parameter "OPR method" is outside the setting range. & The QD75 READY signal (X0) is not turned ON. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{\begin{tabular}{l}
Set range \\
(Setting with sequence program)
\end{tabular}} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline 44 & 194 & 344 & 494 & 1 to 8388608 & \multirow[b]{2}{*}{With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON.} \\
\hline \[
\begin{aligned}
& 46 \\
& 47
\end{aligned}
\] & \[
\begin{aligned}
& 196 \\
& 197
\end{aligned}
\] & \[
\begin{aligned}
& 346 \\
& 347
\end{aligned}
\] & \[
\begin{aligned}
& 496 \\
& 497
\end{aligned}
\] & 1 to 8388608 & \\
\hline \[
\begin{aligned}
& 48 \\
& 49
\end{aligned}
\] & \[
\begin{aligned}
& 198 \\
& 199
\end{aligned}
\] & \[
\begin{aligned}
& 348 \\
& 349
\end{aligned}
\] & \[
\begin{aligned}
& 498 \\
& 499
\end{aligned}
\] & \begin{tabular}{l}
QD75P \(\square N / Q D 75 D \square N\) : \\
1 to 4000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] \\
QD75P \(\square\) QD75D \(\square\) : \\
1 to 1000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others]
\end{tabular} & \begin{tabular}{l}
- With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. \\
- Bring the setting into the speed limit value or below.
\end{tabular} \\
\hline 50 & 200 & 350 & 500 & 0, 1, 2, 3 & \multirow{11}{*}{With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON.} \\
\hline 51 & 201 & 351 & 501 & 0, 1, 2, 3 & \\
\hline 52 & 202 & 352 & 502 & 0, 1 & \\
\hline 53 & 203 & 353 & 503 & 1 to 100 & \\
\hline \[
\begin{aligned}
& 54 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 204 \\
& 205
\end{aligned}
\] & \[
\begin{aligned}
& 354 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& 504 \\
& 505
\end{aligned}
\] & 1 to 8388608 & \\
\hline 56 & 206 & 356 & 506 & 0, 1 & \\
\hline 57 & 207 & 357 & 507 & 0, 1 & \\
\hline 58 & 208 & 358 & 508 & 0, 1 & \\
\hline \[
\begin{aligned}
& 60 \\
& 61
\end{aligned}
\] & \[
\begin{aligned}
& 210 \\
& 211
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& 510 \\
& 511
\end{aligned}
\] & 0 to 10000 & \\
\hline 62 & 212 & 362 & 512 & 0, 1, 2, 3 & \\
\hline 70 & 220 & 370 & 520 & 0, 1, 2, 3, 4, 5 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline 71 & 221 & 371 & 521 & 0, 1 & \multirow[b]{2}{*}{With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON.} \\
\hline \[
\begin{aligned}
& 72 \\
& 73
\end{aligned}
\] & \[
\begin{aligned}
& 222 \\
& 223
\end{aligned}
\] & \[
\begin{aligned}
& 372 \\
& 373
\end{aligned}
\] & \[
\begin{aligned}
& 522 \\
& 523
\end{aligned}
\] & \begin{tabular}{l}
- [mm] [inch] [pulse] -2147483648 to 2147483647 \\
- [degree] 0 to 35999999
\end{tabular} & \\
\hline \[
\begin{aligned}
& 74 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 224 \\
& 225
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 524 \\
& 525
\end{aligned}
\] & \multirow[b]{2}{*}{```
QD75P\squareN/QD75D\squareN:
    1 to 4000000 [pulse/s]
    1 to 2000000000
    [ }\times1\mp@subsup{0}{}{-2}\textrm{mm}/\textrm{min}\mathrm{ or others]
QD75P\square/QD75D\square:
    1 to 1000000 [pulse/s]
    1 to 2000000000
    [ }\times1\mp@subsup{0}{}{-2}\textrm{mm}/\textrm{min}\mathrm{ or others]
```} & \begin{tabular}{l}
- Bring the setting into the setting range. \\
- Set the speed to the bias speed at start or higher. (Refer to Section 5.2.5)
\end{tabular} \\
\hline \[
\begin{aligned}
& 76 \\
& 77
\end{aligned}
\] & \[
\begin{aligned}
& 226 \\
& 227
\end{aligned}
\] & \[
\begin{aligned}
& 376 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 526 \\
& 527
\end{aligned}
\] & & \begin{tabular}{l}
- Bring the setting into the setting range. \\
- Set the speed to that below the OPR speed. \\
- Set the value to the bias speed at start or higher. (Refer to Section 5.2.5)
\end{tabular} \\
\hline 78 & 228 & 378 & 528 & 0, 1 & \multirow{7}{*}{With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON.} \\
\hline \[
\begin{aligned}
& 80 \\
& 81
\end{aligned}
\] & \[
\begin{aligned}
& 230 \\
& 231
\end{aligned}
\] & \[
\begin{aligned}
& 380 \\
& 381
\end{aligned}
\] & \[
\begin{aligned}
& 530 \\
& 531
\end{aligned}
\] & 0 to 2147483647 & \\
\hline 82 & 232 & 382 & 532 & 0, 1, 2, 3 & \\
\hline 83 & 233 & 383 & 533 & 0, 1, 2, 3 & \\
\hline 86 & 236 & 386 & 536 & 1 to 300 & \\
\hline 87 & 237 & 387 & 537 & 1 to 65535 & \\
\hline 88 & 238 & 388 & 538 & 0, 1 & \\
\hline
\end{tabular}

\subsection*{15.4 List of warnings}

The following table shows the warning details and remedies to be taken when a warning occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline Classification of warnings & Warning code & Warning name & Warning & Operation status at warning occurrence \\
\hline - & 000 & (Normal status) & - & - \\
\hline \multirow{9}{*}{Common} & 100 & Start during operation & The start request is issued while the axis is BUSY. & Continue the operation. \\
\hline & 102 & Deviation counter clear request & The deviation counter clear request is issued while the axis is BUSY. & The deviation counter clear request is ignored. \\
\hline & 104 & Restart not possible & The restart command is issued when the axis operation status is not "Stopped". & Continue the operation. \\
\hline & 109 & Teaching in BUSY & The teaching request is issued while the axis is BUSY. & The warning is issued for the axis designated at the time of the teaching request. \\
\hline & 110 & Less than minimum speed & The overridden speed becomes "0". & The system is controlled with the currently executing unit of 1 . \\
\hline & 111 & In PLC READY & The request for writing to the flash ROM is issued when the PLC READY is turned ON. & The warning for axis 1 is issued. \\
\hline & 112 & Illegal override value & A value other than 1 to 300 is set for the override value. & \begin{tabular}{l}
- Controlled at a setting value of 0 : 100 . \\
- Controlled at a setting value of 301 or over : 300.
\end{tabular} \\
\hline & 113 & Outside new torque value range & The new torque value exceeds the torque limit setting value. & Set a value smaller than the torque limit setting value to the new torque value. \\
\hline & 114 & Below bias speed & The command speed is below the bias speed at start. & Operate by the bias speed at start. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline - & - & - & - & - & - \\
\hline - & - & - & - & - & Normalize the start request ON timing. \\
\hline - & - & - & - & - & Do not carry out the deviation counter clear while the axis is running. (Refer to CHAPTER 8) \\
\hline 1503 & 1603 & 1703 & 1803 & \begin{tabular}{l}
<Restart command> \\
1: Restart
\end{tabular} & \begin{tabular}{l}
Normalize the start request ON timing. \\
(Refer to Section 6.5.5) \\
(Do not issue the restart command when the axis operation is not stopped.)
\end{tabular} \\
\hline \[
\begin{aligned}
& 1548 \\
& 1549
\end{aligned}
\] & \[
\begin{aligned}
& 1648 \\
& 1649
\end{aligned}
\] & \[
\begin{aligned}
& 1748 \\
& 1749
\end{aligned}
\] & \[
\begin{array}{|l|}
1848 \\
1849
\end{array}
\] & \begin{tabular}{l}
<Teaching data selection>
\[
0,1
\] \\
<Teaching positioning data No.>
\[
1 \text { to } 600
\]
\end{tabular} & Carry out the teaching request when the axis is not BUSY. (Refer to Section 12.7.4) \\
\hline 1513 & 1613 & 1713 & 1813 & \begin{tabular}{l}
<Positioning operation speed override> \\
1 to 300
\end{tabular} & Prevent the overridden speed from being reduced to 0 . (Refer to Section 12.5.2) \\
\hline & & & & \begin{tabular}{l}
<Flash ROM write request> \\
1: Flash ROM write request \\
<Parameter initialization request> \\
1: Parameter initialization request
\end{tabular} & Issue a write request when PLC READY signal (Y0) is OFF. \\
\hline 1513 & 1613 & 1713 & 1813 & \begin{tabular}{l}
<Positioning operation speed override> \\
1 to 300
\end{tabular} & Set a value within the setting range. \\
\hline 1525 & 1625 & 1725 & 1825 & <New torque value> 1 to [Torque limit set value] & Set a value smaller than the torque limit setting value to \\
\hline 26 & 176 & 326 & 476 & <Torque limit set value>
1 to 500 & the new torque value. \\
\hline \[
\begin{array}{r}
\mathrm{Ret} \\
\text { "List } \\
\text { for }
\end{array}
\] & fer to S of position comma & \begin{tabular}{l}
ection 5 \\
ioning \\
and spe
\end{tabular} & & \begin{tabular}{l}
<Command speed> QD75P \(\square N / Q D 75 D \square N\) : \\
1 to 4000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] QD75P \(\square\) QD75D \(\square\) : \\
1 to 1000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others]
\end{tabular} & Re-set the command speed/bias speed at start so that \\
\hline & as speed & ed at sta & & <Bias speed at start> & \\
\hline \[
\begin{aligned}
& 6 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& 156 \\
& 157
\end{aligned}
\] & \[
\begin{aligned}
& 306 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& 456 \\
& 457
\end{aligned}
\] & \begin{tabular}{l}
QD75P■N/QD75D \(\square N\) : \\
0 to 4000000 [pulse/s] \\
0 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] \\
QD75P \(\square\) QD75D \(\square\) : \\
0 to 1000000 [pulse/s] \\
0 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others]
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Classification of warnings & Warning code & Warning name & Warning & Operation status at warning occurrence & \\
\hline & 300 & Speed change during deceleration & The speed change request is issued during deceleration stop with JOG start signal OFF. & The speed change is not carried out. & \\
\hline JOG & 301 & JOG speed limit value & \begin{tabular}{l}
- The JOG speed exceeds the JOG speed limit value at the JOG start. \\
- The new speed value exceeds the JOG speed limit value when the speed is changed during operation.
\end{tabular} & \begin{tabular}{l}
- When the speed exceeds the JOG speed limit, the JOG operation is carried out with the JOG speed limit value. \\
- While the speed is limited by the JOG speed limit value, the "Speed limiting flag" is turned ON.
\end{tabular} & \\
\hline Manual pulse generator & 401 & Outside manual pulse generator input magnification range & \begin{tabular}{l}
The manual pulse generator 1 pulse input magnification is set as follows. \\
- 0 or 1001 or higher (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) \\
- 0 or 101 or higher (QD75P \(\square /\) QD75D \(\square\) )
\end{tabular} & \begin{tabular}{l}
- When input magnification is set at 1001 or higher: Re-set to 1000. (QD75P \(\square N / Q D 75 D \square N\) ) \\
- When input magnification is set at 101 or higher: Re-set to 100. (QD75P \(\square /\) QD75D \(\square\) ) \\
- When input magnification is set at 0 : Re-set to 1.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline 1516 & 1616 & 1716 & 1816 & \begin{tabular}{l}
<Speed change request> \\
1: Speed change is requested
\end{tabular} & Do not carry out the JOG speed change during deceleration with the JOG start signal OFF. \\
\hline \multicolumn{4}{|c|}{New speed value} & \multirow[t]{2}{*}{QD75P■N/QD75D■N: 0 to 4000000 [pulse/s] 0 to 2000000000 [ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] QD75P■/QD75D \(\square\) : 0 to 1000000 [pulse/s] 0 to 2000000000 [ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others]} & \multirow{4}{*}{Bring the set value into the setting range.} \\
\hline \[
\begin{aligned}
& 1514 \\
& 1515
\end{aligned}
\] & \[
\begin{aligned}
& 1614 \\
& 1615
\end{aligned}
\] & \[
\begin{array}{|l|}
1714 \\
1715
\end{array}
\] & \[
\left|\begin{array}{l}
1814 \\
1815
\end{array}\right|
\] & & \\
\hline \multicolumn{4}{|r|}{JOG speed limit value} & \multirow[t]{2}{*}{\begin{tabular}{l}
QD75P■N/QD75D \(\square\) N: \\
1 to 4000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] \\
QD75P■QD75D \(\square:\) \\
1 to 1000000 [pulse/s] \\
to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others]
\end{tabular}} & \\
\hline \[
\begin{aligned}
& 48 \\
& 49
\end{aligned}
\] & \[
\begin{aligned}
& 198 \\
& 199
\end{aligned}
\] & \[
\begin{aligned}
& 348 \\
& 349
\end{aligned}
\] & \[
\begin{aligned}
& 498 \\
& 499
\end{aligned}
\] & & \\
\hline \[
\begin{aligned}
& 1522 \\
& 1523
\end{aligned}
\] & \[
\begin{array}{|l|l}
1622 \\
1623
\end{array}
\] & \[
\left|\begin{array}{l}
1722 \\
1723
\end{array}\right|
\] & \[
\begin{aligned}
& 1822 \\
& 1823
\end{aligned}
\] & \begin{tabular}{l}
<Manual pulse generator 1 pulse input magnification> \\
1 to 1000 (QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) ) \\
1 to 100 (QD75P■/QD75D \(\square\) )
\end{tabular} & Set the manual pulse generator 1 pulse input magnification to within the setting range. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|l|l}
\hline \(\begin{array}{c}\text { Classification } \\
\text { of warnings }\end{array}\) & \(\begin{array}{c}\text { Warning } \\
\text { code }\end{array}\) & Warning name & & \multicolumn{1}{c}{ Warning } & \(\begin{array}{l}\text { Operation status at warning } \\
\text { occurrence }\end{array}\) \\
\hline & 500 & \(\begin{array}{l}\text { Deceleration/stop } \\
\text { speed change }\end{array}\) & \(\begin{array}{l}\text { The speed change request is issued } \\
\text { during deceleration stop. }\end{array}\) & The speed change is not carried out.
\end{tabular}\(]\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Classification of warnings & Warning code & Warning name & Warning & Operation status at warning occurrence & \\
\hline \multirow{7}{*}{Positioning operation} & 511 & Step not possible & Code 1 is set for the step start information when the step is outside standby. & The step will not start. & \\
\hline & 512 & Illegal external command function & The detailed parameter 2 "External command function selection" setting range is exceeded. & Even if the external command signal is turned ON, the system will not perform anything. & \\
\hline & 513 & Insufficient movement amount & The movement amount is not large enough for automatic deceleration. & The system stops immediately after it reaches the positioning address. & \\
\hline & 514 & Outside command speed range & The command speed exceeds the speed limit. & \begin{tabular}{l}
- The command speed is controlled at the "speed limit value". \\
- The "speed limiting flag" turns ON.
\end{tabular} & \\
\hline & 516 & Illegal teaching data No. & The positioning data No. is set outside the setting range. & Teaching is not carried out when the set value is 0 or 601 or more. (A " 0 " is canceled by the QD75 automatically even when a " 0 " or "601" or more is set.) & \\
\hline & 517 & Illegal teaching data selection & The teaching data selection set value is outside the setting range. & Teaching is not carried out. & \\
\hline & 518 & Target position change not possible & \begin{tabular}{l}
- A target position change request was given for the control system other than ABS1 and INC1. \\
- The target position change request is turned ON during continuous path control. \\
- A new target position address is outside the software stroke limit range. \\
- A target position change request was given during deceleration to a stop. \\
- A target position change request is given while the speed change 0 flag (Md. 31 Status: b10) is ON.
\end{tabular} & The target position change is not carried out. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Related buffer memory address} & \multirow[t]{2}{*}{Set range (Setting with sequence program)} & \multirow[t]{2}{*}{Remedy} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline 1546 & 1646 & 1746 & 1846 & <Step start information> 1: Step is continued 2: Re-start is carried out & Do not set a "1" to the step start information when the step is not in standby state. (Refer to Section 12.7.1) \\
\hline 62 & 212 & 362 & 512 & \begin{tabular}{l}
<External command function selection> \\
\(0,1,2,3\)
\end{tabular} & Set the detailed parameter 2 "External command function selection" to within the setting range. \\
\hline \multicolumn{4}{|l|}{Refer to Section 5.3 "List of positioning data"} & - & Set a decelerating address or a movement amount to the positioning data. \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
For command speed, refer to Section 5.3 \\
"List of positioning data"
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
QD75P■N/QD75D■N: \\
1 to 4000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others] \\
QD75P■/QD75D \(\square\) \\
1 to 1000000 [pulse/s] \\
1 to 2000000000 \\
[ \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) or others ]
\end{tabular}} & \multirow{3}{*}{Set the command speed to within the setting range.} \\
\hline \multicolumn{4}{|c|}{Speed limit value} & & \\
\hline \[
\begin{aligned}
& 10 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 161
\end{aligned}
\] & \[
\begin{aligned}
& 310 \\
& 311
\end{aligned}
\] & \[
\begin{aligned}
& 460 \\
& 461
\end{aligned}
\] & & \\
\hline 1549 & 1649 & 1749 & 1849 & <Teaching positioning data No.>
\[
1 \text { to } 600
\] & Set the positioning data No. to within the setting range. \\
\hline 1548 & 1648 & 1748 & 1848 & <Teaching data selection>
\[
0,1
\] & Set the teaching data selection set value to within the setting range. \\
\hline 1538 & 1638 & 1738 & 1838 & \begin{tabular}{l}
<Target position change request flag> \\
1: Target position change request
\end{tabular} & \begin{tabular}{l}
- Do not turn ON the target position change request in the following cases. \\
- An operating pattern "continuous path control" is used. \\
- A control system other than ABS1, and INC1 is used. \\
- During deceleration stop. \\
- When the speed change 0 flag (Md. 31 Status: b10) is ON. \\
- When the target position change address is outside the stroke limit, correct the target position change address. (Refer to Section 12.5.5)
\end{tabular} \\
\hline
\end{tabular}

\section*{MEMO}

\section*{APPENDICES}
Appendix 1 Version up of the functions Appendix- ..... 2
Appendix 1.1 Comparison of functions according to function versions Appendix- ..... 2
Appendix 1.2 Precautions for the replacement of QD75P \(\square\) /QD75D \(\square\) with QD75P \(\square N / Q D 75 D \square N\) Appendix- 3
Appendix 2 Format sheets Appendix-6
Appendix 2.1 Positioning Module operation chart Appendix- ..... 6
Appendix 2.2 Parameter setting value entry table Appendix- ..... 8
Appendix 2.3 Positioning data setting value entry table Appendix- 14
Appendix 3 Positioning data (No. 1 to 600) List of buffer memory addresses ..... Appendix- 15
Appendix 4 Connection examples with servo amplifiers manufactured by MITSUBISHI Electric Corporation Appendix- 39
Appendix 4.1 Connection example of QD75D \(\square \mathrm{N}\) and MR-J3- \(\square\) A (Differential driver) Appendix- 39
Appendix 4.2 Connection example of QD75D \(\square \mathrm{N}\) and MR-H \(\square \mathrm{A}\)(Differential driver) ..........................................................................Appendix- 40
Appendix 4.3 Connection example of QD75D \(\square\) N and MR-J2/J2S- \(\square\) A(Differential driver)Appendix- 41
Appendix 4.4 Connection example of QD75D \(\square \mathrm{N}\) and MR-C \(\square \mathrm{A}\) (Differential driver) Appendix- 42
Appendix 5 Connection examples with stepping motors manufactured by ORIENTALMOTOR Co., Ltd ..... Appendix- 43
Appendix 5.1 Connection example of QD75P \(\square \mathrm{N}\) and VEXTA UPD (Open collector) Appendix- 43
Appendix 6 Connection examples with servo amplifiers manufactured by Panasonic Corporation Appendix- 44
Appendix 6.1 Connection example of QD75D \(\square \mathrm{N}\) and MINAS-A series (Differential driver) Appendix- 44
Appendix 7 Connection examples with servo amplifiers manufactured by SANYO DENKI Co., Ltd Appendix- 45
Appendix 7.1 Connection example of QD75D \(\square \mathrm{N}\) and PYO series (Differential driver) Appendix- 45
Appendix 8 Connection examples with servo amplifiers manufactured by YASKAWA Electric Corporation Appendix- 46
Appendix 8.1 Connection example of QD75D \(\square \mathrm{N}\) and \(\Sigma-I I\) series (Differential driver) Appendix- 46
Appendix 9 Comparisons with conventional positioning modules ..... Appendix- 47
Appendix 9.1 Comparisons with A1SD71S2 model ..... Appendix- 47
Appendix 9.2 Comparisons with A1SD75P1-S3/A1SD75P2-S3/ A1SD75P3-S3 modelsAppendix- 48
Appendix 10 When using GX Works2 ..... Appendix- 71
Appendix 10.1 Adding a module ..... Appendix- 72
Appendix 10.2 Setting parameters ..... Appendix- 73
Appendix 10.3 Setting auto refresh ..... Appendix- 78
Appendix 10.4 Positioning monitor ..... Appendix- 79
Appendix 10.5 Positioning test. ..... Appendix- 89
Appendix 10.6 Wave trace ..... Appendix- 97
Appendix 10.7 Location trace ..... Appendix- 100
Appendix 10.8 Parameter initialization function ..... Appendix- 103
Appendix 10.9 Execution data backup function Appendix- 105
Appendix 10.10 External I/O signal logic switching function ..... Appendix- 107
Appendix 10.11 External I/O signal monitor function ..... Appendix- 108
Appendix 10.12 History monitor function Appendix- 109
Appendix 10.13 Checking errors ..... Appendix- 111
Appendix 11 MELSEC Explanation of positioning terms ..... Appendix-115
Appendix 12 Positioning control troubleshooting ..... Appendix-135
Appendix 13 List of buffer memory addresses ..... Appendix-141
Appendix 14 External dimension drawing ..... Appendix-150

\section*{Appendix 1 Version up of the functions}

\section*{Appendix 1.1 Comparison of functions according to function versions}

The following tables list the QD75 functions compared according to function versions and the buffer memory for their additional functions.

\section*{(1) Function comparison}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Item} & \multicolumn{3}{|c|}{Function versions} & \multirow{3}{*}{Reference} \\
\hline & \[
\begin{aligned}
& \text { QD75P } \square \mathrm{N} / \\
& \text { QD75D } \square \mathrm{N}
\end{aligned}
\] & \multicolumn{2}{|l|}{QD75P \(\square /\) QD75D \(\square\)} & \\
\hline & A & A & B & \\
\hline Speed-position switching control (ABS mode) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & Section 9.2.17 \\
\hline Pre-reading start function & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & Section 12.7.7 \\
\hline External I/O signal monitor function & \(\bigcirc * 1\) & \(\times\) & \(\bigcirc *{ }^{2}\) & Section 13.5 \\
\hline Multiple programmable controller compatible function \(*^{3}\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - \\
\hline Deceleration start flag function & \(\bigcirc\) & \(\times\) & \(\bigcirc *^{4}\) & Section 12.7.8 \\
\hline Stop command processing for deceleration stop function & \(\bigcirc\) & \(\times\) & \(\bigcirc *^{5}\) & Section 12.7.9 \\
\hline Output timing selection of near pass control & \(\bigcirc *{ }^{6}\) & \(\times\) & \(\bigcirc *^{7}\) & Section 12.3.4 \\
\hline
\end{tabular}
*1: For the QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\), external I/O signals can not be monitored on GX Developer. Use the system monitor of GX Works2.
*2: Usable on GX Developer of SW6D5C-GPPW-E or later.
*3: Compatible with QCPU of function version B.
*4: Supported by the module whose first five digits of SERIAL No. are "03042" or later.
*5: Supported by the module whose first five digits of SERIAL No. are "05072" or later.
*6: Supported by the module whose first five digits of SERIAL No. are "14032" or later.
*7: Supported by the module whose first five digits of SERIAL No. are "14012" or later.

\section*{(2) Additional buffer memory}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Buffer memory addresses} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Used function} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & \\
\hline 34 & 184 & 334 & 484 & Speed-position function selection & Speed-position switching control \\
\hline 899 & 999 & 1099 & 1199 & Deceleration start flag & \\
\hline \multicolumn{4}{|c|}{1905} & Deceleration start flag valid & function \\
\hline \multicolumn{4}{|c|}{1907} & Stop command processing for deceleration stop selection & Stop command processing for deceleration stop function \\
\hline
\end{tabular}

\section*{(3) Additional devices}
\begin{tabular}{|c|c|c|c|}
\hline Device No. & \multicolumn{2}{|c|}{ Name } & Used function \\
\hline Y14 & Axis 1 & & \\
\cline { 1 - 2 } Y15 & Axis 2 & \multirow{3}{*}{ Execution prohibition flag } & \multirow{2}{*}{ Pre-reading start function } \\
\cline { 1 - 2 } Y16 & Axis 3 & & \\
\cline { 1 - 2 } Y17 & Axis 4 & & \\
\hline
\end{tabular}

Appendix 1.2 Precautions for the replacement of the QD75P \(\square /\) QD75D \(\square\) with the QD75P \(\square N /\) QD75D \(\square N\)
(1) Specification differences between the QD75P \(\square\) N/QD75D \(\square \mathrm{N}\) and the QD75P \(\square\) QD75D \(\square\)
The following table shows the differences. The specifications not listed below are the same for the both models.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) & QD75P \(\square\) /QD75D \(\square\) \\
\hline \multicolumn{2}{|l|}{Max. output pulse} & \begin{tabular}{l}
4Mpulse/s \\
(QD75D \(\square \mathrm{N}\) )
\end{tabular} & 1Mpulse/s (Q75D \(\square\) ) \\
\hline \multicolumn{2}{|l|}{Speed command (pulse unit)} & 1 to 4000000pulse/s & 1 to 1000000pulse/s \\
\hline \multicolumn{2}{|l|}{Starting time (1-axis linear control)} & Trapezoidal acceleration/ deceleration: 1.5 ms S-curve acceleration/ deceleration: 1.6 ms & Trapezoidal acceleration/ deceleration: 6 ms S-curve acceleration/ deceleration: 6.5 ms \\
\hline \multirow[t]{2}{*}{Monitor data refreshing cycle} & Current feed value & 0.9 ms & 1.8 ms \\
\hline & \begin{tabular}{l}
Other axis monitors \\
(except external I/O signals)
\end{tabular} & 0.9 ms & 56.8 ms \\
\hline \multicolumn{2}{|l|}{Manual pulse generator 1 pulse input magnification} & 1 to 1000 & 1 to 100 \\
\hline \begin{tabular}{l}
ON \\
voltage/current of external input
\end{tabular} & External command signal & 19VDC or more/2.7mA or more & \begin{tabular}{l}
17.5VDC or more/ \\
3.5 mA or more
\end{tabular} \\
\hline \begin{tabular}{l}
OFF \\
voltage/current of external input
\end{tabular} & External command signal & 7VDC or less/ 0.8 mA or less & \begin{tabular}{l}
7VDC or less/ \\
1.7 mA or less
\end{tabular} \\
\hline \multirow[t]{3}{*}{Input resistance of external input} & Zero signal (5VDC) & Approx. \(620 \Omega\) & Approx. 300 \\
\hline & Manual pulse generator \(A / B\) phase & Approx. 1.1k & Approx. 1.5k \(\Omega\) \\
\hline & External command signal & Approx. \(7.7 \mathrm{k} \Omega\) & Approx. 4.3k \(\Omega\) \\
\hline \multicolumn{2}{|l|}{Internal current consumption (5VDC)} & QD75P1N: 0.29A QD75P2N: 0.30A QD75P4N: 0.36A QD75D1N: 0.43A QD75D2N: 0.45A QD75D4N: 0.66A & QD75P1: 0.40A QD75P2: 0.46A QD75P4: 0.58A QD75D1: 0.52A QD75D2: 0.56A QD75D4: 0.82A \\
\hline \multicolumn{2}{|l|}{Weight} & QD75P1N: 0.14 kg QD75P2N: 0.14 kg QD75P4N: 0.16 kg QD75D1N: 0.15 kg QD75D2N: 0.15 kg QD75D4N: 0.16kg & QD75P1: 0.15 kg QD75P2: 0.15 kg QD75P4: 0.16 kg QD75D1: 0.15 kg QD75D2: 0.15 kg QD75D4: 0.16 kg \\
\hline
\end{tabular}

\section*{(2) Precaution on the use of sequence programs}

The QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) is upgraded from the QD75P \(\square\) /QD75D \(\square\). Therefore, the recognized sequence programs for the QD75P \(\square\) QD75D \(\square\) can be applied to the QD75P \(\square N / Q D 75 D \square\). Note that specifications such as time takes for startup and data update cycle are improved. When applying a sequence program to the QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\), modify the sequence program if necessary, checking the processing timing.
(3) Transferring the set data of the QD75P \(\square\) QD75D \(\square\) using GX Works2
When GX Works2 is used, the set data of the QD75P \(\square\) /QD75D \(\square\) can be transferred to the QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) in the following procedure.
(a) Saving the set data of the QD75P \(\square / Q D 75 D \square\) from "Save the Positioning Module Data..."
1) In the project view, select the \(Q D 75 P \square / Q D 75 D \square\) from where the set data is transferred.
2) Go to [Project] \(\rightarrow\) [Intelligent Function Module] \(\rightarrow\) [Save the Positioning Module Data...].
3) Input the file name, and save the set data.
(b) Reading the set data to the QD75P \(\square\) N/QD75D \(\square\) N from "Read from the Positioning Module Data..."
1) In the project view, select the \(Q D 75 P \square N / Q D 75 D \square \mathrm{~N}\) to where the saved data is transferred.
2) Go to [Project] \(\rightarrow\) [Intelligent Function Module] \(\rightarrow\) [Read from the Positioning Module Data...].
3) Select the name of the file saved in step (a), and open it. The following window opens.

Select Data to Read
Please select the data to read and press OK button.

4) Check the data to read and click \(\square\) OK The set data is read to the QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\).
(4) Precaution on the use of GX Configurator-QP

To use the QD75PDN/QD75DON with GX Configurator-QP, select the QD75PD/QD75DD in "Select module type". The QD75PDN/QD75DON can be used in the same manner as the QD75PD/QD75DD. Note that a speed exceeding 1000000pulse/s cannot be set in the following items when "Pulse" is set in " Pr. 1 Unit setting"). To set a value outside a setting range in GX Configurator-QP, set it through a sequence program or GX Works2 of the version 1.64 S or later.
\begin{tabular}{|c|c|c|}
\hline Setting item & Setting range in GX Configurator-QP & Setting range in GX Works2 and sequence programs \\
\hline Pr. 7 Bias speed at start & 0 to 1000000(pulse/s) & 0 to 4000000(pulse/s) \\
\hline Pr. 8 Speed limit value & [QD75PロN] & \multirow{5}{*}{1 to 4000000(pulse/s)} \\
\hline Pr. 31 JOG speed limit value & \begin{tabular}{l}
1 to 200000(pulse/s) \\
[QD75DDN] \\
1 to 1000000 (pulse/s)
\end{tabular} & \\
\hline Pr. 46 OPR speed & \multirow{3}{*}{1 to 1000000(pulse/s)} & \\
\hline Pr. 47 Creep speed & & \\
\hline Da. 8 Command speed & & \\
\hline
\end{tabular}

\section*{Appendix 2 Format sheets}

Appendix 2.1 Positioning Module operation chart


Axis address
mm , inch, degree, pulse

Appendix-6


Axis address
mm, inch, degree, pulse

Appendix-7

\section*{Appendix 2.2 Parameter setting value entry table}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow{2}{*}{Item}} & \multicolumn{4}{|c|}{Setting range} & \\
\hline & & & mm & inch & degree & pulse & \\
\hline \multirow{7}{*}{\[
\stackrel{\pi}{\infty}
\]} & Pr. 1 & Unit setting & 0 & 1 & 2 & 3 & \\
\hline & Pr. 2 & No. of pulses per rotation (Ap) & \multicolumn{4}{|c|}{1 to 65535 pulse} & \\
\hline & Pr. 3 & Movement amount per rotation (AI) & \[
\begin{aligned}
& \hline 1 \text { to } 65535 \\
& \times 10^{-1} \mu \mathrm{~m}
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 1 \text { to } 65535 \\
\times & 10^{-5} \mathrm{inch}
\end{array}
\] & \[
\begin{array}{|l}
\hline 1 \text { to } 65535 \\
\times 10^{-5} \text { degree }
\end{array}
\] & 1 to 65535 pulse & \\
\hline & Pr. 4 & Unit magnification (Am) & \multicolumn{4}{|l|}{1: 1 -fold, 10: 10-fold, 100: 100-fold, 1000: 1000-fold} & \\
\hline & Pr. 5 & Pulse output mode & \multicolumn{4}{|l|}{0: PULSE/SIGN mode, 1: CW/CCW mode, 2: A phase/B phase (multiple of 4), 3: A phase/B phase (multiple of 1)} & \\
\hline & Pr. 6 & Rotation direction setting & \multicolumn{4}{|l|}{\begin{tabular}{l}
0 : Current value increment with forward run pulse output \\
1: Current value increment with reverse run pulse output
\end{tabular}} & \\
\hline & Pr. 7 & Bias speed at start & \[
\left|\begin{array}{r}
0 \text { to } 2000000000 \\
\times 10^{-2} \mathrm{~mm} / \mathrm{min}
\end{array}\right|
\] & \[
\begin{array}{r}
0 \text { to } 2000000000 \\
\times 10^{-3} \text { inch } / \mathrm{min}
\end{array}
\] & \begin{tabular}{l}
0 to 2000000000 \\
\(\times 10^{-3}\) degree \(/\) min
\end{tabular} & \begin{tabular}{l}
QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\) 0 to 4000000 pulse/s QD75P \(\square / Q D 75 D \square\) : \\
0 to 1000000 pulse/s
\end{tabular} & \\
\hline  & Pr. 8 & Speed limit value & 1 to 2000000000 \(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\) & \[
\begin{array}{r}
1 \text { to } 2000000000 \\
\times 10^{-3} \mathrm{~mm} / \mathrm{min}
\end{array}
\] & 1 to 2000000000
\(\times 10^{-3}\) degree \(/ \mathrm{min}\) & \begin{tabular}{l}
QD75P \(\square\) N/QD75D \(\square\) N 1 to 4000000 pulse/s QD75P \(\square / Q D 75 D \square\) : \\
1 to 1000000 pulse/s
\end{tabular} & \\
\hline ® & Pr. 9 & Acceleration time 0 & \multicolumn{4}{|l|}{\multirow{2}{*}{1 to 8388608 ms}} & \\
\hline \(\bigcirc\) & Pr. 10 & Deceleration time 0 & & & & & \\
\hline \multirow{10}{*}{} & Pr. 11 & Backlash compensation amount & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& \times 10^{-1} \mu \mathrm{~m}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 0 \text { to } \begin{array}{c}
65535 \\
\times 10^{-5} \mathrm{inch}
\end{array}
\end{array}
\] & \[
\begin{array}{|l|}
\hline 0 \text { to } 65535 \\
\times 10^{-5} \text { degree } \\
\hline
\end{array}
\] & \begin{tabular}{l}
\[
0 \text { to } 65535
\] \\
pulse
\end{tabular} & \\
\hline & \begin{tabular}{|l|}
\hline Pr. 12 \\
\hline Pr. 13 \\
\hline
\end{tabular} & \begin{tabular}{l}
Software stroke limit upper limit value \\
Software stroke limit lower limit value
\end{tabular} & \[
\begin{gathered}
-2147483648 \text { to } \\
2147483647 \\
\times 10^{-1} \mu \mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
-2147483648 \text { to } \\
2147483647 \\
\times 10^{-5} \mathrm{inch}
\end{gathered}
\] & \[
\begin{array}{r}
0 \text { to } 35999999 \\
\times 10^{-5} \text { degree }
\end{array}
\] & \[
\begin{array}{r}
-2147483648 \text { to } \\
2147483647 \\
\text { pulse }
\end{array}
\] & \\
\hline & Pr. 14 & Software stroke limit selection & \multicolumn{4}{|l|}{0: Apply software stroke limit on current feed value 1: Apply software stroke limit on machine feed value} & \\
\hline & Pr. 15 & Software stroke limit valid/invalid setting & \multicolumn{4}{|l|}{\begin{tabular}{l}
0: Software stroke limit valid during JOG operation, inching operation, and manual pulse generator operation \\
1: Software stroke limit invalid during JOG operation, inching operation, and manual pulse generator operation
\end{tabular}} & \\
\hline & Pr. 16 & Command in-position width & \[
\begin{array}{|r}
\hline 1 \text { to } 2147483647 \\
\times 10^{-1} \mu \mathrm{~m} \\
\hline
\end{array}
\] & \[
\begin{gathered}
1 \text { to } \begin{array}{c}
2147483647 \\
\times 10^{-5} \mathrm{inch}
\end{array}
\end{gathered}
\] & \[
\begin{array}{r}
1 \text { to } 2147483647 \\
\times \quad 10^{-5} \text { degree }
\end{array}
\] & 1 to 2147483647
pulse & \\
\hline & Pr. 17 & Torque limit setting value & \multicolumn{4}{|l|}{1 to 500\%} & \\
\hline & Pr. 18 & M code ON signal output timing & \multicolumn{4}{|l|}{0: WITH mode, 1: AFTER mode} & \\
\hline & Pr. 19 & Speed switching mode & \multicolumn{4}{|l|}{\begin{tabular}{l}
0 : Standard speed switching mode \\
1: Front-loading speed switching mode
\end{tabular}} & \\
\hline & Pr. 20 & Interpolation speed designation method & \multicolumn{4}{|l|}{0: Composite speed, 1: Reference axis speed} & \\
\hline & Pr. 21 & Current feed value during speed control & \multicolumn{4}{|l|}{\begin{tabular}{l}
0: Do not update current feed value, 1: Update current feed value \\
2: Clear current feed value
\end{tabular}} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Initial value & Axis 1 & Axis 2 & Axis 3 & Axis 4 & Remarks \\
\hline 3 & & & & & \\
\hline 20000 & & & & & \\
\hline 20000 & & & & & \\
\hline 1 & & & & & \\
\hline 1 & & & & & \\
\hline 0 & & & & & \\
\hline 0 & & & & & \\
\hline 20000 & & & & & \\
\hline 1000 & & & & & \\
\hline 1000 & & & & & \\
\hline 0 & & & & & \\
\hline 2147483647 & & & & & \\
\hline -2147483648 & & & & & \\
\hline 0 & & & & & \\
\hline 0 & & & & & \\
\hline 100 & & & & & \\
\hline 300 & & & & & \\
\hline 0 & & & & & \\
\hline
\end{tabular}

Appendix-9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow{2}{*}{Item}} & \multicolumn{7}{|c|}{Setting range} & \\
\hline & & & & mm & & inch & & degree & pulse & \\
\hline \multirow{7}{*}{} & \multirow{3}{*}{Pr. 22} & \multirow{3}{*}{Input signal logic selection} & b0 & Lower limit & b3 & Stop signal & b6 & Near-point dog signal & \multirow{5}{*}{\begin{tabular}{l}
Setting of each bit value \\
0: Negative logic \\
1: Positive logic (" 0 " is set for unused bit.)
\end{tabular}} & \\
\hline & & & b1 & Upper limit & b4 & External command & \[
\begin{aligned}
& \mathrm{b} 7, \mathrm{~b} \\
& \text { to b15 }
\end{aligned}
\] & Unused & & \\
\hline & & & b2 & Drive unit READY & b5 & Zero signal & b8 & Manual pulse generator input & & \\
\hline & Pr & \multirow[t]{2}{*}{Output signal logic selection} & b0 & Command pulse signal & b2 & Unused & b4 & Deviation counter clear & & \\
\hline & & & b1 & Unused & b3 & Unused & \[
\begin{aligned}
& \text { b5 to } \\
& \text { b15 }
\end{aligned}
\] & Unused & & \\
\hline & Pr. 24 & Manual pulse generator input selection & \multicolumn{7}{|l|}{\begin{tabular}{l}
0 : A phase/B phase multiple of 4 \\
1: A phase/B phase multiple of 2 \\
2: A phase/B phase multiple of 1 \\
3: PULSE/SIGN mode
\end{tabular}} & \\
\hline & Pr. 150 & Speed -position function selection & \multicolumn{7}{|l|}{\begin{tabular}{l}
0 : Speed-position switching control (INC mode) \\
2: Speed-position switching control (ABS mode)
\end{tabular}} & \\
\hline \multirow{18}{*}{} & Pr. 25 & Acceleration time 1 & \multicolumn{7}{|l|}{\multirow{6}{*}{1 to 8388608ms}} & \\
\hline & Pr. 26 & Acceleration time 2 & & & & & & & & \\
\hline & Pr. 27 & Acceleration time 3 & & & & & & & & \\
\hline & Pr. 28 & Deceleration time 1 & & & & & & & & \\
\hline & Pr. 29 & Deceleration time 2 & & & & & & & & \\
\hline & Pr. 30 & Deceleration time 3 & & & & & & & & \\
\hline & Pr. 31 & JOG speed limit value & & 00000000 \(10^{-2} \mathrm{~mm} / \mathrm{min}\) & & \[
\begin{aligned}
& 00000000 \\
& 10^{-3} \text { inch } / \mathrm{min}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \text { to } 20 \\
& \times 10^{-3} \mathrm{~d}
\end{aligned}
\] & 000000000 degree/min & \begin{tabular}{l}
QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) : 1 to 4000000 pulse/s QD75P \(\square /\) QD75D \(\square\) : \\
1 to 1000000 pulse/s
\end{tabular} & \\
\hline & Pr. 32 & JOG operation acceleration time selection & \multicolumn{7}{|l|}{\multirow[b]{2}{*}{0 to 3}} & \\
\hline & Pr. 33 & JOG operation deceleration time selection & & & & & & & & \\
\hline & Pr. 34 & Acceleration/deceleration process selection & \multicolumn{7}{|l|}{\begin{tabular}{l}
0: Trapezoidal acceleration/deceleration process \\
1: S-curve acceleration/deceleration process
\end{tabular}} & \\
\hline & Pr. 35 & S-curve ratio & \multicolumn{7}{|l|}{1 to 100\%} & \\
\hline & Pr. 36 & Sudden stop deceleration time & \multicolumn{7}{|l|}{1 to 8388608 ms} & \\
\hline & Pr. 37 & Stop group 1 sudden stop selection & \multicolumn{7}{|l|}{\multirow{3}{*}{\begin{tabular}{l}
0: Normal deceleration stop \\
1: Sudden stop
\end{tabular}}} & \\
\hline & Pr. 38 & Stop group 2 sudden stop selection & & & & & & & & \\
\hline & Pr. 39 & Stop group 3 sudden stop selection & & & & & & & & \\
\hline & Pr. 40 & Positioning complete signal output time & \multicolumn{7}{|l|}{0 to 65535ms} & \\
\hline & Pr. 41 & Allowable circular interpolation error width & \multicolumn{3}{|l|}{\[
\begin{array}{|r|}
\hline 1 \text { to } \begin{array}{r}
100000 \\
\times 10^{-1} \mu \mathrm{~m}
\end{array} \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{\[
\begin{array}{|l|l|}
\hline 1 \text { to } \begin{array}{l}
100000 \\
\times 10^{-5} \text { inch }
\end{array}
\end{array}
\]} & \[
\begin{array}{|c|}
\hline 1 \text { to } 100000 \\
\times \quad 10^{-5} \text { degree } \\
\hline
\end{array}
\] & 1 to 100000 pulse & \\
\hline & Pr. 42 & External command function selection & \multicolumn{7}{|l|}{\begin{tabular}{l}
0 : External positioning start 1: External speed change request \\
2: Speed-position or position-speed switching request \\
3: Skip request
\end{tabular}} & \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c|c|c|c|}
\hline & & & & \\
\hline
\end{tabular}

Appendix-11
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{Item}} & \multicolumn{4}{|c|}{Setting range} & \\
\hline & & & mm & inch & degree & pulse & \\
\hline \multirow{6}{*}{} & Pr. 43 & OPR method & \multicolumn{4}{|l|}{\begin{tabular}{l}
0: Near-point dog method \\
1: Stopper method 1) (By dwell time elapse) \\
2: Stopper method 2) (By OP signal when stopper is hit) \\
3: Stopper method 3) (Without near-point dog method) \\
4: Count method 1) (Use zero signal) \\
5: Count method 2) (Do not use zero signal)
\end{tabular}} & \\
\hline & Pr. 44 & OPR direction & \multicolumn{4}{|l|}{\begin{tabular}{l}
0: Positive direction (address increment direction) \\
1: Negative direction (address decrement direction)
\end{tabular}} & \\
\hline & Pr. 45 & OP address & \[
\begin{gathered}
-2147483648 \text { to } \\
2147483647 \\
\times 10^{-1} \mu \mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
-2147483648 \text { to } \\
2147483647 \\
\times 10^{-5} \mathrm{inch}
\end{gathered}
\] & \[
\begin{array}{r}
0 \text { to } 35999999 \\
\times 10^{-5} \text { degree }
\end{array}
\] & \[
\begin{gathered}
-2147483648 \text { to } \\
2147483647 \\
\text { pulse }
\end{gathered}
\] & \\
\hline & Pr. 46 & OPR speed & \multirow[b]{2}{*}{\[
\begin{array}{r}
1 \text { to } 2000000000 \\
\times 10^{-2} \mathrm{~mm} / \mathrm{min}
\end{array}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
1 to 2000000000 \\
\(\times 10^{-3} \mathrm{inch} / \mathrm{min}\)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
1 to 2000000000 \\
\(\times 10^{-3}\) degree \(/\) min
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) : 1 to 4000000 pulse/s QD75P \(\square /\) QD75D \(\square\) : \\
1 to 1000000 pulse/s
\end{tabular}} & \\
\hline & Pr. 47 & Creep speed & & & & & \\
\hline & Pr. 48 & OPR retry & \multicolumn{4}{|l|}{\begin{tabular}{l}
0: Do not retry OPR with upper/lower limit switch \\
1: Retry OPR with upper/lower limit switch
\end{tabular}} & \\
\hline \multirow{8}{*}{} & Pr. 49 & OPR dwell time & \multicolumn{4}{|l|}{0 to 65535ms} & \\
\hline & Pr. 50 & Setting for the movement amount after near-point dog ON & \[
\begin{gathered}
0 \text { to } 2147483647 \\
\times 10^{-1} \mu \mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to } 2147483647 \\
\times 10^{-5} \text { inch }
\end{gathered}
\] & \[
\left\lvert\, \begin{array}{r}
0 \text { to } 2147483647 \\
\times 10^{-5} \text { degree }
\end{array}\right.
\] & 0 to 2147483647
pulse & \\
\hline & \[
\begin{array}{|l|}
\hline \text { Pr. } 51 \\
\hline \text { Pr. } 52 \\
\hline
\end{array}
\] & \begin{tabular}{l}
OPR acceleration time selection \\
OPR deceleration time selection
\end{tabular} & \multicolumn{4}{|l|}{0 to 3} & \\
\hline & Pr. 53 & OP shift amount & \[
\begin{aligned}
& -2147483648 \text { to } \\
& 2147483647 \\
& \times 10^{-1} \mu \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& -2147483648 \text { to } \\
& 2147483647 \\
& \times 10^{-5} \mathrm{inch}
\end{aligned}
\] & \[
\begin{aligned}
& -2147483648 \text { to } \\
& 2147483647 \\
& \times \quad 10^{-5} \text { degree }
\end{aligned}
\] & \[
\begin{gathered}
-2147483648 \text { to } \\
2147483647 \\
\text { pulse }
\end{gathered}
\] & \\
\hline & Pr. 54 & OPR torque limit value & \multicolumn{4}{|l|}{1 to 300\%} & \\
\hline & Pr. 55 & Deviation counter clear signal output time & \multicolumn{4}{|l|}{1 to 65535 ms} & \\
\hline & Pr. 56 & Speed designation during OP shift & \multicolumn{4}{|l|}{0: OPR speed 1: Creep speed} & \\
\hline & Pr. 57 & Dwell time during OPR retry & \multicolumn{4}{|l|}{0 to 65535 ms} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Initial value & Axis 1 & Axis 2 & Axis 3 & Axis 4 & Remarks \\
\hline 0 & & & & & \\
\hline 0 & & & & & \\
\hline 0 & & & & & \\
\hline 1 & & & & & \\
\hline 1 & & & & & \\
\hline 0 & & & & & \\
\hline 300 & & & & & \\
\hline 11 & & & & & \\
\hline 0 & & & & & \\
\hline 0 & & & & & \\
\hline
\end{tabular}

Appendix 2.3 Positioning data setting value entry table [data No. to ]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Axis} \\
\hline & Da. 1 & & & & & & Da. 7 & & Da. 9 & Da. 10 \\
\hline Data & Operation pattern & Control system & Acceleration time No. & Deceleration time No. & Axis to be interpolated & Positioning address/ movement amount & Arc address & Command speed & Dwell time & M code \\
\hline 1 & & & & & & & & & & \\
\hline 2 & & & & & & & & & & \\
\hline 3 & & & & & & & & & & \\
\hline 4 & & & & & & & & & & \\
\hline 5 & & & & & & & & & & \\
\hline 6 & & & & & & & & & & \\
\hline 7 & & & & & & & & & & \\
\hline 8 & & & & & & & & & & \\
\hline 9 & & & & & & & & & & \\
\hline 0 & & & & & & & & & & \\
\hline 1 & & & & & & & & & & \\
\hline 2 & & & & & & & & & & \\
\hline 3 & & & & & & & & & & \\
\hline 4 & & & & & & & & & & \\
\hline 5 & & & & & & & & & & \\
\hline 6 & & & & & & & & & & \\
\hline 7 & & & & & & & & & & \\
\hline 8 & & & & & & & & & & \\
\hline 9 & & & & & & & & & & \\
\hline 0 & & & & & & & & & & \\
\hline 1 & & & & & & & & & & \\
\hline 2 & & & & & & & & & & \\
\hline 3 & & & & & & & & & & \\
\hline 4 & & & & & & & & & & \\
\hline 5 & & & & & & & & & & \\
\hline 6 & & & & & & & & & & \\
\hline 7 & & & & & & & & & & \\
\hline 8 & & & & & & & & & & \\
\hline 9 & & & & & & & & & & \\
\hline 0 & & & & & & & & & & \\
\hline 1 & & & & & & & & & & \\
\hline 2 & & & & & & & & & & \\
\hline 3 & & & & & & & & & & \\
\hline 4 & & & & & & & & & & \\
\hline 5 & & & & & & & & & & \\
\hline 6 & & & & & & & & & & \\
\hline 7 & & & & & & & & & & \\
\hline 8 & & & & & & & & & & \\
\hline 9 & & & & & & & & & & \\
\hline 0 & & & & & & & & & & \\
\hline 1 & & & & & & & & & & \\
\hline 2 & & & & & & & & & & \\
\hline 3 & & & & & & & & & & \\
\hline 4 & & & & & & & & & & \\
\hline 5 & & & & & & & & & & \\
\hline 6 & & & & & & & & & & \\
\hline 7 & & & & & & & & & & \\
\hline 8 & & & & & & & & & & \\
\hline 9 & & & & & & & & & & \\
\hline 0 & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Appendix 3 Positioning data (No. 1 to 600) List of buffer memory addresses}
(1) For axis 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Data & & & & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Data } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{array}{|l|l|}
\hline \text { Dwell } \\
\text { time }
\end{array}
\]} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline No. & \[
\begin{array}{|c}
\begin{array}{|c}
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\] & cod & & \[
\begin{array}{|l|l|l|}
\hline \text { Low- } \\
\text { Order }
\end{array}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\hline \text { order } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline \text { High- } \\
\text { order }
\end{array}
\] & & & & & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Low- } \\
\text { order }
\end{array}
\end{array}
\] & \[
\begin{array}{|l|l}
\hline \text { High- } \\
\text { order }
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline \text { Low- } \\
\text { order } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline \begin{array}{l}
\text { High- } \\
\text { Order }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline \text { High- } \\
\text { order }
\end{array}
\] \\
\hline 1 & 2000 & 2001 & 2002 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 51 & 2500 & 2501 & 2502 & 2504 & 2505 & 2506 & 2507 & 2508 & 2509 \\
\hline 2 & 2010 & 2011 & 2012 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & 52 & 2510 & 2511 & 2512 & 2514 & 2515 & 2516 & 2517 & 2518 & 2519 \\
\hline 3 & 2020 & 2021 & 2022 & 2024 & 2025 & 2026 & 2027 & 2028 & 2029 & 53 & 2520 & 2521 & 2522 & 2524 & 2525 & 2526 & 2527 & 2528 & 2529 \\
\hline 4 & 2030 & 2031 & 2032 & 2034 & 2035 & 2036 & 2037 & 2038 & 2039 & 54 & 2530 & 2531 & 2532 & 2534 & 2535 & 2536 & 2537 & 2538 & 2539 \\
\hline 5 & 2040 & 2041 & 2042 & 2044 & 2045 & 2046 & 2047 & 2048 & 2049 & 55 & 2540 & 2541 & 2542 & 2544 & 2545 & 2546 & 2547 & 2548 & 2549 \\
\hline 6 & 2050 & 2051 & 2052 & 2054 & 2055 & 2056 & 2057 & 2058 & 2059 & 56 & 2550 & 2551 & 2552 & 2554 & 2555 & 2556 & 2557 & 2558 & 2559 \\
\hline 7 & 2060 & 2061 & 2062 & 2064 & 2065 & 2066 & 2067 & 2068 & 2069 & 57 & 2560 & 2561 & 2562 & 2564 & 2565 & 2566 & 2567 & 2568 & 2569 \\
\hline 8 & 2070 & 2071 & 2072 & 2074 & 2075 & 2076 & 2077 & 2078 & 2079 & 58 & 2570 & 2571 & 2572 & 2574 & 2575 & 2576 & 2577 & 2578 & 2579 \\
\hline 9 & 2080 & 2081 & 2082 & 2084 & 2085 & 2086 & 2087 & 2088 & 2089 & 59 & 2580 & 2581 & 2582 & 2584 & 2585 & 2586 & 2587 & 2588 & 2589 \\
\hline 10 & 2090 & 2091 & 2092 & 2094 & 2095 & 2096 & 2097 & 2098 & 2099 & 60 & 2590 & 2591 & 2592 & 2594 & 2595 & 2596 & 2597 & 2598 & 2599 \\
\hline 11 & 2100 & 2101 & 2102 & 2104 & 2105 & 2106 & 2107 & 2108 & 2109 & 61 & 2600 & 2601 & 2602 & 2604 & 2605 & 2606 & 2607 & 2608 & 2609 \\
\hline 12 & 2110 & 211 & 21 & 211 & 2115 & 2116 & 2117 & 2118 & 2119 & 62 & 2610 & 2611 & 2612 & 2614 & 2615 & 2616 & 2617 & 2618 & 2619 \\
\hline 13 & 2120 & 2121 & 2122 & 2124 & 2125 & 2126 & 2127 & 2128 & 2129 & 63 & 2620 & 2621 & 2622 & 2624 & 2625 & 2626 & 2627 & 2628 & 2629 \\
\hline 14 & 2130 & 2131 & 2132 & 2134 & 2135 & 2136 & 2137 & 2138 & 213 & 64 & 2630 & 2631 & 2632 & 2634 & 2635 & 2636 & 2637 & 2638 & 2639 \\
\hline 15 & 2140 & 2141 & 2142 & 2144 & 2145 & 2146 & 2147 & 2148 & 214 & 65 & 2640 & 2641 & 2642 & 2644 & 2645 & 2646 & 264 & 2648 & 264 \\
\hline 16 & 2150 & 2151 & 215 & 2154 & 2155 & 2156 & 2157 & 2158 & 2159 & 66 & 2650 & 2651 & 2652 & 2654 & 2655 & 2656 & 26 & 58 & 659 \\
\hline 17 & 2160 & 2161 & 2162 & 216 & 2165 & 2166 & 2167 & 2168 & 2169 & 67 & 2660 & 2661 & 2662 & 2664 & 2665 & 2666 & 2667 & 2668 & 2669 \\
\hline 18 & 2170 & 2171 & 2172 & 2174 & 2175 & 2176 & 2177 & 2178 & 2179 & 68 & 2670 & 2671 & 2672 & 2674 & 2675 & 2676 & 2677 & 2678 & 2679 \\
\hline 19 & 2180 & 2181 & 2182 & 2184 & 2185 & 2186 & 2187 & 2188 & 218 & 69 & 2680 & 2681 & 2682 & 2684 & 2685 & 2686 & 2687 & 2688 & 2689 \\
\hline 20 & 2190 & 2191 & 2192 & 2194 & 2195 & 2196 & 2197 & 2198 & 2199 & 70 & 2690 & 2691 & 2692 & 2694 & 2695 & 2696 & 2697 & 2698 & 2699 \\
\hline 21 & 2200 & 2201 & 2202 & 22 & 2205 & 2206 & 2207 & 2208 & 22 & 71 & 2700 & 2701 & 2702 & 2704 & 270 & 2706 & 2707 & 2708 & 2709 \\
\hline 22 & 2210 & 2211 & 2212 & 2214 & 2215 & 2216 & 2217 & 2218 & 2219 & 72 & 2710 & 2711 & 2712 & 2714 & 2715 & 2716 & 2717 & 2718 & 2719 \\
\hline 23 & 2220 & 2221 & 222 & 2224 & 2225 & 2226 & 2227 & 2228 & 2229 & 73 & 2720 & 2721 & 2722 & 2724 & 2725 & 2726 & 2727 & 2728 & 2729 \\
\hline 24 & 2230 & 2231 & 2232 & 2234 & 2235 & 2236 & 2237 & 2238 & 2239 & 74 & 2730 & 2731 & 2732 & 2734 & 2735 & 2736 & 2737 & 2738 & 2739 \\
\hline 25 & 2240 & 2241 & 2242 & 2244 & 2245 & 2246 & 2247 & 2248 & 22 & 75 & 2740 & 2741 & 2742 & 2744 & 2745 & 2746 & 2747 & 2748 & 2749 \\
\hline 26 & 2250 & 22 & 2252 & 2254 & 2255 & 2256 & 2257 & 2258 & 225 & 76 & 2750 & 2751 & 2752 & 2754 & 2755 & 2756 & 2757 & 2758 & 2759 \\
\hline 27 & 2260 & 22 & 22 & 2264 & 2265 & 2266 & 2267 & 2268 & 2269 & 77 & 2760 & 2761 & 2762 & 2764 & 2765 & 2766 & 2767 & 2768 & 2769 \\
\hline 28 & 2270 & 2271 & 2272 & 2274 & 2275 & 2276 & 2277 & 2278 & 2279 & 78 & 2770 & 2771 & 2772 & 2774 & 2775 & 2776 & 2777 & 2778 & 2779 \\
\hline 29 & 2280 & 2281 & 2282 & 2284 & 2285 & 2286 & 2287 & 2288 & 228 & 79 & 2780 & 2781 & 2782 & 2784 & 2785 & 2786 & 2787 & 2788 & 2789 \\
\hline 30 & 2290 & 2291 & 2292 & 2294 & 2295 & 2296 & 2297 & 2298 & 22 & 80 & 2790 & 2791 & 2792 & 2794 & 2795 & 2796 & 2797 & 2798 & 279 \\
\hline 31 & 2300 & 2301 & 2302 & 23 & 2305 & 2306 & 2307 & 2308 & 2309 & 81 & 2800 & 2801 & 2802 & 2804 & 2805 & 2806 & 2807 & 2808 & 2809 \\
\hline 32 & 2310 & 2311 & 2312 & 2314 & 2315 & 2316 & 2317 & 2318 & 2319 & 82 & 2810 & 2811 & 2812 & 2814 & 2815 & 2816 & 2817 & 2818 & 2819 \\
\hline 33 & 2320 & 2321 & 2322 & 2324 & 2325 & 2326 & 2327 & 2328 & 2329 & 83 & 2820 & 2821 & 2822 & 2824 & 2825 & 2826 & 2827 & 2828 & 2829 \\
\hline 34 & 2330 & 2331 & 2332 & 2334 & 2335 & 2336 & 2337 & 2338 & 2339 & 84 & 2830 & 2831 & 2832 & 2834 & 2835 & 2836 & 2837 & 2838 & 2839 \\
\hline 35 & 2340 & 2341 & 2342 & 2344 & 2345 & 2346 & 2347 & 2348 & 2349 & 85 & 2840 & 2841 & 2842 & 2844 & 2845 & 2846 & 2847 & 2848 & 2849 \\
\hline 36 & 2350 & 2351 & 2352 & 2354 & 2355 & 2356 & 2357 & 2358 & 2359 & 86 & 2850 & 2851 & 2852 & 2854 & 2855 & 2856 & 2857 & 2858 & 2859 \\
\hline 37 & 2360 & 2361 & 2362 & 2364 & 2365 & 2366 & 2367 & 2368 & 2369 & 87 & 2860 & 2861 & 2862 & 2864 & 2865 & 2866 & 2867 & 2868 & 2869 \\
\hline 38 & 2370 & 2371 & 2372 & 2374 & 2375 & 2376 & 2377 & 2378 & 2379 & 88 & 2870 & 2871 & 2872 & 2874 & 2875 & 2876 & 2877 & 2878 & 2879 \\
\hline 39 & 2380 & 2381 & 2382 & 2384 & 2385 & 2386 & 2387 & 2388 & 2389 & 89 & 2880 & 2881 & 2882 & 2884 & 2885 & 2886 & 2887 & 2888 & 2889 \\
\hline 40 & 2390 & 2391 & 2392 & 2394 & 2395 & 2396 & 2397 & 2398 & 2399 & 90 & 2890 & 2891 & 2892 & 2894 & 2895 & 2896 & 2897 & 2898 & 2899 \\
\hline 41 & 2400 & 2401 & 2402 & 2404 & 2405 & 2406 & 2407 & 2408 & 2409 & 91 & 2900 & 2901 & 2902 & 2904 & 2905 & 2906 & 2907 & 2908 & 2909 \\
\hline 42 & 2410 & 241 & 2412 & 2414 & 2415 & 2416 & 2417 & 2418 & 2419 & 92 & 2910 & 2911 & 2912 & 2914 & 2915 & 2916 & 2917 & 2918 & 2919 \\
\hline 43 & 2420 & 2421 & 2422 & 2424 & 2425 & 2426 & 2427 & 2428 & 2429 & 93 & 2920 & 2921 & 2922 & 2924 & 2925 & 2926 & 2927 & 2928 & 2929 \\
\hline 44 & 2430 & 2431 & 2432 & 2434 & 2435 & 2436 & 2437 & 2438 & 2439 & 94 & 29 & 2931 & 2932 & 2934 & 2935 & 2936 & 2937 & 2938 & 2939 \\
\hline 45 & 2440 & 2441 & 2442 & 2444 & 2445 & 2446 & 2447 & 2448 & 2449 & 95 & 2940 & 2941 & 2942 & 2944 & 2945 & 2946 & 2947 & 2948 & 2949 \\
\hline 46 & 2450 & 2451 & 2452 & 2454 & 2455 & 2456 & 2457 & 2458 & 2459 & 96 & 2950 & 2951 & 2952 & 2954 & 2955 & 2956 & 2957 & 2958 & 2959 \\
\hline 47 & 2460 & 2461 & 2462 & 2464 & 2465 & 2466 & 2467 & 2468 & 2469 & 97 & 2960 & 2961 & 2962 & 2964 & 2965 & 2966 & 2967 & 2968 & 2969 \\
\hline 48 & 2470 & 2471 & 2472 & 2474 & 2475 & 2476 & 2477 & 2478 & 2479 & 98 & 2970 & 2971 & 2972 & 2974 & 2975 & 2976 & 2977 & 2978 & 2979 \\
\hline 49 & 2480 & 2481 & 2482 & 2484 & 2485 & 2486 & 2487 & 2488 & 2489 & 99 & 2980 & 2981 & 2982 & 2984 & 2985 & 2986 & 2987 & 2988 & 2989 \\
\hline 50 & 2490 & 2491 & 2492 & 2494 & 2495 & 2496 & 2497 & 2498 & 2499 & 100 & 2990 & 2991 & 2992 & 2994 & 2995 & 2996 & 2997 & 2998 & 2999 \\
\hline
\end{tabular}

\section*{(1) For axis 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Command } \\
\text { speed }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Positioning
address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & Highorder & Loworder & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
\hline
\end{array}
\] & Loworder & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] \\
\hline 101 & 3000 & 3001 & 3002 & 3004 & 3005 & 3006 & 3007 & 3008 & 3009 \\
\hline 102 & 3010 & 3011 & 3012 & 3014 & 3015 & 3016 & 3017 & 3018 & 3019 \\
\hline 103 & 3020 & 3021 & 3022 & 3024 & 3025 & 3026 & 3027 & 3028 & 3029 \\
\hline 104 & 3030 & 3031 & 3032 & 3034 & 3035 & 3036 & 3037 & 3038 & 3039 \\
\hline 105 & 3040 & 3041 & 3042 & 3044 & 3045 & 3046 & 3047 & 3048 & 3049 \\
\hline 106 & 3050 & 3051 & 3052 & 3054 & 3055 & 3056 & 3057 & 3058 & 59 \\
\hline 107 & 3060 & 3061 & 3062 & 3064 & 3065 & 3066 & 3067 & 3068 & 3069 \\
\hline 108 & 3070 & 3071 & 3072 & 3074 & 3075 & 3076 & 3077 & 3078 & 3079 \\
\hline 109 & 3080 & 3081 & 3082 & 3084 & 3085 & 3086 & 3087 & 3088 & 3089 \\
\hline 110 & 3090 & 3091 & 3092 & 3094 & 3095 & 3096 & 3097 & 3098 & 3099 \\
\hline 11 & 3100 & 310 & 3102 & 31 & 31 & 3106 & 3107 & 3108 & 9 \\
\hline 112 & 3110 & 3111 & 3112 & 3114 & 3115 & 3116 & 3117 & 3118 & 3119 \\
\hline 113 & 3120 & 3121 & 3122 & 3124 & 3125 & 3126 & 3127 & 3128 & 3129 \\
\hline 114 & 3130 & 313 & 3132 & 313 & 3135 & 3136 & 3137 & 3138 & 3139 \\
\hline 115 & 31 & 31 & 3142 & 3144 & 31 & 3146 & 3147 & 3148 & 3149 \\
\hline 116 & 3150 & 3151 & 3152 & 31 & 31 & 3156 & 3157 & 3158 & 3 \\
\hline 117 & 3160 & 3161 & 3162 & 3164 & 3165 & 3166 & 3167 & 3168 & 3169 \\
\hline 118 & 3170 & 3171 & 3172 & 3174 & 3175 & 3176 & 3177 & 3178 & 3179 \\
\hline 119 & 3180 & 318 & 3182 & 318 & 3185 & 3186 & 3187 & 3188 & 3189 \\
\hline 120 & 3190 & 319 & 3192 & 3194 & 3195 & 3196 & 3197 & 3198 & 3199 \\
\hline 121 & 3200 & 32 & 3202 & 32 & 3205 & 3206 & 3207 & 8 & 3209 \\
\hline 122 & 3210 & 3211 & 3212 & 3214 & 3215 & 3216 & 3217 & 3218 & 3219 \\
\hline 123 & 3220 & 322 & 3222 & 3224 & 3225 & 3226 & 3227 & 3228 & 3229 \\
\hline 124 & 3230 & 323 & 3232 & 3234 & 3235 & 3236 & 3237 & 3238 & 3239 \\
\hline 125 & 3240 & 3241 & 3242 & 3244 & 3245 & 3246 & 3247 & 3248 & 3249 \\
\hline 126 & 3250 & 3251 & 3252 & 3254 & 3255 & 3256 & 3257 & 3258 & 3259 \\
\hline 127 & 3260 & 3261 & 3262 & 3264 & 3265 & 3266 & 3267 & 3268 & 3269 \\
\hline 128 & 3270 & 327 & 3272 & 3274 & 3275 & 3276 & 3277 & 3278 & 3279 \\
\hline 129 & 3280 & 3281 & 3282 & 3284 & 3285 & 3286 & 3287 & 3288 & 3289 \\
\hline 130 & 3290 & 3291 & 3292 & 3294 & 3295 & 3296 & 3297 & 3298 & 3299 \\
\hline 131 & 3300 & 3301 & 3302 & 3304 & 3305 & 3306 & 3307 & 3308 & 3309 \\
\hline 132 & 3310 & 3311 & 3312 & 3314 & 3315 & 3316 & 3317 & 3318 & 3319 \\
\hline 133 & 3320 & 3321 & 3322 & 3324 & 3325 & 3326 & 3327 & 3328 & 3329 \\
\hline 13 & 3330 & 333 & 3332 & 3334 & 3335 & 3336 & 3337 & 3338 & 39 \\
\hline 135 & 3340 & 3341 & 3342 & 3344 & 3345 & 3346 & 3347 & 3348 & 3349 \\
\hline 136 & 3350 & 3351 & 3352 & 3354 & 3355 & 3356 & 3357 & 3358 & 3359 \\
\hline 137 & 3360 & 3361 & 3362 & 3364 & 3365 & 3366 & 3367 & 3368 & 3369 \\
\hline 138 & 3370 & 337 & 3372 & 3374 & 3375 & 3376 & 3377 & 3378 & 3379 \\
\hline 139 & 3380 & 338 & 3382 & 3384 & 3385 & 3386 & 3387 & 3388 & 3389 \\
\hline 140 & 3390 & 3391 & 3392 & 3394 & 3395 & 3396 & 3397 & 3398 & 3399 \\
\hline 141 & 3400 & 3401 & 3402 & 3404 & 3405 & 3406 & 3407 & 3408 & 3409 \\
\hline 142 & 3410 & 3411 & 3412 & 3414 & 3415 & 3416 & 3417 & 3418 & 3419 \\
\hline 143 & 3420 & 3421 & 3422 & 3424 & 3425 & 3426 & 3427 & 3428 & 3429 \\
\hline 144 & 3430 & 3431 & 3432 & 3434 & 3435 & 3436 & 3437 & 3438 & 3439 \\
\hline 145 & 3440 & 3441 & 3442 & 3444 & 3445 & 3446 & 3447 & 3448 & 3449 \\
\hline 146 & 3450 & 3451 & 3452 & 3454 & 3455 & 3456 & 3457 & 3458 & 3459 \\
\hline 147 & 3460 & 3461 & 3462 & 3464 & 3465 & 3466 & 3467 & 3468 & 3469 \\
\hline 148 & 3470 & 3471 & 3472 & 3474 & 3475 & 3476 & 3477 & 3478 & 3479 \\
\hline 149 & 3480 & 3481 & 3482 & 3484 & 3485 & 3486 & 3487 & 3488 & 3489 \\
\hline 150 & 3490 & 3491 & 3492 & 3494 & 3495 & 3496 & 3497 & 3498 & 3499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning
address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order } \\
\hline
\end{array}
\] & Highorder & \[
\begin{aligned}
& \text { Low- } \\
& \text { order } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
\hline
\end{array}
\] & Loworder & \[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
\hline
\end{array}
\] \\
\hline 151 & 3500 & 3501 & 3502 & 3504 & 3505 & 3506 & 3507 & 3508 & 3509 \\
\hline 152 & 3510 & 3511 & 3512 & 3514 & 3515 & 3516 & 3517 & 3518 & 3519 \\
\hline 153 & 3520 & 3521 & 3522 & 3524 & 3525 & 3526 & 3527 & 3528 & 3529 \\
\hline 154 & 3530 & 3531 & 3532 & 3534 & 3535 & 3536 & 3537 & 3538 & 3539 \\
\hline 155 & 3540 & 3541 & 3542 & 3544 & 3545 & 3546 & 3547 & 3548 & 3549 \\
\hline 156 & 3550 & 3551 & 3552 & 355 & 3555 & 3556 & 3557 & 3558 & 9 \\
\hline 157 & 3560 & 3561 & 3562 & 3564 & 3565 & 3566 & 3567 & 3568 & 3569 \\
\hline 158 & 3570 & 3571 & 3572 & 3574 & 3575 & 3576 & 3577 & 3578 & 3579 \\
\hline 159 & 3580 & 3581 & 3582 & 3584 & 3585 & 3586 & 3587 & 3588 & 3589 \\
\hline 160 & 3590 & 3591 & 3592 & 359 & 3595 & 3596 & 3597 & 3598 & 3599 \\
\hline 161 & 3600 & 3601 & 360 & 36 & 3605 & 3606 & 3607 & 3608 & 3609 \\
\hline 162 & 3610 & 3611 & 3612 & 3614 & 3615 & 3616 & 3617 & 3618 & 3619 \\
\hline 163 & 3620 & 3621 & 3622 & 3624 & 3625 & 3626 & 3627 & 3628 & 3629 \\
\hline 164 & 3630 & 3631 & 3632 & 3634 & 3635 & 3636 & 3637 & 3638 & 3639 \\
\hline 16 & 3640 & 36 & 364 & 36 & 3645 & 3646 & 3647 & 3648 & 3649 \\
\hline 166 & 3650 & 3651 & 365 & 36 & 3655 & 3656 & 3657 & 3658 & 3659 \\
\hline 167 & 3660 & 3661 & 3662 & 3664 & 3665 & 3666 & 3667 & 3668 & 3669 \\
\hline 168 & 3670 & 3671 & 3672 & 3674 & 3675 & 3676 & 3677 & 3678 & 3679 \\
\hline 169 & 3680 & 368 & 3682 & 368 & 3685 & 3686 & 3687 & 3688 & 3689 \\
\hline 170 & 3690 & 369 & 3692 & 3694 & 3695 & 3696 & 3697 & 3698 & 3699 \\
\hline 171 & 3700 & 37 & 37 & 37 & 3705 & 3706 & 7 & 8 & 9 \\
\hline 172 & 3710 & 3711 & 3712 & 3714 & 3715 & 3716 & 3717 & 3718 & 3719 \\
\hline 173 & 3720 & 372 & 372 & 37 & 3725 & 3726 & 3727 & 3728 & 3729 \\
\hline 174 & 3730 & 373 & 3732 & 373 & 3735 & 3736 & 3737 & 3738 & 3739 \\
\hline 175 & 3740 & 3741 & 3742 & 3744 & 3745 & 3746 & 3747 & 3748 & 3749 \\
\hline 176 & 3750 & 375 & 3752 & 375 & 3755 & 3756 & 57 & 58 & 759 \\
\hline 177 & 3760 & 3761 & 3762 & 3764 & 3765 & 3766 & 3767 & 3768 & 3769 \\
\hline 178 & 3770 & 377 & 3772 & 377 & 3775 & 3776 & 3777 & 3778 & 3779 \\
\hline 179 & 3780 & 3781 & 3782 & 3784 & 3785 & 3786 & 3787 & 3788 & 3789 \\
\hline 180 & 3790 & 3791 & 3792 & 3794 & 3795 & 3796 & 3797 & 3798 & 3799 \\
\hline 181 & 3800 & 3801 & 3802 & 3804 & 3805 & 3806 & 3807 & 3808 & 3809 \\
\hline 182 & 3810 & 3811 & 3812 & 3814 & 3815 & 3816 & 3817 & 3818 & 3819 \\
\hline 183 & 3820 & 3821 & 3822 & 3824 & 3825 & 3826 & 3827 & 3828 & 3829 \\
\hline 18 & 3830 & 383 & 3832 & 38 & 3835 & 3836 & 3837 & 3838 & 39 \\
\hline 185 & 3840 & 384 & 3842 & 3844 & 3845 & 3846 & 3847 & 3848 & 3849 \\
\hline 186 & 3850 & 3851 & 3852 & 3854 & 3855 & 3856 & 3857 & 3858 & 3859 \\
\hline 187 & 3860 & 3861 & 3862 & 3864 & 3865 & 3866 & 3867 & 3868 & 3869 \\
\hline 188 & 3870 & 38 & 3872 & 38 & 3875 & 3876 & 3877 & 3878 & 3879 \\
\hline 189 & 3880 & 388 & 3882 & 388 & 3885 & 3886 & 3887 & 3888 & 3889 \\
\hline 190 & 3890 & 3891 & 3892 & 3894 & 3895 & 3896 & 3897 & 3898 & 3899 \\
\hline 191 & 3900 & 3901 & 3902 & 3904 & 3905 & 3906 & 3907 & 3908 & 3909 \\
\hline 192 & 3910 & 3911 & 3912 & 3914 & 3915 & 3916 & 3917 & 3918 & 3919 \\
\hline 193 & 3920 & 3921 & 3922 & 3924 & 3925 & 3926 & 3927 & 3928 & 3929 \\
\hline 194 & 3930 & 3931 & 3932 & 3934 & 3935 & 3936 & 3937 & 3938 & 3939 \\
\hline 195 & 3940 & 3941 & 3942 & 3944 & 3945 & 3946 & 3947 & 3948 & 3949 \\
\hline 196 & 3950 & 3951 & 3952 & 3954 & 3955 & 3956 & 3957 & 3958 & 3959 \\
\hline 197 & 3960 & 3961 & 3962 & 3964 & 3965 & 3966 & 3967 & 3968 & 3969 \\
\hline 198 & 3970 & 3971 & 3972 & 3974 & 3975 & 3976 & 3977 & 3978 & 3979 \\
\hline 199 & 3980 & 3981 & 3982 & 3984 & 3985 & 3986 & 3987 & 3988 & 3989 \\
\hline 200 & 3990 & 3991 & 3992 & 3994 & 3995 & 3996 & 3997 & 3998 & 3999 \\
\hline
\end{tabular}

\section*{(1) For axis 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}
\] & Highorder & Loworder & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & Loworder & High-
order \\
\hline 201 & 4000 & 4001 & 4002 & 4004 & 4005 & 4006 & 4007 & 4008 & 4009 \\
\hline 202 & 4010 & 4011 & 4012 & 4014 & 4015 & 4016 & 4017 & 4018 & 4019 \\
\hline 203 & 4020 & 4021 & 4022 & 4024 & 4025 & 4026 & 4027 & 4028 & 4029 \\
\hline 204 & 4030 & 4031 & 4032 & 4034 & 4035 & 4036 & 4037 & 4038 & 4039 \\
\hline 205 & 4040 & 4041 & 4042 & 4044 & 4045 & 4046 & 4047 & 4048 & 4049 \\
\hline 206 & 4050 & 4051 & 4052 & 4054 & 4055 & 4056 & 4057 & 4058 & 59 \\
\hline 207 & 4060 & 406 & 4062 & 4064 & 4065 & 4066 & 4067 & 4068 & 4069 \\
\hline 208 & 4070 & 4071 & 4072 & 4074 & 4075 & 4076 & 4077 & 4078 & 4079 \\
\hline 209 & 4080 & 4081 & 4082 & 4084 & 4085 & 4086 & 4087 & 4088 & 4089 \\
\hline 210 & 4090 & 4091 & 4092 & 4094 & 4095 & 4096 & 4097 & 4098 & 4099 \\
\hline 21 & 4100 & 410 & 4102 & 410 & 4105 & 4106 & 4107 & 8 & 9 \\
\hline 212 & 4110 & 411 & 4112 & 411 & 4115 & 4116 & 4117 & 4118 & 4119 \\
\hline 213 & 4120 & 4121 & 4122 & 4124 & 4125 & 4126 & 4127 & 4128 & 4129 \\
\hline 214 & 4130 & 4131 & 4132 & 4134 & 4135 & 4136 & 4137 & 4138 & 4139 \\
\hline 215 & 4140 & 414 & 4142 & 414 & 4145 & 4146 & 4147 & 4148 & 9 \\
\hline 216 & 4150 & 4151 & 415 & 41 & 41 & 4156 & 4157 & 8 & 9 \\
\hline 21 & 4160 & 41 & 4162 & 41 & 4165 & 4166 & 4167 & 4168 & 4169 \\
\hline 218 & 4170 & 4171 & 4172 & 4174 & 4175 & 4176 & 4177 & 4178 & 4179 \\
\hline 219 & 4180 & 4181 & 4182 & 4184 & 4185 & 4186 & 4187 & 4188 & 4189 \\
\hline 220 & 41 & 41 & 419 & 419 & 419 & 4196 & 4197 & 4198 & 4199 \\
\hline 22 & 420 & 420 & 420 & 42 & 42 & 42 & 4207 & 8 & 4209 \\
\hline 222 & 4210 & 4211 & 4212 & 4214 & 4215 & 4216 & 4217 & 4218 & 4219 \\
\hline 223 & 4220 & 4221 & 4222 & 4224 & 4225 & 4226 & 4227 & 4228 & 4229 \\
\hline 224 & 4230 & 423 & 4232 & 423 & 4235 & 4236 & 4237 & 4238 & 9 \\
\hline 225 & 4240 & 4241 & 4242 & 4244 & 4245 & 4246 & 4247 & 4248 & 4249 \\
\hline 226 & 4250 & 42 & 4252 & 425 & 4255 & 4256 & 4257 & 4258 & 42 \\
\hline 227 & 4260 & 42 & 4262 & 426 & 4265 & 4266 & 4267 & 4268 & 4269 \\
\hline 228 & 4270 & 427 & 4272 & 427 & 4275 & 4276 & 4277 & 4278 & 4279 \\
\hline 229 & 428 & 42 & 4282 & 42 & 4285 & 4286 & 4287 & 4288 & 4289 \\
\hline 230 & 4290 & 4291 & 4292 & 4294 & 4295 & 4296 & 4297 & 4298 & 4299 \\
\hline 231 & 4300 & 43 & 4302 & 43 & 4305 & 4306 & 4307 & 4308 & 4309 \\
\hline 232 & 4310 & 4311 & 4312 & 4314 & 4315 & 4316 & 4317 & 4318 & 4319 \\
\hline 23 & 4320 & 4321 & 4322 & 4324 & 4325 & 4326 & 4327 & 4328 & 4329 \\
\hline 23 & 4330 & 433 & 4332 & 433 & 4335 & 4336 & 4337 & 4338 & 4339 \\
\hline 235 & 4340 & 4341 & 4342 & 4344 & 4345 & 4346 & 4347 & 4348 & 4349 \\
\hline 236 & 4350 & 43 & 4352 & 43 & 4355 & 4356 & 4357 & 4358 & 5 \\
\hline 237 & 4360 & 4361 & 4362 & 4364 & 4365 & 4366 & 4367 & 4368 & 4369 \\
\hline 238 & 4370 & 4371 & 4372 & 4374 & 4375 & 4376 & 4377 & 4378 & 4379 \\
\hline 239 & 4380 & 4381 & 4382 & 4384 & 4385 & 4386 & 4387 & 4388 & 4389 \\
\hline 240 & 4390 & 4391 & 4392 & 4394 & 4395 & 4396 & 4397 & 4398 & 4399 \\
\hline 241 & 4400 & 4401 & 4402 & 440 & 4405 & 4406 & 4407 & 4408 & 4409 \\
\hline 242 & 4410 & 4411 & 4412 & 4414 & 4415 & 4416 & 4417 & 4418 & 4419 \\
\hline 243 & 4420 & 4421 & 4422 & 4424 & 4425 & 4426 & 4427 & 4428 & 4429 \\
\hline 244 & 4430 & 4431 & 4432 & 4434 & 4435 & 4436 & 4437 & 4438 & 4439 \\
\hline 245 & 4440 & 4441 & 4442 & 4444 & 4445 & 4446 & 4447 & 4448 & 4449 \\
\hline 246 & 4450 & 4451 & 4452 & 4454 & 4455 & 4456 & 4457 & 4458 & 4459 \\
\hline 247 & 4460 & 4461 & 4462 & 4464 & 4465 & 4466 & 4467 & 4468 & 4469 \\
\hline 248 & 4470 & 4471 & 4472 & 4474 & 4475 & 4476 & 4477 & 4478 & 4479 \\
\hline 249 & 4480 & 4481 & 4482 & 4484 & 4485 & 4486 & 4487 & 4488 & 4489 \\
\hline 250 & 4490 & 4491 & 4492 & 4494 & 4495 & 4496 & 4497 & 4498 & 4499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Data } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & Highorder &  & High- & w- & \[
\begin{aligned}
& \text { ighn- } \\
& \text { rder }
\end{aligned}
\] \\
\hline & 4500 & 4501 & 4502 & 4504 & 4505 & 06 & 4507 & 4508 & 09 \\
\hline & & 45 & 4512 & 45 & 15 & 4516 & 4517 & 18 & \\
\hline & 4520 & 45 & 452 & 4524 & 45 & 45 & 4527 & 4528 & 4529 \\
\hline 254 & 4530 & 45 & 453 & 45 & 45 & 45 & 4537 & 38 & 4539 \\
\hline 255 & 4540 & 45 & 4542 & 4544 & 45 & 4546 & 4547 & 48 & 4549 \\
\hline 256 & 4550 & 4551 & 4552 & 4554 & 4555 & 4556 & 4557 & 4558 & 4559 \\
\hline 257 & 4560 & 4561 & 4562 & 4564 & 4565 & 4566 & 4567 & 4568 & 4569 \\
\hline 258 & 4570 & 4571 & 45 & 45 & 45 & 76 & 4577 & 4578 & 4579 \\
\hline 259 & 4580 & 4581 & 4582 & 4584 & 4585 & 86 & 87 & 588 & 4589 \\
\hline 260 & 4590 & 45 & 4592 & 4594 & 4595 & 4596 & 459 & 98 & \\
\hline & & 46 & 4602 & 4604 & 4605 & 4606 & 4607 & & \\
\hline 262 & 4610 & 4611 & 4612 & 4614 & 4615 & 4616 & 4617 & 4618 & 4619 \\
\hline 263 & 4620 & 4621 & 46 & 4624 & 4625 & 4626 & 4627 & 4628 & 4629 \\
\hline 264 & 4630 & 4631 & 46 & 46 & 4635 & 46 & 4637 & 4638 & 4639 \\
\hline 26 & 464 & 46 & 4642 & 46 & 46 & 46 & 464 & 46 & \\
\hline 266 & 4650 & 4651 & 4652 & 4654 & 4655 & 4656 & 4657 & 4658 & \\
\hline 267 & 4660 & 4661 & 46 & 4664 & 4665 & 4666 & 4667 & 4668 & \\
\hline 268 & 467 & 467 & 46 & 4674 & 4675 & & 4677 & & \\
\hline 26 & 4680 & 46 & 468 & 46 & 4685 & 4686 & 4687 & 4688 & \\
\hline 270 & 4690 & 469 & 4692 & 4694 & 4695 & 4696 & 4697 & 469 & \\
\hline 271 & & & 4702 & 4704 & 4705 & 4706 & 4707 & 4708 & \\
\hline 272 & 4710 & 4711 & 47 & 47 & 4715 & 4716 & 4717 & 4718 & 4719 \\
\hline 273 & 4720 & 47 & 47 & 4724 & 4725 & 4726 & 4727 & 4728 & \\
\hline 274 & & 47 & 473 & 47 & 4735 & 4736 & 47 & 4738 & \\
\hline 275 & 4740 & 474 & 4742 & 47 & 4745 & 47 & 4747 & 4748 & \\
\hline 276 & & & & 4754 & & & & & \\
\hline 277 & 4760 & 4761 & 47 & 4764 & 4765 & 4766 & 4767 & 4768 & \\
\hline 278 & 4770 & 4771 & 47 & 4774 & 4775 & 4776 & 4777 & 4778 & \\
\hline 27 & 4780 & 4781 & 47 & 47 & 4785 & 4786 & 4787 & 4788 & \\
\hline 28 & 479 & 479 & 4792 & 4794 & 47 & 47 & 47 & 4798 & \\
\hline 281 & 4800 & 4801 & 4802 & 48 & & 4806 & 4807 & 4808 & \\
\hline & & 4811 & 48 & 48 & 48 & 48 & 48 & 4818 & 4819 \\
\hline 283 & 4820 & 4821 & 48 & 4824 & 4825 & 26 & 27 & 4828 & 4829 \\
\hline 284 & 4830 & 48 & 4832 & 48 & 48 & 4836 & 483 & 退 & 4839 \\
\hline 28 & 4840 & 4841 & 4842 & 4844 & 4845 & 4846 & 4847 & 4848 & \\
\hline 286 & & & & & & & & & \\
\hline 287 & 4860 & 4861 & 4862 & 4864 & 4865 & 4866 & 4867 & 4868 & 4869 \\
\hline 288 & 4870 & 48 & 487 & 48 & 48 & 48 & 48 & 48 & 4879 \\
\hline 28 & 4880 & 48 & 48 & 48 & 488 & 48 & 4887 & 488 & 4889 \\
\hline 290 & 4890 & 489 & 4892 & 4894 & 489 & 489 & 489 & 48 & 4899 \\
\hline 291 & 4900 & & & 4904 & & & & 4908 & \\
\hline 292 & 4910 & 4911 & 49 & 49 & 49 & 4916 & 4917 & 4918 & \\
\hline 293 & 492 & 4921 & 4922 & 492 & 4925 & 4926 & 492 & 49 & 4929 \\
\hline 29 & 4930 & 4931 & 49 & 4934 & 49 & 49 & 49 & 4938 & 4939 \\
\hline 295 & 494 & 49 & 4942 & 4944 & 494 & 4946 & 4947 & 494 & 仡 \\
\hline 296 & 4950 & 4951 & 4952 & 4954 & 4955 & 4956 & 4957 & 4958 & 4959 \\
\hline 297 & 496 & 496 & 4962 & 4964 & 496 & 496 & 4967 & 49 & 4969 \\
\hline 298 & 4970 & 497 & 4972 & 4974 & 4975 & 4976 & 4977 & 4978 & 4979 \\
\hline 299 & 4980 & 498 & 4982 & 4984 & 498 & 4986 & 4987 & 498 & 498 \\
\hline 300 & 499 & 499 & 4992 & 4994 & 499 & 4996 & 4997 & 4998 & 4999 \\
\hline
\end{tabular}

\section*{(1) For axis 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l|l|}
\hline \text { Data } \\
\text { No. }
\end{array}
\]} & \multirow[t]{2}{*}{Posi-
tioning
identi-
fier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|r|}{Arc data} \\
\hline & & & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order } \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
\hline \text { High- } \\
\text { ordd }
\end{array}
\] & & & & gh- \\
\hline & 5000 & 5001 & 5002 & 5004 & 5005 & 5006 & 5007 & 5008 & \\
\hline & 5010 & & 5012 & 5014 & & & 5017 & 5018 & \\
\hline & 5020 & 5021 & 5022 & 5024 & 5025 & 5026 & 5027 & 5028 & 5029 \\
\hline 304 & 5030 & 5031 & 5032 & 5034 & 5035 & 5036 & 5037 & 5038 & 5039 \\
\hline 305 & 5040 & 5041 & 5042 & 5044 & 5045 & 5046 & 5047 & 5048 & 5049 \\
\hline & 5050 & 5051 & 5052 & 54 & 5055 & 5056 & 57 & 5058 & \\
\hline 307 & 5060 & 5061 & 5062 & 5064 & 5065 & & 5067 & 5068 & \\
\hline 308 & 5070 & 50 & 50 & 5074 & 5075 & & 5077 & 5078 & \\
\hline 309 & 5080 & 50 & 50 & 5084 & 5085 & 5086 & 5087 & 5088 & 5089 \\
\hline 310 & 5090 & 50 & 5092 & 5094 & 50 & 5096 & 5097 & 98 & 5099 \\
\hline 311 & 5100 & 5101 & 5102 & 5104 & 5105 & 5106 & 5107 & 5108 & 5109 \\
\hline 31 & 5110 & 5111 & 5112 & 5114 & 5115 & 5116 & 5117 & 5118 & 5119 \\
\hline 31 & 5120 & 5121 & 5122 & 5124 & 5125 & 5126 & 5127 & 28 & \\
\hline 314 & 5130 & 51 & 51 & 5134 & 5135 & 5136 & 5137 & & \\
\hline 315 & 514 & 514 & 514 & 514 & 51 & 5146 & 514 & 5148 & \\
\hline 316 & 5150 & 5151 & 5152 & & & & & & \\
\hline 317 & 5160 & 5161 & 5162 & 5164 & 5165 & 5166 & 5167 & 5168 & \\
\hline 318 & 5170 & 51 & 51 & 5174 & 5175 & 5176 & 5177 & 5178 & 5179 \\
\hline 319 & 51 & 51 & 51 & 5184 & 5185 & 5186 & 5187 & 5188 & \\
\hline 320 & 519 & 519 & 51 & 519 & 51 & 5196 & 5197 & 5198 & \\
\hline 32 & 5200 & 5201 & 5202 & 5204 & & & 5207 & 208 & \\
\hline 322 & 521 & 5211 & 5212 & 5214 & & 5216 & 5217 & 5218 & \\
\hline 323 & 5220 & & 5222 & & & & & & \\
\hline 32 & 52 & 52 & 52 & 5234 & 5235 & 5236 & 5237 & 5238 & 5239 \\
\hline 32 & 5240 & 5241 & 5242 & 52 & 52 & 5246 & 5247 & 524 & \\
\hline 326 & 5250 & 5251 & 5252 & 5254 & & & 5257 & 5258 & \\
\hline 32 & 52 & 5261 & 5262 & 5264 & 5265 & 5266 & 5267 & 5268 & \\
\hline 32 & 52 & 52 & 527 & 52 & 52 & 52 & 52 & 5278 & 5279 \\
\hline 32 & 5280 & 52 & 5282 & 52 & & 52 & 5287 & 52 & \\
\hline 330 & 5290 & 5291 & 5292 & 5294 & 5295 & 5296 & 5297 & 529 & \\
\hline 331 & & & 5302 & & & & & & \\
\hline 332 & 5310 & 5311 & 5312 & & & & 5317 & 5318 & \\
\hline 33 & 53 & 53 & 5322 & 5324 & 5325 & 5326 & 5327 & 5328 & 5329 \\
\hline 33 & 53 & 53 & 533 & 5334 & 53 & 53 & 5337 & 5338 & 5339 \\
\hline 335 & 53 & 53 & 53 & 5344 & 53 & 5346 & 53 & 5348 & 5349 \\
\hline 336 & & & & & & & & 358 & \\
\hline 337 & 5360 & 5361 & 5362 & & & & 5367 & 5368 & \\
\hline 338 & 53 & 53 & 53 & 5374 & & & 5377 & 5378 & \\
\hline 339 & 53 & 53 & 538 & 53 & 53 & 53 & 5387 & 5388 & \\
\hline 340 & 53 & 53 & 53 & 5394 & 539 & 53 & 5397 & 5398 & 5399 \\
\hline 341 & & & 5402 & 5404 & & & & & \\
\hline 342 & 5410 & & 54 & 54 & 5415 & 54 & 5417 & 54 & 5419 \\
\hline 343 & 54 & 54 & 54 & 5424 & 5425 & 5426 & 5427 & 5428 & 5429 \\
\hline 34 & 543 & 54 & 5432 & 5434 & 54 & 5436 & 5437 & 5438 & 5439 \\
\hline 345 & 5440 & 544 & 544 & 544 & 544 & 5446 & 544 & 54 & 5449 \\
\hline 34 & & & & & & & & & \\
\hline 347 & 5460 & 54 & 54 & 5464 & 5465 & 5 & 5467 & 5468 & 5469 \\
\hline 348 & 54 & 54 & 54 & 5474 & 54 & 54 & 5477 & 54 & 5479 \\
\hline 349 & 5480 & 548 & 5482 & 548 & 548 & 5486 & 548 & 548 & 5489 \\
\hline 350 & 5490 & 5491 & 5492 & 5494 & 5495 & 5496 & 5497 & 5498 & 5499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{array}{|l|l}
\text { Data } \\
\text { No. }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { M } \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{array}{|l|l|}
\hline \text { Low- } \\
\text { ordder }
\end{array}
\] & Highorder & Low-
order & High-
|order & N- & \[
\begin{aligned}
& \text { High- } \\
& \text { rode }
\end{aligned}
\] \\
\hline & 5500 & 5501 & & 5504 & 5505 & 5506 & 5507 & 5508 & 5509 \\
\hline 352 & 5510 & 55 & 5512 & 5514 & 5515 & 5516 & 5517 & 5518 & 19 \\
\hline 353 & 55 & 55 & 55 & 552 & 5525 & 5526 & 5527 & 528 & 5529 \\
\hline 354 & 5530 & 55 & 55 & 55 & 55 & 55 & 5537 & 38 & 5539 \\
\hline 355 & 5540 & 5541 & 5542 & 5544 & 5545 & 5546 & 5547 & 5548 & 5549 \\
\hline 356 & 5550 & 5551 & 5552 & 5554 & 5555 & 5556 & 5557 & 5558 & 5559 \\
\hline 357 & 5560 & 5561 & 5562 & 5564 & 5565 & 5566 & 5567 & 5568 & 5569 \\
\hline 358 & 5570 & 55 & 55 & 55 & 55 & 55 & 5577 & 5578 & 5579 \\
\hline 359 & 5580 & 55 & 5582 & 5584 & 55 & 5586 & 5587 & 588 & 5589 \\
\hline 360 & 5590 & 55 & 5592 & 94 & 5595 & 5596 & 5597 & 598 & \\
\hline 361 & 5600 & 5601 & 5602 & 5604 & 5605 & 5606 & 5607 & & \\
\hline 362 & 5610 & 5611 & 5612 & 5614 & 5615 & 5616 & 5617 & 18 & 5619 \\
\hline 363 & 5620 & 56 & 5622 & 5624 & 5625 & 5626 & 5627 & 5628 & 5629 \\
\hline 364 & 5630 & 5631 & 5632 & 5634 & 5635 & 5636 & 5637 & 5638 & 5639 \\
\hline 36 & 564 & 56 & 5642 & 56 & 56 & 56 & 56 & 5648 & \\
\hline 366 & 5650 & 5651 & 5652 & 5654 & 5655 & 5656 & 5657 & 5658 & \\
\hline 367 & 5660 & 5661 & 5662 & 5664 & 5665 & 5666 & 5667 & 5668 & \\
\hline 368 & 5670 & 5671 & 5672 & 5674 & 5675 & 5676 & 5677 & 5678 & \\
\hline 369 & 5680 & 5681 & 5682 & 5684 & 5685 & 5686 & 5687 & 5688 & 5689 \\
\hline 370 & 56 & 569 & 5692 & 5694 & 5695 & 5696 & 5697 & 56 & \\
\hline 371 & 5700 & 5701 & 5702 & 5704 & 5705 & & 5707 & 5708 & \\
\hline 37 & 5710 & 57 & 57 & 57 & 57 & 5716 & 5717 & 5718 & 5719 \\
\hline 37 & 5720 & 57 & 57 & 57 & 5725 & 5726 & 5727 & 5728 & \\
\hline 374 & 57 & 57 & 573 & 57 & 57 & 57 & 5737 & 5738 & \\
\hline 375 & 5740 & 5741 & 5742 & 57 & 5745 & 5746 & 5747 & 5748 & \\
\hline 37 & 5750 & & & & & & & & \\
\hline 37 & 5760 & 5761 & 5762 & 57 & 5765 & 5766 & 57 & 5768 & \\
\hline 37 & 5770 & 57 & 5772 & 57 & 5775 & 5776 & 5777 & 5778 & 5779 \\
\hline 37 & 5780 & 57 & 57 & 57 & 57 & 5786 & 5787 & 5788 & 578 \\
\hline 380 & 5790 & 579 & 57 & 57 & 579 & 57 & 5797 & 5798 & \\
\hline 381 & 58 & 5801 & 5802 & 5804 & & 5806 & 5807 & 5808 & \\
\hline 382 & 5810 & 58 & 58 & 5814 & 58 & 5816 & 5817 & 5818 & \\
\hline 383 & 5820 & 5821 & 5822 & 58 & 5825 & 5826 & 27 & 5828 & 5829 \\
\hline 384 & 58 & 58 & 583 & 58 & 58 & 5836 & 5837 & 38 & 5839 \\
\hline 385 & 5840 & 5841 & 5842 & 5844 & 584 & 5846 & 5847 & 5848 & \\
\hline 386 & & 5851 & & & & & & & \\
\hline 387 & 5860 & 58 & 5862 & 5864 & 5865 & 5866 & 5867 & 5868 & 5869 \\
\hline 388 & 5870 & 58 & 58 & 58 & 58 & 58 & 58 & 5878 & 5879 \\
\hline 389 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 888 & 5889 \\
\hline 390 & 5890 & 5891 & 5892 & 5894 & 589 & 58 & 5897 & 5898 & 5899 \\
\hline 391 & 5900 & & & & & & & & 5909 \\
\hline 392 & 59 & 59 & 59 & 59 & 5915 & 5916 & 59 & 5918 & \\
\hline 393 & 59 & 59 & 59 & 59 & 5925 & 5926 & 5927 & 5928 & 5929 \\
\hline 394 & 59 & 59 & 5932 & 5934 & 59 & 59 & 59 & 5938 & 5939 \\
\hline 395 & 594 & 59 & 59 & 5944 & 594 & 5946 & 5947 & 5948 & 59 \\
\hline 396 & 5950 & 5951 & 5952 & 5954 & 5955 & 5956 & 5957 & 5958 & 5959 \\
\hline 397 & 5960 & 5961 & 5962 & 5964 & 5965 & 59 & 5967 & 5968 & 59 \\
\hline 398 & 5970 & 597 & 5972 & 5974 & 5975 & 5976 & 5977 & 597 & 5979 \\
\hline 399 & 598 & 5981 & 5982 & 598 & 598 & 5986 & 598 & 598 & 598 \\
\hline 400 & 599 & 599 & 5992 & 99 & 599 & 5996 & 59 & 5998 & 5999 \\
\hline
\end{tabular}

\section*{(1) For axis 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Data } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{aligned}
& \text { Low- } \\
& \text { order } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { Low- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & ow-
rder & High \\
\hline & 6000 & 6001 & 6002 & 6004 & 6005 & 6006 & 6007 & 6008 & 6009 \\
\hline & 6010 & 6011 & 6012 & 6014 & 6015 & 6016 & 6017 & 8 & 6019 \\
\hline & 6020 & 60 & 6022 & 24 & 6025 & 6026 & 6027 & 028 & 6029 \\
\hline & 6030 & 60 & 60 & 6034 & 603 & 60 & 60 & 038 & 6039 \\
\hline 40 & 6040 & 60 & 6042 & 6044 & 60 & 60 & 6047 & & \\
\hline 406 & 6050 & 6051 & 6052 & 6054 & 6055 & 6056 & 6057 & 8 & \\
\hline & & & 6062 & 6064 & 6065 & 6066 & 6067 & 8 & 6069 \\
\hline 408 & 6070 & 60 & 60 & 6074 & 60 & 6076 & 6077 & 8 & 6079 \\
\hline 409 & 6080 & 6081 & 6082 & 6084 & 6085 & 6086 & 6087 & 8 & 6089 \\
\hline 410 & 609 & 60 & 60 & 609 & 609 & 609 & 60 & 6098 & 6099 \\
\hline & 6100 & 6101 & 61 & 04 & 61 & 6106 & 6107 & 8 & \\
\hline & & & 6112 & & & & 6117 & & \\
\hline & 6120 & 6121 & 6122 & 6124 & 6125 & 6126 & 6127 & 8 & \\
\hline 414 & 6130 & 6131 & 61 & 6134 & 6135 & 6136 & 6137 & 6138 & 6139 \\
\hline 41 & 6140 & 61 & 61 & 61 & 6145 & 6146 & 6147 & 6148 & 6149 \\
\hline 416 & 6150 & 6151 & 6152 & 6154 & 6155 & 6156 & 6157 & 6158 & 6159 \\
\hline 417 & 6160 & 6161 & 61 & 6164 & 6 & 6166 & 6167 & 6168 & 6169 \\
\hline & 6170 & 6171 & 61 & 6174 & 6175 & & 6177 & 6178 & \\
\hline 419 & 6180 & 6181 & 618 & 6184 & & & 6187 & 6188 & \\
\hline 420 & 6190 & 6191 & 6192 & 6194 & 6195 & 61 & 6197 & 88 & \\
\hline & 6200 & 6201 & 6202 & 6204 & 6205 & & & & \\
\hline 422 & 62 & 62 & 62 & 62 & 62 & 62 & 62 & 6218 & 6219 \\
\hline 423 & 62 & 62 & 62 & 62 & 62 & 6226 & 62 & 6228 & 6229 \\
\hline 424 & 6230 & 62 & 62 & 6234 & 62 & 6236 & 62 & 6238 & \\
\hline 425 & 6240 & 62 & 624 & 624 & 624 & 62 & 62 & 6248 & \\
\hline 426 & & & & & & & & & \\
\hline & 62 & 6261 & 62 & 6264 & 6265 & 6266 & 6267 & 6268 & \\
\hline & 62 & 62 & 62 & 6274 & 6275 & 6276 & 6277 & 6278 & 6279 \\
\hline 429 & 6280 & 62 & 62 & 6284 & 6285 & 62 & 6287 & 6288 & 6289 \\
\hline 43 & 629 & 62 & 629 & 629 & 62 & 62 & 62 & 6298 & \\
\hline & 6300 & 6301 & 6302 & 6304 & 6305 & 6306 & 6307 & 6308 & \\
\hline & 6310 & 63 & 63 & 6314 & 63 & 63 & 63 & 6318 & 6319 \\
\hline & 632 & 63 & 63 & 6324 & 6325 & 6326 & 6327 & 6328 & \\
\hline & & & 63 & 6334 & 6335 & 6336 & 337 & 33 & \\
\hline 435 & 6340 & 6341 & 6342 & 6344 & 6345 & 63 & 6347 & 634 & \\
\hline & & & & & & & & & \\
\hline & 6360 & 6361 & 6362 & 6364 & & 6366 & 6367 & 6368 & \\
\hline & 6370 & 63 & 63 & 6374 & 6375 & 6376 & 63 & 6378 & 6379 \\
\hline 439 & 63 & 63 & 63 & 63 & 63 & 63 & 6387 & 6388 & 6389 \\
\hline 440 & 639 & 639 & 639 & 63 & 6395 & 6396 & 6397 & 639 & 639 \\
\hline 441 & 6400 & & & & 6405 & & & 6408 & 6409 \\
\hline & 64 & 6411 & 64 & 6414 & 6415 & & 6417 & 6418 & 6419 \\
\hline & 64 & 6421 & 642 & 6424 & 64 & 64 & 64 & 6428 & \\
\hline 444 & 64 & 6431 & 64 & 6434 & 6435 & 64 & 64 & 6438 & 6439 \\
\hline 44 & 64 & 6441 & 6442 & 6444 & 6445 & 6446 & 6447 & 6448 & 6449 \\
\hline 446 & 6450 & & 6452 & & 6455 & & & 458 & 6459 \\
\hline 447 & 64 & 64 & 64 & 646 & 64 & 64 & 646 & 64 & 6469 \\
\hline 44 & 6470 & 64 & 6472 & 647 & 647 & 64 & 64 & 647 & 6479 \\
\hline 449 & 6480 & 648 & 6482 & 6484 & 648 & 6486 & 648 & 64 & 6489 \\
\hline 450 & 6490 & 64 & 6492 & 6494 & 6495 & 6496 & 6497 & 6498 & 6499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Data } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{aligned}
& \text { Low- } \\
& \text { order } \\
& \hline
\end{aligned}
\] & Highorder & & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ow- } \\
& \text { der }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ligh- }
\end{aligned}
\] \\
\hline & 6500 & 6501 & & 6504 & 6505 & 6506 & 6507 & 6508 & \\
\hline & & 65 & 6512 & 65 & 6515 & 6516 & 651 & 6518 & 19 \\
\hline & 6520 & 6521 & 65 & 652 & 65 & 65 & 6527 & 528 & 6529 \\
\hline 454 & 6530 & 6531 & 65 & 65 & 65 & 65 & 65 & 38 & 6539 \\
\hline 45 & 6540 & 65 & 65 & 65 & 65 & 6546 &  & 48 & 6549 \\
\hline 456 & 6550 & 6551 & 6552 & 6554 & 6555 & 6556 & 6557 & 6558 & 6559 \\
\hline 457 & 6560 & 6561 & 6562 & 6564 & 6565 & 6566 & 6567 & 6568 & 6569 \\
\hline 458 & 6570 & 6571 & 65 & 65 & 65 & 65 & 6577 & 6578 & 6579 \\
\hline 459 & 6580 & 6581 & 65 & 6584 & 65 & 6586 & 6587 & 588 & 6589 \\
\hline 460 & 6590 & 65 & 6592 & 6594 & 6595 & 6596 & 6597 & 98 & \\
\hline & & 6601 & 6602 & 6604 & 6605 & 6606 & 6607 & & \\
\hline & 6610 & 6611 & 6612 & 6614 & 6615 & 6616 & 6617 & 6618 & 6619 \\
\hline 463 & 6620 & 6621 & 66 & 6624 & 6625 & 6626 & 6627 & 6628 & 6629 \\
\hline 46 & 6630 & 6631 & 6632 & 6634 & 6635 & 6636 & 6637 & 6638 & 6639 \\
\hline 46 & 6640 & 66 & 66 & 66 & 66 & 6646 & 66 & 6648 & \\
\hline 466 & 6650 & 6651 & 6652 & 6654 & 6655 & 6656 & 6657 & 6658 & \\
\hline 46 & & 6661 & 6662 & 6664 & 6665 & 6666 & 6667 & 6668 & \\
\hline & 6670 & 6671 & 6672 & 6674 & 6675 & 6676 & 6677 & 6678 & \\
\hline 469 & 6680 & 6681 & 66 & 66 & 6685 & 66 & 6687 & 6688 & \\
\hline 470 & 669 & 669 & 6692 & 6694 & 6695 & 6696 & 6697 & 669 & \\
\hline & & & & 6704 & 6705 & 6706 & 6707 & 6708 & \\
\hline 472 & 6710 & 6711 & 67 & 67 & 67 & 6716 & 6717 & 6718 & 6719 \\
\hline & 6720 & 67 & 67 & 67 & 6725 & 6726 & 6727 & 6728 & 6729 \\
\hline & & 67 & 6732 & 67 & 67 & 67 & 67 & 6738 & \\
\hline 475 & 6740 & 674 & 6742 & 67 & 6745 & 67 & 6747 & 6748 & \\
\hline & & & & & & & & & \\
\hline & 6760 & 6761 & 67 & 67 & 67 & 6766 & 6767 & 6768 & 6769 \\
\hline 478 & 6770 & 67 & 67 & 6774 & 67 & 6776 & 6777 & 6778 & 6779 \\
\hline 479 & 6780 & 67 & 67 & 67 & 67 & 6786 & 6787 & 6788 & \\
\hline 480 & 679 & 679 & 679 & 679 & 67 & 67 & 6797 & 6798 & \\
\hline 48 & 680 & & & 6804 & & 6806 & 6807 & 6808 & \\
\hline & & 68 & 68 & 68 & 68 & 68 & 6817 & 6818 & 6819 \\
\hline & & & 6822 & 6824 & 6825 & 6826 & 7 & 6828 & 6829 \\
\hline 484 & 6830 & 6831 & 683 & 6834 & 68 & 6836 & 68 & 6838 & 6839 \\
\hline 48 & 68 & 6841 & 6842 & 6844 & 684 & 6846 & 6847 & 68 & \\
\hline 486 & & & & & & & & & \\
\hline & 6860 & 6861 & 68 & 6864 & 6865 & 6866 & 6867 & 6868 & 6869 \\
\hline 488 & 6870 & 68 & 68 & 68 & 68 & 68 & 68 & 6878 & 6879 \\
\hline 48 & & & 68 & 68 & 68 & 68 & 6887 & 6888 & 6889 \\
\hline 490 & 6890 & 6891 & 6892 & 6894 & 6895 & 6896 & 6897 & 6898 & 680 \\
\hline & & & & & & & & & \\
\hline & 691 & 6911 & 69 & 6914 & 6915 & 6916 & 6917 & 6918 & \\
\hline & 692 & 6921 & 69 & 6924 & 6925 & 6926 & 6927 & 6928 & 6929 \\
\hline 49 & 6930 & 69 & 69 & 69 & 69 & 69 & 69 & 6938 & 6939 \\
\hline 495 & 6940 & 69 & 69 & 6944 & 694 & 694 & 6947 & 69 & 949 \\
\hline 496 & 6950 & 6951 & 6952 & 6954 & 6955 & 6956 & 6957 & 6958 & 6959 \\
\hline 497 & 6960 & 696 & 6962 & 6964 & 696 & 69 & 69 & 6968 & 6969 \\
\hline 498 & 697 & 697 & 6972 & 6974 & 6975 & 6976 & 69 & 69 & 6979 \\
\hline 499 & 698 & 698 & 6982 & 6984 & 698 & 6986 & 698 & 698 & 6989 \\
\hline 500 & 699 & 699 & 6992 & 6994 & 699 & 6996 & 6997 & 6998 & 6999 \\
\hline
\end{tabular}

\section*{(1) For axis 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\begin{tabular}{c} 
Posi- \\
tioning \\
identi- \\
fier
\end{tabular} \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
M \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dwell } \\
& \text { time }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|r|}{Arc data} \\
\hline & & & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { Herder }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Low- } \\
& \text { Lorder } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { High- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{w}- \\
& \text { der } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { igh- } \\
& \text { der } \\
& \hline
\end{aligned}
\] \\
\hline 501 & 000 & 7001 & 70 & 7004 & 7005 & 7006 & 7007 & 7008 & 7009 \\
\hline 502 & 7010 & 7011 & 7012 & 7014 & 7015 & 7016 & 7017 & 7018 & 9 \\
\hline 503 & 7020 & 7021 & 7022 & 7024 & 7025 & 7026 & 7027 & 7028 & 7029 \\
\hline 50 & 7030 & 7031 & 7032 & 7034 & 7035 & 7036 & 7037 & 7038 & 7039 \\
\hline 505 & 7040 & 7041 & 7042 & 7044 & 7045 & 7046 & 7047 & 7048 & 7049 \\
\hline 506 & 7050 & 7051 & 7052 & 7054 & 7055 & 7056 & 57 & 7058 & \\
\hline 507 & 7060 & 7061 & 702 & 7064 & 7065 & 66 & 7067 & 68 & \\
\hline 508 & 70 & 7071 & 70 & 7074 & 70 & 7076 & 70 & 7078 & \\
\hline 509 & 70 & 7081 & 70 & 7084 & 7085 & 7086 & 7087 & 7088 & \\
\hline 510 & 709 & 7091 & 7092 & 7094 & 7095 & 7096 & 7097 & 7098 & 7099 \\
\hline 511 & 7100 & 7101 & 7102 & 7104 & 7105 & 7106 & 7107 & 7108 & 7109 \\
\hline 512 & 7110 & 7111 & 7112 & 7114 & 7115 & 7116 & 17 & 7118 & 7119 \\
\hline 513 & 7120 & 7121 & 712 & 7124 & 7125 & 7126 & 7127 & 7128 & \\
\hline 51 & 713 & 7131 & 7132 & 7134 & 7135 & 7136 & 7137 & 7138 & \\
\hline 515 & 714 & 7141 & 7142 & 7144 & 7145 & & 7147 & 7148 & \\
\hline 516 & 7150 & 7151 & & & & & & & \\
\hline 517 & 7160 & 7161 & 7162 & 7164 & 7165 & 7166 & 7167 & 7168 & \\
\hline 518 & 7170 & 7171 & 7172 & 7174 & 7175 & 7176 & 777 & 7178 & 7179 \\
\hline 519 & 718 & 71 & 71 & 7184 & 7185 & 7186 & 7187 & 7188 & 7189 \\
\hline 520 & 7190 & 7191 & 19 & 71 & 7195 & 7196 & 7197 & 7198 & \\
\hline 521 & 7200 & 7201 & 7202 & & & 7206 & 7207 & & \\
\hline 52 & 721 & 7211 & 212 & 7214 & 7215 & 7216 & 217 & 7218 & \\
\hline 52 & 7220 & & 7222 & & 7225 & & 7227 & & \\
\hline 52 & 72 & 7231 & 72 & 7234 & 7235 & 7236 & 7237 & 7238 & 39 \\
\hline 525 & 7240 & 7241 & 7242 & 724 & 7245 & 724 & 724 & 72 & \\
\hline 526 & 7250 & 7251 & 7252 & 7254 & & 7256 & 7257 & 7258 & \\
\hline 52 & 726 & 72 & 72 & 7264 & 7265 & 7266 & 7267 & 7268 & \\
\hline 52 & 727 & 72 & 7272 & 72 & 72 & 7276 & 727 & 72 & 7279 \\
\hline 52 & 728 & 7281 & 7282 & 7284 & 72 & 7286 & 728 & & \\
\hline 530 & 7290 & 7291 & 7292 & 7294 & 7295 & 7296 & 7297 & 729 & \\
\hline 531 & & & 7302 & & & & 7307 & & \\
\hline 532 & 73 & 7311 & 73 & 7314 & 7315 & 7316 & 7317 & 7318 & \\
\hline 53 & 73 & 73 & 73 & 73 & 73 & 7326 & 732 & 73 & 7329 \\
\hline 53 & 733 & 733 & 7332 & 73 & 73 & 7336 & 733 & 7338 & 7339 \\
\hline 53 & 73 & 73 & 73 & 73 & 73 & 7346 & 73 & 7348 & 7349 \\
\hline 536 & & & 7352 & & & 7356 & 7357 & 7358 & \\
\hline 53 & 73 & 7361 & 7362 & & & 7366 & 7367 & & \\
\hline 53 & 7370 & 73 & 737 & 7374 & 73 & 737 & 737 & 7378 & \\
\hline 53 & 738 & 7381 & 738 & 738 & 7385 & 738 & 73 & 73 & \\
\hline 540 & 7390 & 7391 & 7392 & 7394 & 7395 & 7396 & 739 & 73 & \\
\hline & & & 7402 & & & & & & \\
\hline 542 & 7410 & & 7412 & & 7415 & 7416 & 7417 & 7418 & 7419 \\
\hline 543 & 74 & 74 & 74 & 7424 & 7425 & 7426 & 7427 & 7428 & 7429 \\
\hline 54 & 7430 & 7431 & 7432 & 74 & 7435 & 7436 & 7437 & 7438 & 7439 \\
\hline 545 & 7440 & 7441 & 744 & 74 & 744 & 7446 & 74 & 7448 & 7449 \\
\hline 546 & 7450 & & & & & & 7457 & & \\
\hline 547 & 74 & 7461 & 746 & 7464 & 7465 & 7466 & 74 & 7468 & \\
\hline 54 & 7470 & 7471 & 747 & 7474 & 74 & 7476 & 74 & 7478 & 7479 \\
\hline 549 & 7480 & 7481 & 7482 & 748 & 7485 & 748 & 7487 & 748 & 789 \\
\hline 550 & 7490 & 7491 & 7492 & 7494 & 7495 & 7496 & 7497 & 7498 & 7499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Data } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & Highorder &  & High- & w- & \[
\begin{aligned}
& \text { ighn- } \\
& \text { rder }
\end{aligned}
\] \\
\hline & 7500 & 75 & & 7504 & 7505 & 06 & 7507 & 7508 & 09 \\
\hline & 7510 & 75 & 7512 & 7514 & 7515 & 7516 & 75 & 7518 & 519 \\
\hline 553 & 7520 & 75 & 7522 & 7524 & 7525 & 7526 & 75 & 7528 & 7529 \\
\hline 554 & 753 & 753 & 7532 & 75 & 753 & 75 & 75 & 7538 & 7539 \\
\hline 555 & 7540 & 7541 & 75 & 75 & 7545 & 7546 & 7547 & 48 & 7549 \\
\hline 556 & 7550 & 7551 & 7552 & 7554 & 7555 & 7556 & 7557 & 7558 & 7559 \\
\hline 557 & 7560 & 7561 & 7562 & 7564 & 7565 & 7566 & 7567 & 7568 & 7569 \\
\hline 558 & 7570 & 7571 & 75 & 75 & 7575 & 7576 & 7577 & 7578 & 7579 \\
\hline 559 & 7580 & 7581 & 7582 & 7584 & 7585 & 7586 & 7587 & 588 & 7589 \\
\hline 560 & 7590 & 7591 & 7592 & 7594 & 7595 & 7596 & 7597 & 598 & \\
\hline 561 & 7600 & 76 & & 76 & 7605 & 7606 & 7607 & & \\
\hline 562 & 7610 & 7611 & 7612 & 7614 & 7615 & 7616 & 7617 & 7618 & \\
\hline 563 & 7620 & 76 & 76 & 76 & 7625 & 7626 & 7627 & 7628 & 7629 \\
\hline 56 & 7630 & 7631 & 76 & 76 & 76 & 7636 & 7637 & 7638 & 7639 \\
\hline 565 & 764 & 764 & 76 & 76 & 764 & 764 & 76 & 7648 & \\
\hline 56 & 7650 & 7651 & 7652 & 7654 & 7655 & 7656 & 7657 & 7658 & \\
\hline 567 & 7660 & 76 & 76 & 76 & 7665 & 7666 & 7667 & 7668 & \\
\hline 568 & 7670 & 7671 & 7672 & 7674 & 7675 & 7676 & 7677 & & \\
\hline 56 & 7680 & 76 & 76 & 76 & 7685 & 7686 & 7687 & 7688 & \\
\hline 570 & 7690 & 769 & 7692 & 7694 & 7695 & 7696 & 7697 & 769 & \\
\hline 571 & 7700 & & & 7704 & 7705 & & 7707 & 7708 & \\
\hline 57 & 77 & 77 & 77 & 77 & 7715 & 7716 & 7717 & 7718 & 7719 \\
\hline 573 & 7720 & 77 & 77 & 77 & 7725 & 7726 & 7727 & 7728 & 7729 \\
\hline 57 & 77 & 773 & 773 & 77 & 77 & 77 & 77 & 7738 & 7739 \\
\hline 575 & 77 & 774 & 7742 & 77 & 7745 & 774 & 7747 & 7748 & \\
\hline 57 & & & & 7754 & & & & & \\
\hline 577 & 7760 & 7761 & 7762 & 77 & 7765 & 7766 & 7767 & 7768 & \\
\hline 578 & 7770 & 7771 & 7772 & 7774 & 7775 & 7776 & 7777 & 7778 & 7779 \\
\hline 579 & 7780 & 77 & 778 & 77 & 77 & 7786 & 7787 & 7788 & 7789 \\
\hline 580 & 77 & 779 & 779 & 779 & 77 & 7796 & 7797 & 7798 & \\
\hline 581 & 7800 & 7801 & & 7804 & & 7806 & & 7808 & \\
\hline & 7810 & 7811 & 78 & 78 & 78 & 78 & 7817 & 7818 & 7819 \\
\hline 583 & 7820 & 7821 & 7822 & 7824 & 7825 & 26 & 7827 & 7828 & 7829 \\
\hline 584 & 7830 & 78 & 7832 & 78 & 7835 & 7836 & 7837 & 格 & 7839 \\
\hline 58 & 7840 & 7841 & 7842 & 7844 & 7845 & 7846 & 7847 & 7848 & \\
\hline 586 & & 7851 & & 7854 & & & & & \\
\hline 587 & 7860 & 7861 & 7862 & 7864 & 7865 & 7866 & 7867 & 7868 & 7869 \\
\hline 58 & 78 & 787 & 787 & 78 & 78 & 78 & 78 & 7878 & 7879 \\
\hline 58 & 788 & 78 & 78 & 78 & 788 & 78 & 砛 & 78 & 7889 \\
\hline 590 & 7890 & 7891 & 7892 & 7894 & 789 & 789 & 7897 & 7898 & 7899 \\
\hline 591 & 7900 & & & 79 & & & & 7908 & \\
\hline 592 & 7910 & 7911 & 79 & 79 & 79 & 79 & 7917 & 79 & \\
\hline 593 & 7920 & 79 & 79 & 79 & 79 & 7926 & 7927 & 79 & 7929 \\
\hline 59 & 79 & 79 & 793 & 793 & 79 & 79 & 79 & 7938 & 7939 \\
\hline 59 & 794 & 794 & 794 & 794 & 794 & 794 & 7947 & 7948 & 7949 \\
\hline 596 & 7950 & 7951 & 7952 & 7954 & 7955 & 7956 & 7957 & 7958 & 7959 \\
\hline 597 & 7960 & 7961 & 7962 & 7964 & 7965 & 7966 & 7967 & 7968 & 7969 \\
\hline 598 & 7970 & 797 & 7972 & 7974 & 7975 & 7976 & 7977 & 797 & 7979 \\
\hline 599 & 7980 & 7981 & 7982 & 7984 & 798 & 7986 & 798 & 798 & 7989 \\
\hline 600 & 799 & 79 & 7992 & 7994 & 799 & 7996 & 7997 & 7998 & 7999 \\
\hline
\end{tabular}

\section*{(2) For axis 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Command } \\
& \text { speed }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & Highorder & Loworder & Highorder & Loworder & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] \\
\hline 1 & 8000 & 8001 & 8002 & 8004 & 8005 & 8006 & 8007 & 8008 & 8009 \\
\hline 2 & 8010 & 8011 & 8012 & 8014 & 8015 & 8016 & 8017 & 8018 & 8019 \\
\hline 3 & 8020 & 8021 & 8022 & 8024 & 8025 & 8026 & 8027 & 8028 & 8029 \\
\hline 4 & 8030 & 8031 & 8032 & 8034 & 8035 & 8036 & 8037 & 8038 & 8039 \\
\hline 5 & 8040 & 8041 & 8042 & 8044 & 8045 & 8046 & 8047 & 8048 & 8049 \\
\hline 6 & 8050 & 8051 & 8052 & 8054 & 8055 & 8056 & 8057 & 8058 & 8059 \\
\hline 7 & 8060 & 8061 & 8062 & 8064 & 8065 & 8066 & 8067 & 8068 & 8069 \\
\hline 8 & 8070 & 8071 & 8072 & 8074 & 8075 & 8076 & 8077 & 8078 & 8079 \\
\hline 9 & 8080 & 8081 & 8082 & 8084 & 8085 & 8086 & 8087 & 8088 & 8089 \\
\hline 10 & 8090 & 8091 & 8092 & 8094 & 8095 & 8096 & 8097 & 8098 & 8099 \\
\hline 11 & 8100 & 8101 & 8102 & 8104 & 8105 & 8106 & 8107 & 8108 & 9 \\
\hline 12 & 8110 & 8111 & 8112 & 8114 & 8115 & 8116 & 8117 & 8118 & 8119 \\
\hline 13 & 8120 & 8121 & 8122 & 8124 & 8125 & 8126 & 8127 & 8128 & 8129 \\
\hline 14 & 8130 & 8131 & 8132 & 8134 & 8135 & 8136 & 8137 & 8138 & 8139 \\
\hline 15 & 8140 & 814 & 8142 & 814 & 8145 & 8146 & 8147 & 8148 & 8149 \\
\hline 16 & 8150 & 8151 & 8152 & 815 & 8155 & 8156 & 8157 & 8158 & 8159 \\
\hline 17 & 8160 & 8161 & 8162 & 8164 & 8165 & 8166 & 8167 & 8168 & 8169 \\
\hline 18 & 8170 & 8171 & 8172 & 8174 & 8175 & 8176 & 8177 & 8178 & 8179 \\
\hline 19 & 8180 & 8181 & 8182 & 8184 & 8185 & 8186 & 8187 & 8188 & 8189 \\
\hline 20 & 81 & 81 & 819 & 819 & 8195 & 8196 & 8197 & 8198 & 8199 \\
\hline 21 & 8200 & 820 & 820 & 820 & 820 & 8206 & 8207 & 8208 & 8209 \\
\hline 22 & 8210 & 8211 & 8212 & 8214 & 8215 & 8216 & 8217 & 8218 & 8219 \\
\hline 23 & 8220 & 8221 & 8222 & 8224 & 8225 & 8226 & 8227 & 8228 & 8229 \\
\hline 24 & 8230 & 8231 & 8232 & 8234 & 8235 & 8236 & 8237 & 8238 & 8239 \\
\hline 25 & 8240 & 8241 & 8242 & 8244 & 8245 & 8246 & 8247 & 8248 & 8249 \\
\hline 26 & 8250 & 8251 & 8252 & 8254 & 8255 & 8256 & 8257 & 8258 & 8259 \\
\hline 27 & 8260 & 8261 & 8262 & 8264 & 8265 & 8266 & 8267 & 8268 & 8269 \\
\hline 28 & 8270 & 8271 & 8272 & 8274 & 8275 & 8276 & 8277 & 8278 & 8279 \\
\hline 29 & 8280 & 828 & 8282 & 828 & 8285 & 8286 & 8287 & 8288 & 8289 \\
\hline 30 & 8290 & 8291 & 8292 & 8294 & 8295 & 8296 & 8297 & 8298 & 8299 \\
\hline 31 & 8300 & 8301 & 8302 & 8304 & 8305 & 8306 & 8307 & 8308 & 8309 \\
\hline 32 & 8310 & 8311 & 8312 & 8314 & 8315 & 8316 & 8317 & 8318 & 8319 \\
\hline 33 & 8320 & 8321 & 8322 & 8324 & 8325 & 8326 & 8327 & 8328 & 8329 \\
\hline 34 & 8330 & 8331 & 8332 & 8334 & 8335 & 8336 & 8337 & 8338 & 8339 \\
\hline 35 & 8340 & 8341 & 8342 & 8344 & 8345 & 8346 & 8347 & 8348 & 8349 \\
\hline 36 & 8350 & 8351 & 8352 & 8354 & 8355 & 8356 & 8357 & 8358 & 8359 \\
\hline 37 & 8360 & 8361 & 8362 & 8364 & 8365 & 8366 & 8367 & 8368 & 8369 \\
\hline 38 & 8370 & 8371 & 8372 & 8374 & 8375 & 8376 & 8377 & 8378 & 8379 \\
\hline 39 & 8380 & 8381 & 8382 & 8384 & 8385 & 8386 & 8387 & 8388 & 8389 \\
\hline 40 & 8390 & 8391 & 8392 & 8394 & 8395 & 8396 & 8397 & 8398 & 8399 \\
\hline 41 & 8400 & 8401 & 8402 & 8404 & 8405 & 8406 & 8407 & 8408 & 8409 \\
\hline 42 & 8410 & 8411 & 8412 & 8414 & 8415 & 8416 & 8417 & 8418 & 8419 \\
\hline 43 & 8420 & 8421 & 8422 & 8424 & 8425 & 8426 & 8427 & 8428 & 8429 \\
\hline 44 & 8430 & 8431 & 8432 & 8434 & 8435 & 8436 & 8437 & 8438 & 8439 \\
\hline 45 & 8440 & 8441 & 8442 & 8444 & 8445 & 8446 & 8447 & 8448 & 8449 \\
\hline 46 & 8450 & 8451 & 8452 & 8454 & 8455 & 8456 & 8457 & 8458 & 8459 \\
\hline 47 & 8460 & 8461 & 8462 & 8464 & 8465 & 8466 & 8467 & 8468 & 8469 \\
\hline 48 & 8470 & 8471 & 8472 & 8474 & 8475 & 8476 & 8477 & 8478 & 8479 \\
\hline 49 & 8480 & 8481 & 8482 & 8484 & 8485 & 8486 & 8487 & 8488 & 8489 \\
\hline 50 & 8490 & 8491 & 8492 & 8494 & 8495 & 8496 & 8497 & 8498 & 8499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data} & \multirow[t]{2}{*}{\begin{tabular}{c}
\begin{tabular}{c} 
Posi- \\
tioning \\
identi- \\
fier
\end{tabular} \\
\hline
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
M \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Dwell } \\
& \text { time }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{aligned}
& \begin{array}{l}
\text { Low- } \\
\text { order } \\
\hline
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { Low- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { Low- } \\
& \text { order } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] \\
\hline 51 & 8500 & 850 & 8502 & 8504 & 8505 & 8506 & 8507 & 8508 & 8509 \\
\hline 52 & 8510 & 85 & 85 & 85 & 8515 & 8516 & 8517 & 8518 & 8519 \\
\hline 53 & 8520 & 85 & 8522 & 8524 & 8525 & 26 & 8527 & 8528 & 8529 \\
\hline 5 & 8530 & 8531 & 8532 & 8534 & 8535 & 8536 & 8537 & 8538 & 539 \\
\hline 55 & 8540 & 8541 & 8542 & 8544 & 8545 & 8546 & 8547 & 8548 & 8549 \\
\hline 56 & 8550 & 8551 & 8552 & 855 & 8555 & 8556 & 8557 & 58 & 59 \\
\hline 57 & 8560 & 85 & 856 & 8564 & 8565 & 8566 & 8567 & 68 & 8569 \\
\hline 58 & 85 & 857 & 8572 & 85 & 85 & 85 & 8577 & 78 & 8579 \\
\hline 59 & 85 & 8581 & 85 & 85 & 85 & 85 & 8587 & 8588 & 8589 \\
\hline 60 & 85 & 8591 & 8592 & 8594 & 8595 & 8596 & 8597 & 8598 & 8599 \\
\hline 61 & 8600 & 8601 & 8602 & 860 & 8605 & 06 & 8607 & 8608 & 8609 \\
\hline 62 & 8610 & 8611 & 8612 & 8614 & 8615 & 8616 & 8617 & 18 & 19 \\
\hline 63 & 86 & 8621 & 86 & 8624 & 8625 & 8626 & 27 & 28 & \\
\hline 64 & 863 & 8631 & 863 & 86 & 86 & 8636 & 8637 & 38 & 39 \\
\hline 65 & 8640 & 8641 & 8642 & 8644 & 8645 & 8646 & 8647 & 8648 & 8649 \\
\hline 66 & 8650 & 8651 & 8652 & 8654 & 8655 & 8656 & 8657 & 8658 & \\
\hline 67 & 86 & 86 & 86 & 86 & 8665 & 8666 & 8667 & 8668 & 8669 \\
\hline 68 & 86 & 8671 & 86 & 86 & 8675 & 8676 & 86 & 88 & 8679 \\
\hline 69 & 86 & 8681 & 8682 & 86 & 8685 & 8686 & 8687 & 8688 & \\
\hline 70 & 8690 & 8691 & 8692 & 8694 & 8695 & 8696 & 8697 & 8698 & \\
\hline 71 & 8700 & 8701 & 8702 & & & 06 & & & \\
\hline 72 & 87 & 87 & 87 & 87 & 8715 & 8716 & 8717 & 8718 & 8719 \\
\hline 73 & 87 & 87 & 87 & 87 & 8725 & 8726 & 87 & 8728 & 29 \\
\hline 74 & 87 & 87 & 87 & 87 & 87 & 8736 & 87 & 8738 & 39 \\
\hline 75 & 8740 & 8741 & 8742 & 8744 & 8745 & 8746 & 8747 & 87 & 8749 \\
\hline 76 & 8750 & 8751 & 8752 & 8754 & 8755 & 8756 & 8757 & 878 & 8759 \\
\hline 77 & 87 & 87 & 8762 & 87 & 8765 & 8766 & 876 & 8768 & 8769 \\
\hline 78 & 87 & 87 & 877 & 87 & 87 & 8776 & 8777 & 8778 & \\
\hline 79 & 8780 & 8781 & 8782 & 87 & 8785 & 8786 & 8787 & 8788 & 889 \\
\hline 80 & 8790 & 8791 & 8792 & 8794 & 8795 & 8796 & 8797 & 8798 & 99 \\
\hline 81 & 8800 & 8801 & 8802 & 8804 & 8805 & 8806 & 8807 & 8808 & 9 \\
\hline 82 & 88 & 8811 & 88 & 88 & 8815 & 8816 & 8817 & 8818 & 8819 \\
\hline 83 & 88 & 882 & 8822 & 8824 & 8825 & 8826 & 8827 & 8828 & 29 \\
\hline 84 & 88 & 8831 & 8832 & 8834 & 8835 & 8836 & 8837 & 8838 & 39 \\
\hline 85 & 8840 & 8841 & 8842 & 8844 & 8845 & 8846 & 8847 & 8848 & 8849 \\
\hline 86 & 8850 & 8851 & & & & 56 & & & \\
\hline 87 & 88 & 8861 & 8862 & 8864 & 8865 & 8866 &  & 8868 & \\
\hline 88 & 8870 & 88 & 88 & 88 & 88 & 8876 & 88 & 88 & 8879 \\
\hline 89 & 88 & 8881 & 8882 & 8884 & 8885 & 8886 & 8887 & 8888 & 8889 \\
\hline 90 & 8890 & 889 & 889 & 88 & 88 & 88 & 889 & 8898 & 8899 \\
\hline 91 & & 8901 & 8902 & & 8905 & 8906 & 8907 & 8908 & 8909 \\
\hline 92 & 8910 & 8911 & 8912 & 8914 & 8915 & 8916 & 8917 & 8918 & 8919 \\
\hline 93 & 8920 & 8921 & 8922 & 8924 & 8925 & 8926 & 8927 & 8928 & 8929 \\
\hline 94 & 8930 & 8931 & 8932 & 8934 & 8935 & 8936 & 8937 & 8938 & 8939 \\
\hline 95 & 8940 & 8941 & 8942 & 8944 & 8945 & 894 & 89 & 89 & 89 \\
\hline 96 & 8950 & 8951 & 8952 & 8954 & 8955 & 56 & 8957 & 8958 & 8959 \\
\hline 97 & 89 & 896 & 8962 & 896 & 8965 & 8966 & 8967 & 89 & 8969 \\
\hline 98 & 8970 & 8971 & 8972 & 8974 & 8975 & 8976 & 8977 & 8978 & 8979 \\
\hline 99 & 8980 & 8981 & 8982 & 8984 & 8985 & 8986 & 8987 & 8988 & 8989 \\
\hline 100 & 8990 & 8991 & 8992 & 8994 & 8995 & 8996 & 8997 & 8998 & 8999 \\
\hline
\end{tabular}

\section*{(2) For axis 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Posi- \\
tioning \\
identi- \\
fier
\end{tabular} \\
\hline
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Low- & \[
\begin{aligned}
& \text { High- } \\
& \text { order } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { Low- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { Horder }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{WW}- \\
& \mathrm{d}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Highn } \\
& \text { rder }
\end{aligned}
\] \\
\hline 101 & 9000 & 9001 & 9002 & 9004 & 9005 & 9006 & 9007 & 9008 & 9009 \\
\hline & 9010 & 9011 & 9012 & 9014 & 9015 & 9016 & 9017 & 9018 & 9019 \\
\hline & 9020 & 9021 & 9022 & 9024 & 25 & 9026 & 027 & 9028 & 3029 \\
\hline & 9030 & 9031 & 90 & 9034 & 90 & 90 & 9037 & 90 & 39 \\
\hline 105 & 904 & 9041 & 9042 & 904 & 904 & 9046 & 9047 & 9048 & \\
\hline 106 & 9050 & 9051 & 9052 & 9054 & 9055 & 9056 & 9057 & 9058 & \\
\hline & 9060 & & 9062 & 9064 & 9065 & 9066 & 9067 & 9068 & 9069 \\
\hline 108 & 9070 & 9071 & 9072 & 9074 & 9075 & 9076 & 90 & 9078 & 9 \\
\hline 109 & 9080 & 9081 & 90 & 9084 & 9085 & 9086 & 87 & 9088 & 9089 \\
\hline 110 & 90 & 9091 & 90 & 90 & 9095 & 9096 & 9097 & 90 & 9099 \\
\hline & 9100 & 9101 & 102 & 9104 & 9105 & 9106 & 9107 & 9108 & \\
\hline & 9110 & 9111 & 9112 & & & 9116 & 9117 & & \\
\hline 113 & 91 & 9121 & 9122 & 9124 & 9125 & 9126 & 9127 & 9128 & \\
\hline 114 & 91 & 9131 & 9132 & 9134 & 9135 & 9136 & 9137 & 9138 & 39 \\
\hline 115 & 91 & 91 & 91 & 9144 & 91 & 9146 & 9147 & 9148 & 9149 \\
\hline & 9150 & 9151 & 9152 & 9154 & 9155 & 9156 & 9157 & 9158 & \\
\hline 117 & 9160 & 9161 & 9162 & 9164 & 9165 & 9166 & 9167 & 9168 & \\
\hline 118 & 9170 & 9171 & 9172 & & 9175 & 9176 & 9177 & & \\
\hline 119 & 91 & 9181 & 9182 & & 9185 & 9186 & 9187 & & \\
\hline 120 & 9190 & 9191 & 9192 & 919 & 919 & 91 & 9197 & 9198 & \\
\hline & 9200 & 9201 & 9202 & & 9205 & & & & \\
\hline 122 & 92 & 9211 & 92 & 9214 & 92 & 9216 & 92 & 9218 & \\
\hline 123 & 92 & 92 & 92 & 92 & 9225 & 9226 & 9227 & 9228 & 9229 \\
\hline 124 & 923 & 923 & 92 & 9234 & 92 & 92 & 9237 & 9238 & 9239 \\
\hline 125 & 9240 & 241 & 242 & 92 & 9245 & 9246 & 92 & 9248 & \\
\hline 126 & & & & & & & & & \\
\hline & 92 & 9261 & 9262 & & 9265 & 9266 & 9267 & 9268 & \\
\hline 128 & 92 & 92 & 92 & 9274 & 9275 & 9276 & 9277 & 9278 & \\
\hline 129 & 92 & 92 & 92 & 9284 & 9285 & 92 & 928 & 92 & 9 \\
\hline 130 & 9290 & 9291 & 929 & 92 & 92 & 929 & 929 & 92 & \\
\hline 131 & 9300 & 9301 & 9302 & & 9305 & 9306 & 9307 & & \\
\hline 132 & 93 & 9311 & 9312 & 93 & 93 & 9316 & 93 & 9318 & 9319 \\
\hline 133 & 93 & 93 & 93 & 9324 & 93 & 93 & 9327 & 93 & \\
\hline 134 & 93 & 9331 & 9332 & & 9335 & 9336 & 37 & 9338 & 9339 \\
\hline 135 & 9340 & 9341 & 9342 & 934 & 9345 & 9346 & 934 & 93 & \\
\hline 136 & & & 9352 & & & & & & \\
\hline 137 & 93 & 9361 & 93 & 9364 & 93 & 9366 & 9367 & 9368 & \\
\hline 138 & 93 & 9371 & 937 & 9374 & 93 & 9376 & 9377 & 9378 & 9379 \\
\hline 139 & 93 & 93 & 93 & 93 & 93 & 93 & 93 & 9388 & 9389 \\
\hline 14 & 9390 & 9391 & 9392 & 939 & 93 & 939 & 939 & 93 & 9399 \\
\hline & & & 9402 & & & 9406 & 9407 & & \\
\hline 142 & 94 & 9411 & 9412 & & 94 & 416 & 94 & 9418 & \\
\hline 143 & 942 & 9421 & 9422 & 9424 & 9425 & 94 & 94 & 9428 & \\
\hline 144 & 94 & 9431 & 9432 & 9434 & 9435 & 9436 & 9437 & 9438 & 9439 \\
\hline 145 & 9440 & 9441 & 9442 & 9444 & 9445 & 9446 & 9447 & 9448 & 9449 \\
\hline & & & & & & 9456 & 9457 & & \\
\hline 147 & 946 & 946 & 946 & 94 & 94 & 946 & 946 & 9468 & 9469 \\
\hline 14 & 9470 & 9471 & 9472 & 94 & 947 & 9476 & 947 & 9478 & 79 \\
\hline 14 & 948 & 9481 & 9482 & 948 & 9485 & 9486 & 948 & 9488 & 9489 \\
\hline 150 & 9490 & 9491 & 9492 & 9494 & 9495 & 9496 & 9497 & 9498 & 9499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{aligned}
& \hline \text { Low- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & ow- & \[
\begin{aligned}
& \text { igh- } \\
& \text { Id }
\end{aligned}
\] \\
\hline & 9500 & 95 & 95 & 95 & 9505 & 6 & 07 & 9508 & 09 \\
\hline 15 & 9510 & 9511 & 95 & 95 & 95 & 95 & 95 & 9518 & 9519 \\
\hline 15 & 9520 & 95 & 9522 & 9524 & 9525 & 9526 & 9527 & 9528 & 9529 \\
\hline 154 & 9530 & 9531 & 9532 & 9534 & 9535 & 9536 & 9537 & 9538 & 9539 \\
\hline 155 & 9540 & 9541 & 9542 & 9544 & 9545 & 9546 & 9547 & 9548 & 9549 \\
\hline 156 & 9550 & 9551 & 9552 & 9554 & 9555 & 9556 & 9557 & & \\
\hline 157 & 9560 & 9561 & 9562 & 9564 & 9565 & 9566 & 9567 & 9568 & 9569 \\
\hline 15 & 9570 & 9571 & 9572 & 9574 & 9575 & 9576 & 9577 & 9578 & 9579 \\
\hline 159 & 9580 & 95 & 9582 & 9584 & 9585 & 9586 & 9587 & 588 & 9589 \\
\hline 160 & 9590 & 959 & 9592 & 9594 & 9595 & 9596 & 9597 & 959 & \\
\hline 161 & 9600 & 9601 & 9602 & 9604 & 9605 & 9606 & 9607 & 9608 & \\
\hline 16 & 9610 & 9611 & 96 & 96 & 9615 & 9616 & 9617 & 9618 & 9619 \\
\hline 163 & 9620 & 9621 & 96 & 96 & 96 & 9626 & 9627 & 9628 & 9629 \\
\hline 164 & 9630 & 9631 & 963 & 96 & 96 & 96 & 963 & 9638 & 9639 \\
\hline 165 & 964 & 96 & 9642 & 9644 & 9645 & 9646 & 9647 & 9648 & \\
\hline 166 & 9650 & 96 & 96 & 9654 & 9655 & 9656 & 57 & & \\
\hline 167 & 9660 & 9661 & 9662 & 9664 & 9665 & 9666 & 9667 & 9668 & \\
\hline 168 & 9670 & 9671 & 96 & 96 & 9675 & 9676 & 9677 & 9678 & 9679 \\
\hline 16 & 9680 & 9681 & 96 & 96 & 96 & 9686 & 9687 & 9688 & 9689 \\
\hline 170 & 9690 & 96 & 9692 & 9694 & 969 & 9696 & 969 & 9698 & \\
\hline 17 & 9700 & 9701 & 9702 & 9704 & 9705 & 9706 & 9707 & 9708 & \\
\hline 17 & 9710 & 97 & 97 & 9714 & 9715 & 9716 & 9717 & 9718 & \\
\hline 17 & 9720 & 97 & 97 & 97 & 97 & 9726 & 9727 & 9728 & \\
\hline 174 & 9730 & 97 & 9732 & 97 & 9735 & 9736 & 9737 & 973 & \\
\hline 175 & 9740 & 9741 & 9742 & 9744 & 9745 & 9746 & 9747 & 974 & \\
\hline 176 & & & 9752 & 9754 & 9755 & 9756 & 9757 & 9758 & \\
\hline 17 & 97 & 97 & 97 & 97 & 97 & 9766 & 9767 & 9768 & 9769 \\
\hline 178 & 9770 & 97 & 9772 & 97 & 97 & 9776 & 97 & 9778 & \\
\hline 17 & 978 & 97 & 978 & 97 & 97 & 97 & 9787 & 9788 & 9789 \\
\hline 180 & 9790 & 979 & 9792 & 979 & 9795 & 97 & 97 & 9798 & \\
\hline 181 & & & & & & & & & \\
\hline 182 & 9810 & 9811 & 9812 & 9814 & 9815 & 9816 & 9817 & 9818 & \\
\hline 183 & 98 & 98 & 98 & 9824 & 98 & 9826 & 982 & 9828 & 9829 \\
\hline 18 & 9830 & 98 & 98 & 9834 & 98 & 98 & 9837 & 9838 & 9839 \\
\hline 185 & 984 & 98 & 98 & 98 & 9845 & 98 & 9847 & 9848 & 9849 \\
\hline 186 & 9850 & & 9852 & 9854 & & & & & \\
\hline 18 & 9860 & & 9862 & 9864 & 9865 & 9866 & 9867 & 9868 & 9869 \\
\hline 188 & 98 & 98 & 98 & 9874 & 9875 & 9876 & 9877 & 987 & 9879 \\
\hline 189 & 9880 & 988 & 9882 & 9884 & 9885 & 9886 & 9887 & 988 & 9889 \\
\hline 190 & 9890 & 98 & 9892 & 9894 & 989 & 9896 & 989 & 98 & \\
\hline 191 & & & 9902 & 9904 & 9905 & 6 & 9907 & & \\
\hline 192 & 99 & 9911 & 99 & 99 & 99 & 99 & 99 & 99 & 9919 \\
\hline 193 & 9920 & 9921 & 99 & 99 & 9925 & 9926 & 9927 & 9928 & 9929 \\
\hline 19 & 993 & 993 & 9932 & 993 & 9935 & 993 & 9937 & 9938 & 9939 \\
\hline 195 & 9940 & 9941 & 9942 & 9944 & 9945 & 9946 & 9947 & 994 & 9949 \\
\hline 196 & & 9951 & 99 & 9954 & 9955 & & 9957 & & \\
\hline 197 & 99 & 99 & 9962 & 99 & 9965 & 99 & 99 & 9968 & 9969 \\
\hline 198 & 997 & 99 & 99 & 9974 & 997 & 99 & 9977 & 99 & 99 \\
\hline 199 & 9980 & 9981 & 9982 & 9984 & 9985 & 9986 & 9987 & 998 & 998 \\
\hline 200 & 9990 & 999 & 9992 & 999 & 999 & 9996 & 999 & 999 & 999 \\
\hline
\end{tabular}

\section*{(2) For axis 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} & \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Dwell } \\
\text { time }
\end{array}
\]} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|r|}{Arc data} \\
\hline No. & & code & & \[
\begin{array}{|l|}
\hline \text { Iow- } \\
\text { Lorder } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { High- } \\
\text { order }
\end{array}\right.
\end{aligned}
\] & & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & & & & \[
\begin{array}{|l|}
\hline \text { Sow- } \\
\text { Lorder } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & -ow- & \[
\left\lvert\, \begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}\right.
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { Low- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order } \\
& \hline
\end{aligned}
\] \\
\hline 201 & 10000 & 10001 & 10002 & 04 & 10005 & 06 & 10007 & 10008 & 10009 & 251 & 10500 & 10501 & 10502 & 10504 & 10505 & 10506 & 10507 & 10508 & 10509 \\
\hline 202 & & & & & & 10016 & & & & 252 & & 10511 & & & 10515 & 10516 & 10517 & 10518 & 10519 \\
\hline 203 & 10020 & & 10022 & 10024 & 10025 & 10026 & 10027 & 10028 & 10029 & 253 & 10520 & 10521 & 10522 & 10524 & 10525 & 10526 & 10527 & 10528 & 10529 \\
\hline 204 & 10030 & & 10032 & & 10035 & 10036 & 10037 & & 10039 & 254 & 10530 & 10531 & 10532 & 34 & 10535 & 10536 & 10537 & 10538 & 10539 \\
\hline 205 & 10040 & 10041 & 10042 & 10044 & 10045 & 10046 & 10047 & 10048 & 10049 & 255 & 10540 & 10541 & 10542 & 10544 & 10545 & 10546 & 10547 & 10548 & 10549 \\
\hline 206 & 10050 & 10051 & 10052 & 10054 & 10055 & 10056 & 10057 & 10058 & 10059 & 256 & 10550 & 10551 & 10552 & 10554 & 10555 & 10556 & 10557 & 10558 & 10559 \\
\hline 207 & 10060 & 1006 & 10062 & 10064 & 10065 & 10066 & 10067 & 10068 & 10069 & 25 & 10560 & 10561 & 10562 & 10564 & 10565 & 10566 & 10567 & 10568 & 10569 \\
\hline 208 & 10070 & & & 10074 & 10075 & 10076 & 10 & 10078 & 10079 & 258 & 10570 & 10571 & 2 & 74 & 10575 & 10576 & 10577 & 10578 & 79 \\
\hline 209 & 10080 & & & & & & 10087 & & & 259 & 10580 & 10581 & 10582 & 10584 & 10585 & 10586 & 10587 & 10588 & \\
\hline 210 & 090 & 10091 & 10092 & 10094 & 10095 & 10096 & 10097 & 10098 & & 260 & 10590 & 10591 & 10592 & 10594 & 10595 & 10596 & 10597 & 10598 & 10599 \\
\hline 21 & 10100 & 10101 & 10102 & 10104 & 10105 & 10106 & 10107 & 10108 & 10109 & 261 & 10600 & 10601 & 10602 & 10604 & 10605 & 10606 & 10607 & 10608 & 10609 \\
\hline 21 & 10110 & 10111 & 10112 & 10114 & 10115 & 10116 & 10117 & & 10119 & 262 & 10610 & & & 10614 & 10615 & 10616 & 10617 & 10618 & 10619 \\
\hline 213 & 10120 & 10121 & 10122 & 10124 & 10125 & 10126 & 10127 & 10128 & 1012 & 26 & 10620 & & 10622 & 10624 & 10625 & 10626 & 10627 & 10628 & 10629 \\
\hline 21 & 10130 & & & & 10135 & 10136 & 10137 & & 101 & 26 & 10630 & & & 10634 & 10635 & 10636 & 10637 & 10638 & \\
\hline 215 & 140 & 141 & 10142 & 44 & 10145 & 0146 & 1014 & 10148 & 101 & 26 & 10640 & 10641 & 10642 & 10644 & 10645 & 1064 & 106 & 106 & \\
\hline 21 & 10150 & 10151 & 10152 & & 10155 & 10156 & 10157 & & 10159 & & & & & 10654 & 10655 & & & & \\
\hline 217 & 10160 & & & & 10165 & & & & & 267 & 10660 & & & 10664 & 10665 & & 10667 & 10668 & 10669 \\
\hline 21 & 10170 & & 10172 & & 10175 & 10176 & 10177 & & & 268 & & & & & 10675 & & 10677 & 10678 & 10679 \\
\hline 219 & 10180 & & & 10184 & 10185 & 10186 & 10187 & 10188 & 1018 & 26 & & & & 10684 & 10685 & 10686 & 10687 & 10688 & 10689 \\
\hline 220 & 10190 & 10191 & 101 & 10194 & 10195 & 10196 & 10197 & 10198 & 101 & 270 & 10690 & 10691 & 10692 & 10694 & 10695 & 10696 & 10697 & 10698 & \\
\hline 22 & 10200 & 1020 & 10202 & & 10205 & 10206 & 10207 & & 1020 & 27 & & 10701 & & 10704 & 10705 & 10706 & 10707 & 10708 & 10709 \\
\hline 222 & 1021 & 10211 & 10212 & & 10215 & 10216 & 10217 & & 10219 & 27 & 10710 & & 10712 & 10714 & 10715 & 10716 & 10717 & & 10719 \\
\hline 223 & 10220 & & & & 10225 & & 10227 & & & 273 & 10720 & 10721 & 10722 & 10724 & 10725 & & 10727 & 10728 & \\
\hline 224 & 10230 & & & & & & & & & & & & & & 10735 & & 10737 & 10738 & 39 \\
\hline 225 & 10240 & 1024 & 1024 & 1024 & & 10246 & & 10248 & & 27 & 10740 & 10741 & 10742 & 10744 & 10745 & 10746 & 10747 & 10748 & 10749 \\
\hline 226 & & & & & 10255 & 10256 & & & 1025 & 276 & & & & & 10755 & & & & 10759 \\
\hline 227 & 1026 & 10261 & 10262 & & 10265 & 10266 & 10267 & 10268 & 1026 & 27 & & & & 10764 & 10765 & 10766 & 10767 & 10768 & 10769 \\
\hline 228 & 10270 & & 10272 & & 10275 & 10276 & 10277 & 10278 & 10279 & 27 & 10770 & 10771 & 10772 & 10774 & 10775 & 10776 & 10777 & 10778 & 10779 \\
\hline 22 & 10280 & & & & & & & & & 27 & & & & & & & & & \\
\hline 230 & 10290 & 10291 & 10292 & , & , & , & 10297 & 10298 & & 280 & 10790 & 107 & 10792 & 10794 & , & 1079 & 107 & 保 & \\
\hline 23 & & & & & & & & & & & & & & & & & & & \\
\hline 232 & 10310 & & 10312 & & 10315 & 10316 & 10317 & & 10319 & 28 & & & 10812 & 10814 & 10815 & 10816 & 10817 & 10818 & 10819 \\
\hline 233 & 1032 & & 10322 & 10324 & 10325 & 10326 & 10327 & 10328 & 10329 & 28 & & & 10822 & 10824 & 10825 & 10826 & 10827 & 10828 & 10829 \\
\hline 234 & 10330 & & 10332 & & & 10336 & 10337 & 10338 & 10339 & 28 & & & 10832 & 10834 & 10835 & 10836 & 10837 & 10838 & 10839 \\
\hline 235 & 340 & 10341 & 10342 & 10344 & 45 & 10346 & 10347 & 10348 & 10349 & 285 & 10840 & 10841 & 10842 & 10844 & 10845 & 10846 & 10847 & 10848 & 10849 \\
\hline 236 & & & & & & & & & & & & & & & 10855 & & & 10858 & 10859 \\
\hline 237 & & & & & & & & & & 287 & & & & & 10865 & & 10867 & 10868 & 10869 \\
\hline 238 & 10370 & & & & & & & & 10379 & 28 & & & 2 & 10874 & 10875 & 10876 & 10877 & 10878 & 10879 \\
\hline 239 & & & & & & & & & 1038 & 28 & & & & & 10885 & & & & \\
\hline 240 & 10390 & 91 & 10 & 10394 & 10395 & 96 & 10397 & 10398 & 10399 & 290 & 10890 & 108 & 10892 & 10894 & 1089 & 10896 & 10897 & 10898 & 10899 \\
\hline 241 & & & & & & & & & 10409 & & & & & 10904 & 10905 & & & 10908 & 10909 \\
\hline 242 & 10410 & & 10412 & & 10415 & & & & 10419 & 292 & & & & 10914 & 10915 & & 10917 & 10918 & 10919 \\
\hline 24 & 10420 & & & & & & & & 10429 & 293 & & & & 10924 & 10925 & 10926 & 10927 & 10928 & 10929 \\
\hline 244 & & & & & & & & & & 29 & & & & & & & 10937 & 10938 & 10939 \\
\hline 245 & 10440 & 10441 & 42 & 10444 & 10445 & 10446 & 10447 & 10448 & 104 & 295 & 10940 & 10941 & 10942 & 109 & 10945 & 0946 & 10947 & 10948 & 10949 \\
\hline 246 & & & & & & & & & & 296 & & & & & & & & & \\
\hline 247 & 10460 & 10461 & 10462 & & 10465 & 10466 & 10467 & 10468 & 10469 & 297 & & 10961 & 10962 & 10964 & 10965 & 10966 & 10967 & 10968 & 10969 \\
\hline 248 & 10470 & & & & 10475 & & & 10478 & 10479 & 298 & & & 10972 & 10974 & 10975 & 0976 & 10977 & 10978 & 10979 \\
\hline 249 & 1048 & 10481 & 10 & 10484 & 10485 & 10 & 10 & 10488 & 10 & 299 & 10980 & 10981 & 10982 & 1098 & 1098 & 109 & 10987 & 1098 & 109 \\
\hline 250 & 10490 & 10491 & 10492 & 10494 & 10495 & 10496 & 10497 & 10498 & 10499 & 300 & 10990 & 10991 & 10992 & 10994 & 10995 & 10996 & 10997 & 10998 & 10999 \\
\hline
\end{tabular}

\section*{(2) For axis 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\begin{tabular}{c} 
Posi- \\
tioning \\
identi- \\
fier
\end{tabular} \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Low- } \\
& \text { Lorder }
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Low- } \\
& \text { Lorder }
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] \\
\hline 301 & 11000 & 11001 & 11002 & 11004 & 11005 & 11006 & 11007 & 11008 & 11009 \\
\hline 302 & 11010 & 11011 & 11012 & 11014 & 11015 & 11016 & 11017 & 11018 & 11019 \\
\hline 303 & 11020 & 11021 & 11022 & 11024 & 11025 & 11026 & 11027 & 11028 & 11029 \\
\hline 304 & 1103 & 11031 & 11032 & 11034 & 11035 & 11036 & 11037 & 11038 & 11039 \\
\hline 305 & 11040 & 11041 & 11042 & 11044 & 11045 & 11046 & 11047 & 11048 & 11049 \\
\hline 306 & 11050 & 11051 & 11052 & 11054 & 11055 & 11056 & 11057 & 11058 & 11059 \\
\hline 307 & 11060 & 11061 & 11062 & 11064 & 11065 & 11066 & 11067 & 11068 & 69 \\
\hline 308 & 11070 & 1107 & 11072 & 11074 & 11075 & 11076 & 11077 & 11078 & 11079 \\
\hline 309 & 11080 & 11081 & 11082 & 11084 & 11085 & 11086 & 11087 & 11088 & 11089 \\
\hline 310 & 11090 & 11091 & 11092 & 11094 & 11095 & 11096 & 11097 & 11098 & 11099 \\
\hline 31 & 11100 & 11 & 11102 & 11104 & 11105 & 11106 & 11107 & 11108 & 11109 \\
\hline 31 & 111 & 11 & 11112 & 11114 & 11115 & 11116 & 11117 & 11118 & 11119 \\
\hline 31 & 11120 & 11121 & 11122 & 11124 & 11125 & 11126 & 11127 & 11128 & 11129 \\
\hline 314 & 11130 & 11131 & 11132 & 11134 & 11135 & 11136 & 11137 & 11138 & 11139 \\
\hline 315 & 11140 & 11141 & 11142 & 11144 & 11145 & 11146 & 11147 & 11148 & 11149 \\
\hline 316 & 11150 & 11 & 11152 & & 11155 & 11156 & 11157 & 11158 & \\
\hline 317 & 1116 & 1116 & 11162 & 11164 & 11165 & 11166 & 11167 & 11168 & 11169 \\
\hline 318 & 11170 & 11171 & 11172 & 11174 & 11175 & 11176 & 11177 & 11178 & 11179 \\
\hline 319 & 11180 & 1118 & 11182 & 11184 & 11185 & 11186 & 11187 & 11188 & 11189 \\
\hline 320 & 11190 & 1119 & 11192 & 11194 & 11195 & 11196 & 11197 & 11198 & 9 \\
\hline 32 & 1120 & 112 & 112 & 11204 & 11205 & 11206 & 11207 & 8 & 9 \\
\hline 322 & 11210 & 11211 & 11212 & 11 & 11215 & 11216 & 11217 & 11218 & 11219 \\
\hline 323 & 11220 & 11221 & 11222 & 11224 & 11225 & 11226 & 11227 & 11228 & 11229 \\
\hline 324 & 11230 & 11231 & 11232 & 11234 & 11235 & 11236 & 11237 & 11238 & 11239 \\
\hline 325 & 11240 & 11241 & 11242 & 11244 & 11245 & 11246 & 11247 & 11248 & 11249 \\
\hline 326 & 112 & 1125 & 1125 & 11 & 11255 & 11256 & 11257 & 11258 & 11259 \\
\hline 327 & 11260 & 11261 & 11262 & 11264 & 11265 & 11266 & 11267 & 11268 & 11269 \\
\hline 328 & 11 & 11 & 11272 & 11274 & 11275 & 11276 & 11277 & 11278 & 11279 \\
\hline 329 & 11280 & 1128 & 11282 & 11284 & 11285 & 11286 & 11287 & 11288 & 11289 \\
\hline 330 & 11290 & 11291 & 11292 & 11294 & 11295 & 11296 & 11297 & 11298 & 11299 \\
\hline 331 & 11300 & 1130 & 11302 & 11304 & 11305 & 11306 & 11307 & 11308 & 11309 \\
\hline 33 & 11310 & 113 & 11312 & 11314 & 11315 & 11316 & 11317 & 11318 & 11319 \\
\hline 33 & 11320 & 11321 & 11322 & 11324 & 11325 & 11326 & 11327 & 11328 & 11329 \\
\hline 334 & 11330 & 11 & 11 & 11334 & 11335 & 11336 & 11337 & 11338 & 11339 \\
\hline 335 & 11340 & 11341 & 11342 & 11344 & 11345 & 11346 & 11347 & 11348 & 11349 \\
\hline 336 & 11350 & 11 & 11352 & 11354 & 11355 & 11356 & 11357 & 11358 & 11359 \\
\hline 337 & 11360 & 11361 & 11362 & 11364 & 11365 & 11366 & 11367 & 11368 & 11369 \\
\hline 338 & 11370 & 11371 & 11372 & 11374 & 11375 & 11376 & 11377 & 11378 & 11379 \\
\hline 339 & 11380 & 11381 & 11382 & 11384 & 11385 & 11386 & 11387 & 11388 & 11389 \\
\hline 340 & 11390 & 11391 & 11392 & 11394 & 11395 & 11396 & 11397 & 11398 & 11399 \\
\hline 341 & 11400 & 11401 & 11402 & 11404 & 11405 & 11406 & 11407 & 11408 & 11409 \\
\hline 342 & 11410 & 11411 & 11412 & 11414 & 11415 & 11416 & 11417 & 11418 & 11419 \\
\hline 343 & 11420 & 11421 & 11422 & 11424 & 11425 & 11426 & 11427 & 11428 & 11429 \\
\hline 34 & 11430 & 11431 & 11432 & 11434 & 11435 & 11436 & 11437 & 11438 & 11439 \\
\hline 345 & 11440 & 11441 & 11442 & 11444 & 11445 & 11446 & 11447 & 11448 & 11449 \\
\hline 346 & 11450 & 11451 & 11452 & 11454 & 11455 & 11456 & 11457 & 11458 & 11459 \\
\hline 347 & 11460 & 11461 & 11462 & 11464 & 11465 & 11466 & 11467 & 11468 & 11469 \\
\hline 348 & 11470 & 11471 & 11472 & 11474 & 11475 & 11476 & 11477 & 11478 & 11479 \\
\hline 349 & 11480 & 11481 & 11482 & 11484 & 11485 & 11486 & 11487 & 11488 & 11489 \\
\hline 350 & 11490 & 11491 & 11492 & 11494 & 11495 & 11496 & 11497 & 11498 & 11499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & Highorder & Loworder & Highorder & Loworder & Highorder \\
\hline 351 & 11500 & 11501 & 11502 & 11504 & 11505 & 11506 & 11507 & 11508 & 11509 \\
\hline 352 & 11510 & 11511 & 11512 & 11514 & 11515 & 11516 & 11517 & 11518 & 11519 \\
\hline 353 & 11520 & 11521 & 11522 & 11524 & 11525 & 11526 & 11527 & 11528 & 11529 \\
\hline 35 & 11530 & 11531 & 11532 & 11534 & 11535 & 11536 & 11537 & 11538 & 11539 \\
\hline 355 & 11540 & 11541 & 11542 & 11544 & 11545 & 11546 & 11547 & 11548 & 11549 \\
\hline 356 & 11550 & 11551 & 11552 & 11554 & 11555 & 11556 & 11557 & 11558 & 11559 \\
\hline 357 & 11560 & 11561 & 11562 & 11564 & 11565 & 11566 & 11567 & 11568 & 11569 \\
\hline 358 & 11570 & 11571 & 11572 & 11574 & 11575 & 11576 & 11577 & 11578 & 11579 \\
\hline 359 & 11580 & 11581 & 11582 & 11584 & 11585 & 11586 & 11587 & 11588 & 11589 \\
\hline 360 & 11590 & 11591 & 11592 & 11594 & 11595 & 11596 & 11597 & 11598 & 11599 \\
\hline 361 & 11600 & 11601 & 11602 & 11604 & 11605 & 11606 & 11607 & 11608 & 9 \\
\hline 362 & 11610 & 11611 & 11612 & 11614 & 11615 & 11616 & 11617 & 11618 & 9 \\
\hline 363 & 11620 & 11621 & 11622 & 11624 & 11625 & 11626 & 11627 & 11628 & 11629 \\
\hline 364 & 11630 & 11631 & 11632 & 11634 & 11635 & 11636 & 11637 & 11638 & 11639 \\
\hline 365 & 11640 & 11641 & 11642 & 11644 & 11645 & 11646 & 11647 & 11648 & 11649 \\
\hline 366 & 11650 & 11651 & 11652 & 11654 & 11655 & 11656 & 11657 & 11658 & 11659 \\
\hline 367 & 11660 & 11661 & 11662 & 11664 & 11665 & 11666 & 11667 & 11668 & 11669 \\
\hline 368 & 11670 & 11671 & 11672 & 11674 & 11675 & 11676 & 11677 & 11678 & 11679 \\
\hline 369 & 11680 & 11681 & 11682 & 11684 & 11685 & 11686 & 11687 & 11688 & 11689 \\
\hline 370 & 11690 & 11691 & 11692 & 11694 & 11695 & 11696 & 697 & 698 & 9 \\
\hline 371 & 11700 & 11701 & 11702 & 11704 & 1170 & 11706 & 11707 & 708 & 11709 \\
\hline 372 & 11710 & 11711 & 11712 & 11714 & 11715 & 11716 & 11717 & 11718 & 11719 \\
\hline 373 & 11720 & 11721 & 11722 & 11724 & 11725 & 11726 & 11727 & 11728 & 11729 \\
\hline 374 & 11730 & 11731 & 11732 & 11734 & 11735 & 11736 & 11737 & 11738 & 11739 \\
\hline 375 & 11740 & 11741 & 11742 & 11744 & 11745 & 11746 & 11747 & 11748 & 11749 \\
\hline 376 & 11750 & 11751 & 11752 & 11754 & 11755 & 11756 & 11757 & 11758 & 11759 \\
\hline 377 & 11760 & 11761 & 11762 & 11764 & 11765 & 11766 & 11767 & 11768 & 11769 \\
\hline 378 & 11770 & 11771 & 11772 & 11774 & 11775 & 11776 & 11777 & 11778 & 11779 \\
\hline 379 & 11780 & 11781 & 11782 & 11784 & 11785 & 11786 & 11787 & 11788 & 9 \\
\hline 380 & 11790 & 11791 & 11792 & 11794 & 11795 & 11796 & 11797 & 11798 & 9 \\
\hline 381 & 11800 & 11801 & 11802 & 11804 & 11805 & 11806 & 11807 & 11808 & 1180 \\
\hline 382 & 11810 & 11811 & 11812 & 11814 & 11815 & 11816 & 11817 & 11818 & 11819 \\
\hline 383 & 11820 & 11821 & 11822 & 11824 & 11825 & 11826 & 11827 & 11828 & 11829 \\
\hline 38 & 11830 & 11831 & 11832 & 11834 & 11835 & 11836 & 11837 & 11838 & 39 \\
\hline 385 & 11840 & 11841 & 11842 & 11844 & 11845 & 11846 & 11847 & 11848 & 11849 \\
\hline 386 & 11850 & 11851 & 11852 & 11854 & 11855 & 11856 & 11857 & 11858 & 9 \\
\hline 387 & 11860 & 11861 & 11862 & 11864 & 11865 & 11866 & 11867 & 11868 & 11869 \\
\hline 388 & 11870 & 11871 & 11872 & 11874 & 11875 & 11876 & 11877 & 11878 & 11879 \\
\hline 389 & 11880 & 11881 & 11882 & 11884 & 11885 & 11886 & 11887 & 11888 & 11889 \\
\hline 390 & 11890 & 11891 & 11892 & 11894 & 11895 & 11896 & 11897 & 11898 & 11899 \\
\hline 391 & 11900 & 11901 & 11902 & 11904 & 11905 & 11906 & 11907 & 11908 & 119 \\
\hline 392 & 11910 & 11911 & 11912 & 11914 & 11915 & 11916 & 11917 & 11918 & 11919 \\
\hline 393 & 11920 & 11921 & 11922 & 11924 & 11925 & 11926 & 11927 & 11928 & 11929 \\
\hline 394 & 11930 & 11931 & 11932 & 11934 & 11935 & 11936 & 11937 & 11938 & 11939 \\
\hline 395 & 11940 & 11941 & 11942 & 11944 & 11945 & 11946 & 11947 & 11948 & 11949 \\
\hline 396 & 11950 & 11951 & 11952 & 11954 & 11955 & 11956 & 11957 & 11958 & 11959 \\
\hline 397 & 11960 & 11961 & 11962 & 11964 & 11965 & 11966 & 11967 & 11968 & 11969 \\
\hline 398 & 11970 & 11971 & 11972 & 11974 & 11975 & 11976 & 11977 & 11978 & 11979 \\
\hline 399 & 11980 & 11981 & 11982 & 11984 & 11985 & 11986 & 11987 & 11988 & 11989 \\
\hline 400 & 11990 & 11991 & 11992 & 11994 & 11995 & 11996 & 11997 & 11998 & 11999 \\
\hline
\end{tabular}

\section*{(2) For axis 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|r|}{Arc data} & \multirow[b]{2}{*}{\[
\begin{array}{|l|l|}
\hline \text { Data } \\
\text { No. }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{array}{|l|}
\hline \text { Dwell } \\
\text { time }
\end{array}
\]} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|r|}{Arc data} \\
\hline No. & & code & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { High- } \\
\text { order }
\end{array}\right. \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & & & & & \[
\begin{array}{|l|}
\hline \text { Sow- } \\
\text { Lorder } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { High- } \\
\text { order }
\end{array}\right. \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { Low- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] \\
\hline 401 & 12000 & 12001 & 12 & 12004 & 12005 & 12006 & 12007 & 12008 & 12009 & 451 & 12500 & 12501 & 12502 & 12504 & 12505 & 12506 & 12507 & 12508 & 12509 \\
\hline 402 & 12010 & 12011 & 12012 & 12014 & 12015 & 12016 & 12017 & & 12019 & & 12510 & 12511 & 12512 & 12514 & 12515 & 12516 & 12517 & 12518 & 12519 \\
\hline 403 & 12020 & 12021 & 12022 & 12024 & 12025 & 12026 & 12027 & 12028 & 12029 & 53 & 12520 & 12521 & 12522 & 12524 & 12525 & 12526 & 12527 & 12528 & 12529 \\
\hline 404 & 12030 & 12031 & 12032 & 12034 & 12035 & 12036 & 12037 & 12038 & 12039 & 454 & 12530 & 12531 & 12532 & 12534 & 12535 & 12536 & 12537 & 12538 & 12539 \\
\hline 405 & 12040 & 12041 & 12042 & 12044 & 12045 & 12046 & 12047 & 12048 & 12049 & 455 & 12540 & 12541 & 12542 & 544 & 12545 & 12546 & 12547 & 12548 & 12549 \\
\hline 406 & 12050 & 12051 & 12052 & 12054 & 12055 & 12056 & 12057 & 12058 & 12059 & 456 & 12550 & 12551 & 12552 & 12554 & 12555 & 12556 & 12557 & 12558 & 12559 \\
\hline 407 & 12060 & 12061 & 12062 & 12 & 12065 & 12066 & 12067 & 12068 & 1206 & 45 & 12560 & 12561 & 12562 & 12564 & 12565 & 12566 & 12567 & 12568 & 12569 \\
\hline 408 & 12 & 120 & 120 & 12 & 120 & 12076 & 120 & 12078 & 12079 & 458 & 12570 & 12571 & 2 & 12574 & 12575 & 12576 & 12577 & 8 & 12579 \\
\hline 409 & 12080 & 12081 & 12082 & 12084 & 12085 & 12086 & 12087 & & & 459 & 12580 & 12581 & 12582 & 12584 & 12585 & 12586 & 12587 & 12588 & \\
\hline 410 & 12090 & 12091 & 12092 & 12094 & 12095 & 12096 & 12097 & 12098 & 12099 & 460 & 12590 & 12591 & 12592 & 12594 & 12595 & 12596 & 12597 & 12598 & \\
\hline 411 & 12100 & 12101 & 12102 & 12104 & 12105 & 12106 & 12107 & 12108 & 12109 & 461 & 12600 & 12601 & 12602 & 12604 & 12605 & 12606 & 12607 & 12608 & \\
\hline 41 & 12110 & 12111 & 12112 & 12114 & 12115 & 12116 & 12117 & 12118 & 12119 & 462 & 12610 & 12611 & 12612 & 12614 & 12615 & 12616 & 12617 & 12618 & 12619 \\
\hline 41 & 12120 & 12121 & 12122 & 12124 & 12125 & 12126 & 12127 & 12128 & 12129 & 46 & 12620 & 12621 & 12622 & 12624 & 12625 & 12626 & 12627 & 12628 & 12629 \\
\hline 414 & 12130 & 12131 & 12132 & & 12135 & 12136 & 12137 & & 121 & 46 & 12630 & 12631 & 12632 & 12634 & 12635 & 12636 & 12637 & 12638 & \\
\hline 415 & 12140 & 141 & 142 & 121 & 12145 & 12146 & 121 & 12148 & & 46 & 2640 & 1264 & 12642 & 12644 & 1264 & 264 & 1264 & 12648 & \\
\hline 41 & 12150 & 12151 & 12152 & 12154 & 12155 & 12156 & 12157 & & & & & & & & 12655 & 12656 & & & \\
\hline 417 & & 12161 & & & & & & & & & & & & & 12665 & 12666 & & & \\
\hline 418 & 12170 & 12171 & 12172 & & 12175 & & & & 1217 & & & & 12672 & 12674 & 12675 & 12676 & 12677 & 12678 & 12679 \\
\hline 41 & 12180 & 12181 & 12182 & & 12185 & 12186 & 12187 & & 12189 & 46 & 12680 & & 12682 & 12684 & 12685 & 12686 & 12687 & 12688 & 12689 \\
\hline 420 & 12190 & 12191 & 12 & 12 & 12195 & 12196 & 12197 & 12198 & 1219 & 470 & 12690 & 12691 & 12692 & 12694 & 12695 & 12696 & 12697 & 12698 & \\
\hline 42 & 12200 & 12201 & 12202 & 12204 & 12205 & 12206 & 12207 & & 1220 & & 12700 & 12701 & 12702 & 12704 & 12705 & 12706 & 12707 & 12708 & 12709 \\
\hline 422 & 1221 & 12211 & 12212 & 12214 & 12215 & 12216 & 12217 & 12218 & 122 & & 12710 & 12711 & 12712 & 12714 & 12715 & 12716 & 12717 & 12718 & 12719 \\
\hline 423 & & 12221 & & & & & & & & & & & & & 12725 & & & & \\
\hline 42 & & 12231 & & & & 12236 & & & & & & & & 12734 & 12735 & 12736 & & & \\
\hline 425 & 1224 & 12241 & 1224 & 12244 & 12245 & 12246 & 12247 & 12248 & 1224 & 475 & 12740 & 12741 & 12742 & 12744 & 12745 & 12746 & 12747 & 12748 & \\
\hline 426 & & 12251 & 12252 & & & 12256 & 12257 & & & & & & & & 12755 & 12756 & & & 12759 \\
\hline 427 & 1226 & 12261 & 12262 & 12264 & 1226 & 12266 & 12267 & & 1226 & & 12760 & 12761 & 12762 & 12764 & 12765 & 12766 & 12767 & 12768 & 12769 \\
\hline 428 & 12270 & 12 & 122 & 12274 & 12275 & 12276 & 12277 & 12278 & 12279 & 478 & 12770 & 12771 & 12772 & 12774 & 12775 & 12776 & 12777 & 12778 & 12779 \\
\hline 429 & & & & & & & & & & & & & & & & & & & 12789 \\
\hline 430 & 12290 & 12291 & 12292 & 12294 & 12295 & 12296 & 12297 & & & 480 & 12790 & 12791 & 127 & 12794 & 12795 & 12796 & 12797 & 12798 & \\
\hline 43 & & & & & & & & & & & & & & & & & & & \\
\hline 432 & 1231 & 12 & 12312 & & 123 & 12316 & 12317 & & & 48 & & & 2 & 12814 & 12815 & 12816 & 12817 & 12818 & 12819 \\
\hline 433 & 1232 & 12321 & 12322 & 12324 & 12325 & 12326 & 12327 & 12328 & 12329 & 48 & 1282 & 12821 & 2 & 12824 & 12825 & 12826 & 12827 & 12828 & 12829 \\
\hline 434 & & 12331 & & & & & & & 1233 & 48 & 12830 & & 12832 & 12834 & 12835 & 12836 & 12837 & 12838 & 12839 \\
\hline 435 & 12340 & 12341 & 12342 & 12344 & 12345 & 12346 & 12347 & 12348 & 12349 & 485 & 12840 & 12841 & 12842 & 12844 & 385 & 12846 & 12847 & 12848 & 12849 \\
\hline 436 & & & & & & & & & & & & & & & & & & 858 & 12859 \\
\hline 437 & & & & & & & & & & 48 & & & & 12864 & 12865 & & & & \\
\hline 438 & & 12 & & & & 12376 & & & & 48 & & & 2 & 12874 & 12875 & 12876 & 12877 & 12878 & 12879 \\
\hline 439 & & 123 & & & & & & & & 48 & 12880 & & 12882 & 12884 & 12885 & 12886 & 12887 & 12888 & \\
\hline 440 & 12390 & 12391 & 12392 & 394 & 12395 & 12396 & 12397 & 12398 & 12399 & 490 & 12890 & 12891 & 128 & 128 & 12895 & 12896 & 12897 & 12898 & 12899 \\
\hline 441 & & & & & & & & & 12409 & & & & & 12904 & 12905 & & & 12908 & 12909 \\
\hline 442 & & 12411 & 12412 & & 12415 & 12416 & & & 12419 & 492 & & & 12912 & 12914 & 12915 & 12916 & 12917 & 12918 & 12919 \\
\hline 443 & 12420 & 12421 & 12422 & & 12425 & & & & 12429 & & & & 12922 & 12924 & 12925 & 12926 & 12927 & 12928 &  \\
\hline 444 & & 12431 & 12432 & & & 12436 & 12437 & & 12439 & 494 & & & 12932 & & & 12936 & & & 12939 \\
\hline 445 & 12440 & 12441 & 12442 & 12444 & 12445 & 12446 & 12447 & 12448 & 124 & 495 & 12940 & 12941 & 12942 & 12944 & 12945 & 12946 & 12947 & 12948 & 12949 \\
\hline 446 & & & & & & & & & & & & & & & 12955 & & & & 12959 \\
\hline 447 & & 12461 & 12462 & & 12465 & 12466 & 12467 & & 12469 & 49 & 12960 & 12961 & 12962 & 12964 & 12965 & 12966 & 12967 & 12968 & 12969 \\
\hline 448 & 12470 & 12471 & 12472 & & 12475 & 12476 & 12477 & & 12479 & 498 & 12970 & 12971 & 12972 & 12974 & 12975 & 12976 & 12977 & 12978 & 12979 \\
\hline 449 & 12480 & 12481 & 12 & 12484 & 12 & 12486 & 12 & 12488 & 12 & 499 & 12980 & 12981 & 12982 & 29 & 1298 & 129 & 12987 & 12988 & 129 \\
\hline 450 & 12490 & 12491 & 12492 & 12494 & 12495 & 12496 & 12497 & 12498 & 124 & 500 & 12990 & 12991 & 12992 & 12994 & 12995 & 12996 & 12997 & 12998 & 12999 \\
\hline
\end{tabular}

\section*{(2) For axis 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} & \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & & & & & & & & & High-
order & & Highorder & & Highorder \\
\hline 501 & 13000 & 13 & 13002 & 13004 & 13005 & 06 & 07 & 08 & 13009 & & 00 & 13501 & 502 & 504 & 13505 & 13506 & 13507 & 13508 & 13509 \\
\hline 502 & 130 & 130 & 130 & 13014 & 13015 & 6 & 1 & 8 & 13019 & 552 & 13510 & 13 & 135 & 514 & 13515 & 13516 & 13517 & 13518 & 13519 \\
\hline 503 & 13 & 13 & 13 & 13 & 13 & 13026 & 13 & 13028 & 13 & 553 & 13520 & 1352 & 13522 & 13524 & 13525 & 13526 & 13527 & 13528 & 13529 \\
\hline 504 & 13 & 13 & 13 & 13 & 13035 & 13036 & 13037 & 13038 & 1303 & 554 & 13530 & 13531 & 13532 & 13534 & 13535 & 13536 & 13537 & 13538 & 13539 \\
\hline 505 & 13040 & 13041 & 13042 & 13044 & 13045 & 13046 & 13047 & 13048 & 130 & 555 & 13540 & 13541 & 13542 & 13544 & 13545 & 13546 & 13547 & 13548 & 13549 \\
\hline 50 & 13 & 13 & 13 & 13054 & 13055 & 13056 & 13057 & 8 & 13059 & 556 & 13550 & 13 & 13 & 54 & 5 & 6 & 7 & 8 & 13559 \\
\hline 50 & 130 & 130 & 130 & 13 & 13 & 13066 & 13 & 13068 & 13 & 557 & 13560 & 13 & 135 & 13564 & 13565 & 13566 & 13567 & 13568 & 9 \\
\hline 50 & 13070 & 13 & 130 & 13 & 13 & 13 & 13 & 13078 & 13 & 558 & 0 & 13571 & 13572 & 13574 & 13575 & 13576 & 13577 & 13578 & 13579 \\
\hline 50 & 13 & 13 & 13 & 13 & 13085 & 13086 & 13087 & 13088 & 13089 & 55 & 580 & 13581 & 13582 & 13584 & 13585 & 13586 & 13587 & 13588 & 13589 \\
\hline 510 & 13090 & 13091 & 13092 & 13094 & 13095 & 13096 & 13097 & 13098 & 130 & 560 & 13590 & 13591 & 13592 & 13594 & 13595 & 13596 & 13597 & 13598 & 13599 \\
\hline 511 & 13100 & 13 & 13 & 13104 & 13105 & 13106 & & & & & 0 & 13601 & 13602 & 4 & 05 & 06 & 07 & 8 & \\
\hline 512 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13118 & 13 & 562 & 13610 & 13 & 13612 & 13614 & 13615 & 13616 & 13617 & 13618 & 13619 \\
\hline 513 & 13 & 13 & 13 & 13 & 13125 & 13126 & 1 & 8 & 13129 & 563 & 13620 & 13621 & 13 & 13624 & 25 & 26 & 27 & 628 & 13629 \\
\hline 51 & 13 & 13 & 13 & 13 & 13 & 13 & 13137 & 13 & 13139 & 564 & 13630 & 13631 & 13632 & 13634 & 5 & 36 & 637 & 38 & 13639 \\
\hline 515 & 13140 & 13141 & 13142 & 131 & 13145 & 13146 & 13147 & 13148 & 13 & 565 & 640 & 13641 & 13642 & 13644 & 13645 & 13646 & 13647 & 13648 & 13 \\
\hline 51 & & & & & & & & & & 566 & & & 13652 & 13654 & 5 & 13656 & 13657 & 8 & \\
\hline 517 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13168 & 13 & 567 & 13 & 13 & 13662 & 13664 & 13665 & 13666 & 13667 & 13668 & 13669 \\
\hline 518 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13178 & 13 & 568 & 13670 & 13 & 13 & 13 & 13 & 13676 & 13677 & 13678 & 13679 \\
\hline 51 & & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 569 & 13680 & 13681 & 13 & 13 & 13685 & 6 & 7 & 888 & 89 \\
\hline 520 & 13 & 13 & & & & & & & & 570 & 690 & 13691 & 13692 & 13694 & 13695 & 13696 & 13697 & 13698 & 13 \\
\hline 521 & 13 & 13 & & & & & & & & & & & & & & 13706 & 13707 & & \\
\hline 52 & 13 & 132 & 13 & 13 & 13 & 13 & 13 & 13218 & 13 & 572 & 13710 & 13711 & 13712 & 13714 & 5 & 6 & 17 & 18 & 13719 \\
\hline 52 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13228 & 13 & 573 & 13720 & 13721 & 13722 & 13724 & 13725 & 13726 & 13727 & 8 & 13729 \\
\hline 52 & 13 & 13 & 13 & 13 & 13 & 13236 & 13 & 13238 & 13 & & 13730 & 13 & 13732 & 137 & 13735 & 1373 & 13737 & 13738 & 9 \\
\hline 525 & 132 & 132 & 13 & 13 & 13 & 13 & 13 & 13248 & 13249 & 575 & 13740 & 13741 & 13742 & 13744 & 13745 & 13746 & 13747 & 13748 & 13749 \\
\hline & & & & & & & & & & & & & & & & & & & \\
\hline 527 & 13 & 13 & 13 & 13 & 13 & 13266 & 13267 & 13268 & 13269 & 577 & 13760 & 13761 & 13762 & 13764 & 13765 & 13766 & 13767 & 13768 & 9 \\
\hline 52 & & 13 & 13272 & 13 & 13275 & 13276 & 13277 & 13278 & 13279 & 578 & & 13771 & 13772 & 13774 & 13775 & 13776 & 13777 & 13778 & \\
\hline 52 & & 13 & 13 & 13 & & 13 & 13 & 13288 & 13 & 57 & & 13 & 13782 & 13784 & 13785 & 13786 & 13787 & 13788 & 89 \\
\hline 530 & 132 & 1329 & 13 & 13 & 13 & 13 & 13 & 13298 & 13 & 58 & 13790 & 13 & 13792 & 13794 & 13795 & 13796 & 13797 & 13798 & 13799 \\
\hline 531 & & & & & & & & & & & & & & & & & & 13808 & \\
\hline 532 & & 13 & & & & & & & 1 & 582 & & & 13812 & 13814 & 13815 & 13816 & 13817 & 8 & \\
\hline 53 & 13 & 13 & & 13 & 13 & 13 & 13 & 13328 & 13 & 58 & 13820 & 13821 & 13 & 13 & 13 & 13826 & 13827 & 13828 & 13829 \\
\hline 53 & 13 & & & & & & & & & 584 & & & 13 & & & 13836 & 37 & 838 & 9 \\
\hline 535 & 133 & 1334 & 13 & 13 & 13 & 13346 & 13347 & 8 & 13 & 585 & 13840 & 13 & 13 & 13844 & 13845 & 13846 & 13847 & 13848 & 13849 \\
\hline 536 & & & & & & & & & & & & & & & & & & 13858 & 9 \\
\hline 53 & 133 & 1336 & 13 & 13 & 13 & 1336 & 13 & 13368 & 13 & 58 & & 13 & 13 & 138 & 13 & 138 & 1386 & 1386 & 138 \\
\hline 538 & & 133 & 13 & 13374 & 13375 & 13376 & 13377 & 13378 & 13 & 58 & 13870 & 13871 & 13872 & 13874 & 13875 & 13876 & 13877 & 13878 & 13879 \\
\hline 539 & & 13 & 13 & 13 & & 13386 & 13387 & 13388 & 13 & 58 & 13880 & 13 & 13882 & 13 & 13885 & 13886 & 87 & 888 & 9 \\
\hline 540 & 13390 & 13391 & 13392 & 13394 & 13395 & 13396 & 13 & 13398 & 13 & 590 & 13890 & 13891 & 13892 & 13894 & 13895 & 13896 & 13897 & 13898 & 13899 \\
\hline & & & & & & & & & & & & & & & & 13906 & 13907 & 98 & \\
\hline & & 13 & & & & & 13 & 13418 & 13 & 59 & 13910 & 139 & 13912 & 13914 & 13915 & 13916 & 13917 & 13918 & 13919 \\
\hline 54 & 13 & 134 & 13 & 13 & 13425 & 13426 & 13 & 13428 & 13 & 59 & 13920 & 13921 & 1392 & 1392 & 13925 & 13926 & 13927 & 13928 & 13929 \\
\hline 544 & & 13 & 13 & 13 & 13435 & 13436 & 13 & & 13 & 5 & 13930 & 13 & 13 & 13 & 13935 & 13936 & 13937 & 13938 & 13939 \\
\hline 545 & 13440 & 13441 & 13442 & 13444 & 13445 & 13446 & 13447 & 13448 & 13 & 59 & 13940 & 13941 & 13942 & 13944 & 13945 & 13946 & 13947 & 13948 & 13949 \\
\hline & & & & & & & & & & 596 & & & & 13954 & & 13956 & 13957 & 13958 & \\
\hline 547 & 13 & 13 & 13 & & & 13466 & 13 & 13468 & 13 & 59 & 13960 & 13961 & 13962 & 13964 & 13965 & 13966 & 13967 & 13968 & 13969 \\
\hline 54 & 13470 & 13 & 13 & & & 13 & 13 & & 13 & 59 & 13970 & 13 & 13 & 13 & 139 & 13976 & 13977 & 13978 & 13979 \\
\hline 549 & 13480 & 13481 & 13482 & 13484 & 13485 & 13486 & 13487 & 13488 & 1348 & 599 & 13980 & 13981 & 13982 & 13984 & 13985 & 13986 & 13987 & 13988 & 13989 \\
\hline 550 & 13490 & 13491 & 13492 & 13494 & 13495 & 13496 & 13497 & 13498 & 13499 & 600 & 13990 & 13991 & 13992 & 13994 & 13995 & 13996 & 13997 & 13998 & 13999 \\
\hline
\end{tabular}

\section*{(3) For axis 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & Highorder & Loworder & High-
order & Loworder & Highorder \\
\hline 1 & 14000 & 14001 & 14002 & 14004 & 14005 & 14006 & 14007 & 14008 & 14009 \\
\hline 2 & 14010 & 14011 & 14012 & 14014 & 14015 & 14016 & 14017 & 14018 & 14019 \\
\hline 3 & 14020 & 14021 & 14022 & 14024 & 14025 & 14026 & 14027 & 14028 & 14029 \\
\hline 4 & 14030 & 14031 & 14032 & 14034 & 14035 & 14036 & 14037 & 14038 & 14039 \\
\hline 5 & 14040 & 14041 & 14042 & 14044 & 14045 & 14046 & 14047 & 14048 & 14049 \\
\hline 6 & 14050 & 14051 & 14052 & 14054 & 14055 & 14056 & 14057 & 14058 & 14059 \\
\hline 7 & 14060 & 14061 & 14062 & 14064 & 14065 & 14066 & 14067 & 14068 & 14069 \\
\hline 8 & 14070 & 14071 & 14072 & 14074 & 14075 & 14076 & 14077 & 14078 & 14079 \\
\hline 9 & 14080 & 14081 & 14082 & 14084 & 14085 & 14086 & 14087 & 14088 & 14089 \\
\hline 10 & 14090 & 14091 & 14092 & 14094 & 14095 & 14096 & 14097 & 14098 & 14099 \\
\hline 11 & 14100 & 14101 & 14102 & 14104 & 14105 & 14106 & 14107 & 14108 & 14109 \\
\hline 12 & 14110 & 14111 & 14112 & 14114 & 14115 & 14116 & 14117 & 14118 & 14119 \\
\hline 13 & 14120 & 14121 & 14122 & 14124 & 14125 & 14126 & 14127 & 14128 & 14129 \\
\hline 14 & 14130 & 14131 & 14132 & 14134 & 14135 & 14136 & 14137 & 14138 & 14139 \\
\hline 15 & 14140 & 14141 & 14142 & 14144 & 14145 & 14146 & 14147 & 14148 & 14149 \\
\hline 16 & 14150 & 14151 & 14152 & 14154 & 14155 & 14156 & 14157 & 14158 & 14159 \\
\hline 17 & 14160 & 14161 & 14162 & 14164 & 14165 & 14166 & 14167 & 14168 & 14169 \\
\hline 18 & 14170 & 14171 & 14172 & 14174 & 14175 & 14176 & 14177 & 14178 & 14179 \\
\hline 19 & 14180 & 14181 & 14182 & 14184 & 14185 & 14186 & 14187 & 14188 & 14189 \\
\hline 20 & 14190 & 14191 & 14192 & 14194 & 14195 & 14196 & 14197 & 14198 & 14199 \\
\hline 21 & 14200 & 14201 & 14202 & 14204 & 14205 & 14206 & 14207 & 14208 & 14209 \\
\hline 22 & 14210 & 14211 & 14212 & 14214 & 14215 & 14216 & 14217 & 14218 & 14219 \\
\hline 23 & 14220 & 14221 & 14222 & 14224 & 14225 & 14226 & 14227 & 14228 & 14229 \\
\hline 24 & 14230 & 14231 & 14232 & 14234 & 14235 & 14236 & 14237 & 14238 & 14239 \\
\hline 25 & 14240 & 14241 & 14242 & 14244 & 14245 & 14246 & 14247 & 14248 & 14249 \\
\hline 26 & 14250 & 14251 & 14252 & 14254 & 14255 & 14256 & 14257 & 14258 & 14259 \\
\hline 27 & 14260 & 14261 & 14262 & 14264 & 14265 & 14266 & 14267 & 14268 & 14269 \\
\hline 28 & 14270 & 14271 & 14272 & 14274 & 14275 & 14276 & 14277 & 14278 & 14279 \\
\hline 29 & 14280 & 14281 & 14282 & 14284 & 14285 & 14286 & 14287 & 14288 & 14289 \\
\hline 30 & 14290 & 14291 & 14292 & 14294 & 14295 & 14296 & 14297 & 14298 & 14299 \\
\hline 31 & 14300 & 14301 & 14302 & 14304 & 14305 & 14306 & 14307 & 14308 & 14309 \\
\hline 32 & 14310 & 14311 & 14312 & 14314 & 14315 & 14316 & 14317 & 14318 & 14319 \\
\hline 33 & 14320 & 14321 & 14322 & 14324 & 14325 & 14326 & 14327 & 14328 & 14329 \\
\hline 34 & 14330 & 14331 & 14332 & 14334 & 14335 & 14336 & 14337 & 14338 & 14339 \\
\hline 35 & 14340 & 14341 & 14342 & 14344 & 14345 & 14346 & 14347 & 14348 & 14349 \\
\hline 36 & 14350 & 14351 & 14352 & 14354 & 14355 & 14356 & 14357 & 14358 & 14359 \\
\hline 37 & 14360 & 14361 & 14362 & 14364 & 14365 & 14366 & 14367 & 14368 & 14369 \\
\hline 38 & 14370 & 1437 & 14372 & 14374 & 14375 & 14376 & 14377 & 14378 & 14379 \\
\hline 39 & 14380 & 14381 & 14382 & 14384 & 14385 & 14386 & 14387 & 14388 & 14389 \\
\hline 40 & 14390 & 14391 & 14392 & 14394 & 14395 & 14396 & 14397 & 14398 & 14399 \\
\hline 41 & 14400 & 14401 & 14402 & 14404 & 14405 & 14406 & 14407 & 14408 & 14409 \\
\hline 42 & 14410 & 14411 & 14412 & 14414 & 14415 & 14416 & 14417 & 14418 & 14419 \\
\hline 43 & 14420 & 14421 & 14422 & 14424 & 14425 & 14426 & 14427 & 14428 & 14429 \\
\hline 44 & 14430 & 14431 & 14432 & 14434 & 14435 & 14436 & 14437 & 14438 & 14439 \\
\hline 45 & 14440 & 14441 & 14442 & 14444 & 14445 & 14446 & 14447 & 14448 & 14449 \\
\hline 46 & 14450 & 14451 & 14452 & 14454 & 14455 & 14456 & 14457 & 14458 & 14459 \\
\hline 47 & 14460 & 14461 & 14462 & 14464 & 14465 & 14466 & 14467 & 14468 & 14469 \\
\hline 48 & 14470 & 14471 & 14472 & 14474 & 14475 & 14476 & 14477 & 14478 & 14479 \\
\hline 49 & 14480 & 14481 & 14482 & 14484 & 14485 & 14486 & 14487 & 14488 & 14489 \\
\hline 50 & 14490 & 14491 & 14492 & 14494 & 14495 & 14496 & 14497 & 14498 & 14499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{array}{|l|l}
\text { Data } \\
\text { No. }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \begin{array}{c}
\text { tosi- } \\
\text { tioning } \\
\text { identi- }
\end{array} \\
\text { ffier }
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { M } \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Low-
order & \[
\left\lvert\, \begin{aligned}
& \text { High- } \\
& \text { Order }
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}\right.
\] & Highorder & \[
\begin{array}{|l|l|}
\hline \text { Low- } \\
\text { ordder }
\end{array}
\] & Highorder \\
\hline 51 & 14500 & 14501 & 14502 & 14504 & 14505 & 14506 & 14507 & 14508 & 14509 \\
\hline 52 & & 14511 & 14512 & 14514 & 14515 & 14516 & 14517 & 14518 & 14519 \\
\hline 53 & 14520 & 14 & 14522 & 14524 & 14525 & 14526 & 14527 & 28 & \\
\hline 54 & 14530 & 14531 & 14532 & 14534 & 14535 & 14536 & 14537 & 14538 & \\
\hline 55 & 14540 & 14541 & 145 & 14544 & 145 & 14546 & 14547 & 48 & \\
\hline 56 & 14550 & 14551 & 1455 & 14554 & 14555 & 14556 & 14557 & 14558 & \\
\hline 57 & 14560 & 14561 & 14 & 14564 & 14565 & 14566 & 14567 & 14568 & 14569 \\
\hline 58 & 14570 & 14571 & 14572 & 14574 & 14575 & 14576 & 14577 & 14578 & \\
\hline 59 & & 14581 & 14582 & 14584 & 14585 & 14586 & 14587 & 14588 & \\
\hline 60 & 14590 & 14591 & 14592 & 14594 & 14595 & 14596 & 14597 & 14598 & \\
\hline 61 & 14600 & 14 & 14602 & 14604 & 146 & 14606 & 14607 & 14608 & \\
\hline 62 & 14610 & 14 & 14612 & 14 & 15 & 14616 & 14617 & 14618 & \\
\hline 63 & 14620 & 14621 & 14 & 1462 & 14625 & 14626 & 14627 & 14628 & \\
\hline 64 & 14630 & 14631 & 14632 & 14634 & 14635 & 14636 & 14637 & 14638 & \\
\hline 65 & 14640 & 14641 & 14642 & 14644 & 14645 & 14646 & 14647 & 14648 & \\
\hline 66 & 14650 & 14651 & 14652 & 14654 & 14655 & 14656 & 14657 & 14658 & \\
\hline 67 & 14660 & 146 & 14 & 146 & 14 & 14666 & 14667 & 14668 & 14669 \\
\hline 68 & 14670 & 14 & 14672 & 146 & 14 & 14676 & 14677 & 14678 & \\
\hline 69 & 14680 & 14681 & 14682 & 14684 & 14685 & 14686 & 14687 & 14688 & \\
\hline 70 & 90 & 14691 & 14692 & 14694 & 14695 & 14696 & 14697 & & \\
\hline 71 & & 14701 & 14702 & 14704 & 14705 & & & & \\
\hline 72 & 14710 & 14711 & 14712 & 14 & 14715 & 14716 & 14717 & 14718 & \\
\hline 73 & & 14 & 14 & 14 & 14725 & 14726 & 14727 & 14728 & \\
\hline 74 & & 14 & 14732 & 14 & 14735 & 14736 & 14737 & 14738 & \\
\hline 75 & 14740 & 14741 & 42 & 14744 & 1474 & 147 & 14747 & 14748 & \\
\hline 76 & 14750 & 147 & 14 & 14754 & 14755 & 147 & 14757 & 14758 & \\
\hline 77 & & 14761 & 14762 & 14764 & & & 14767 & & \\
\hline 78 & & 14 & 72 & 74 & 14775 & 14776 & 14777 & 14778 & \\
\hline 79 & & 14781 & 14782 & 14784 & & & 14787 & 14788 & \\
\hline 80 & 14790 & 14791 & 14792 & 14794 & 14795 & 14796 & 14797 & 14798 & \\
\hline 81 & & 14801 & 14802 & 14804 & 14805 & 14806 & 14807 & 14808 & \\
\hline 82 & 14810 & 14 & 14812 & 14814 & 14815 & 14816 & 14817 & 14818 & 14819 \\
\hline 83 & & 14 & 14822 & 14824 & 14825 & 14826 & 14827 & 14828 & \\
\hline 84 & & & & 14834 & & & 14837 & 14838 & \\
\hline 85 & 14840 & 14841 & 退 & 14844 & 14845 & 14846 & 14847 & 148 & \\
\hline 86 & & & 52 & 54 & 55 & & 57 & 14858 & \\
\hline 87 & 14860 & 14 & 148 & 1486 & 65 & 14866 & 14867 & 14868 & \\
\hline 88 & 14870 & 14 & 14872 & 14874 & 14875 & 14876 & 14877 & 14878 & 14879 \\
\hline 89 & & 14881 & 14882 & 14884 & 14885 & 14886 & 14887 & 14888 & 488 \\
\hline 90 & 14890 & 14891 & 14892 & 14894 & 14895 & 14896 & 14897 & 14898 & 14899 \\
\hline 91 & & 14901 & 14902 & 14904 & 14905 & 14906 & 14907 & 14908 & 仡 \\
\hline 92 & & 14 & 12 & 14914 & 14915 & 14916 & 14917 & 14918 & \\
\hline 93 & & 14 & 14922 & 14924 & 14925 & 14926 & 1492 & 14928 & \\
\hline 94 & & 14931 & 14932 & 14934 & 14935 & 14936 & 14937 & 14938 & \\
\hline 95 & 14940 & 14 & 14942 & 14944 & 14945 & 14946 & 14947 & 14948 & \\
\hline 96 & & 14951 & 14952 & 14954 & 14955 & 14956 & 14957 & 14958 & \\
\hline 97 & 14960 & 14 & 14962 & 14964 & 1496 & 14966 & 149 & 14968 & 14969 \\
\hline 98 & 14970 & 149 & 14972 & 14974 & 149 & 14976 & 1497 & 149 & 14979 \\
\hline 99 & 14980 & 14981 & 82 & 984 & 14985 & 14986 & 14987 & 14988 & 14989 \\
\hline 100 & 14990 & 14991 & 14992 & 14994 & 14995 & 14996 & 14997 & 4998 & \\
\hline
\end{tabular}
(3) For axis 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Command } \\
\text { speed }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} & \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline No. & & code & & Loworder & Highorder & Loworder & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & & & & Loworder & Highorder & & Highorder & Loworder & Highorder \\
\hline 10 & 15000 & 150 & 1500 & 15004 & 15005 & 15006 & 15007 & 08 & 15009 & & 500 & 15501 & 2 & 504 & 505 & 15506 & 507 & 15508 & 15509 \\
\hline 102 & 150 & 150 & 150 & 15 & 15 & 1501 & 1501 & 15 & 15 & 152 & 15510 & 15 & 155 & 1551 & 15515 & 15516 & 15517 & 15518 & 15519 \\
\hline 103 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15028 & 1502 & 153 & 15520 & 15521 & 155 & 15524 & 15525 & 15526 & 15527 & 15528 & 29 \\
\hline 104 & 15 & 15 & 15 & 15 & 15 & 15 & 1503 & 15038 & 15 & 154 & 15 & 155 & 15532 & 15534 & 15535 & 15536 & 15537 & 15538 & 15539 \\
\hline 105 & 15040 & 15041 & 15042 & 15044 & 15045 & 15046 & 15047 & 15048 & 1504 & 155 & 15540 & 15541 & 15542 & 15544 & 15545 & 15546 & 15547 & 15548 & 15549 \\
\hline 106 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15058 & 15 & 156 & 15550 & 15 & 2 & 15554 & 5 & 15556 & 15557 & 58 & 59 \\
\hline 107 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15068 & 15069 & 157 & 15560 & 15561 & 15 & 15 & 15565 & 15566 & 15567 & 15568 & 69 \\
\hline 108 & 150 & 15 & 15 & 15 & 15 & 15 & 1507 & 15078 & 15 & 158 & 15 & 15 & 15572 & 15 & 15575 & 15576 & 15577 & 15578 & 7 \\
\hline 109 & 150 & 15 & 15 & 15 & 15 & 15 & 1508 & 15088 & 15089 & 15 & 15580 & 15 & 15582 & 15584 & 85 & 15586 & 15587 & 15588 & 15589 \\
\hline 110 & 15090 & 15091 & 15092 & 15094 & 15095 & 15096 & 15097 & 15098 & 15099 & 160 & 15590 & 15591 & 15592 & 15594 & 15595 & 15596 & 15597 & 15598 & 15599 \\
\hline 1 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & & 161 & 15600 & 15601 & 2 & 15604 & 05 & 15606 & 7 & 8 & 9 \\
\hline 11 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 162 & 15610 & 15 & 15 & 15 & 15615 & 15616 & 15617 & 15618 & 9 \\
\hline 1 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 163 & 15620 & 15621 & 15 & 15624 & 15625 & 26 & 15627 & 15628 & 29 \\
\hline 11 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15138 & 15 & 16 & 15630 & 15631 & 2 & 15634 & 5 & 36 & 37 & 38 & 39 \\
\hline 115 & 15140 & 15141 & 15142 & 151 & 15 & 15146 & 15147 & 15148 & 15149 & 165 & 15640 & 15641 & 15642 & 15644 & 15645 & 15646 & 15647 & 15648 & 9 \\
\hline 116 & 15 & & & & & & & & & 166 & & & & 15654 & 5 & 56 & 7 & 58 & \\
\hline 117 & 15 & 151 & 15 & 15 & 15 & 15 & 1516 & 15 & 15 & 16 & 15 & 156 & 15662 & 156 & 15665 & 15666 & 15667 & 15668 & 9 \\
\hline 118 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15178 & 15 & 168 & 15670 & 15 & 15672 & 15 & 15675 & 15676 & 156 & 15678 & 79 \\
\hline 119 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 16 & 15680 & 15681 & 15682 & 15684 & 5 & 686 & 5687 & 15688 & 89 \\
\hline 120 & 15190 & 15191 & 15192 & 15194 & 15195 & 15196 & 15197 & 15198 & 15199 & 17 & 690 & 15691 & 15692 & 15694 & 15695 & 15696 & 15697 & 15698 & 15699 \\
\hline 12 & 15 & 15 & 15 & & & & & & & & & & & & & & & & \\
\hline 122 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 172 & 15710 & 15711 & 15 & 15714 & 5 & 6 & 7 & 15718 & 9 \\
\hline 123 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15229 & 173 & 15720 & 15721 & 15 & 15 & 15725 & 15726 & 157 & 15728 & 15729 \\
\hline 124 & 15 & & 15 & & 15 & 15 & 15 & 15238 & 15 & 17 & & & 15732 & 15734 & & 15736 & 7 & 15738 & 15739 \\
\hline 125 & 1524 & 1524 & 1524 & 15 & 15 & 15 & 15 & 15 & & 175 & 15 & 15741 & 15742 & 15744 & 15745 & 15746 & 15747 & 15748 & 9 \\
\hline 12 & & & & & & & & & & & & & & & & & & & 15759 \\
\hline 127 & 15 & 15 & 15 & & 15 & 15 & 15 & 15268 & 15 & 177 & 15760 & 15761 & 15 & 15764 & 5 & 6 & 7 & 15768 & 69 \\
\hline 128 & 15 & & & & 15 & 15 & 15 & 15 & 15 & 178 & & & 15772 & 15774 & 5 & 6 & 15777 & 15778 & 15779 \\
\hline 12 & & & & & 15 & 15 & 1528 & 15 & 152 & 17 & & 15 & 15782 & 15784 & 15785 & 15786 & 15787 & 15788 & 89 \\
\hline 130 & 15290 & 1529 & 1529 & 15 & 15 & 15296 & 1529 & 1529 & 15 & 18 & 15790 & 1579 & 15792 & 15794 & 15795 & 15796 & 15797 & 15798 & 9 \\
\hline 13 & & & & & & & & & & 181 & & & & & & & & 8 & 9 \\
\hline 132 & 15 & & & & 15 & 15 & 15 & & 15 & 182 & & & 15 & 15814 & 5 & 6 & 15817 & 8 & 9 \\
\hline 133 & & & & & 15 & 15 & 15 & 15 & 1532 & 183 & & 15 & 15 & 1582 & 15825 & 15826 & 15827 & 15828 & 15829 \\
\hline 13 & & & & & & & & & & 18 & & & & & & 36 & 7 & 838 & 39 \\
\hline 135 & 15340 & 15341 & 1534 & 15 & 15 & 15 & 15 & 15 & 15 & 18 & 15840 & 15841 & 15842 & 15844 & 15845 & 15846 & 15847 & 15848 & 15849 \\
\hline 136 & & & & & & & & & & 186 & & & & & & & & 8 & 9 \\
\hline 137 & & & & & & 15 & 15 & & 15 & 18 & & & 158 & 15 & 15865 & 15866 & 1586 & 15868 & 15869 \\
\hline 13 & & & & & 15 & 15 & 153 & 15 & 15379 & 188 & & 15 & 15872 & 1587 & 15875 & 15876 & 15877 & 15878 & 15879 \\
\hline 139 & 15 & & & & & & & & & 18 & & 15881 & 15882 & 15884 & 5 & 15886 & 7 & 88 & 89 \\
\hline 140 & 15390 & 15391 & 15392 & 15394 & 15395 & 15396 & 1539 & 15398 & 15399 & 190 & 15 & 1589 & 15892 & 15894 & 15895 & 15896 & 15897 & 15898 & 15899 \\
\hline 14 & & & & & & & & & & 191 & & & & & & & & 8 & \\
\hline 14 & & & & & & 15 & 15 & & 15419 & 192 & & 15 & 1591 & 1591 & 15915 & 15916 & 15917 & 15918 & 15919 \\
\hline 143 & 15 & 15 & 15 & 15 & 15 & 15426 & 15 & 15 & 15 & 193 & 15920 & 15921 & 1592 & 15924 & 15925 & 15926 & 15927 & 15928 & 15929 \\
\hline 14 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & & 15 & 19 & 15930 & 15 & 15932 & 1593 & 15935 & 15936 & 15937 & 15938 & 5939 \\
\hline 145 & & 15441 & 15 & 15 & 15445 & 15446 & 15447 & 15448 & 15 & 195 & 15940 & 15941 & 15942 & 15944 & 15945 & 15946 & 15947 & 15948 & 159 \\
\hline 1 & & & & & & & & & & 19 & & & & 15954 & & 15956 & & 958 & \\
\hline 14 & 15460 & 15461 & 15 & 15 & 15 & 15466 & 15467 & 15 & 15469 & 197 & 15960 & 15961 & 15962 & 15964 & 15965 & 15966 & 5967 & 15968 & 15969 \\
\hline 148 & 15470 & 15471 & 15 & & 15 & 15476 & 15477 & 15478 & 15479 & 198 & 15970 & 159 & 15972 & 15974 & 15975 & 15976 & 15977 & 15978 & 15979 \\
\hline 149 & 15480 & 15 & 15 & 15 & 15 & 15486 & 15487 & 15488 & 15489 & 199 & 15980 & 1598 & 15982 & 15984 & 15985 & 15986 & 15987 & 15988 & 15989 \\
\hline 150 & 15490 & 15491 & 15492 & 15494 & 15495 & 15496 & 15497 & 15498 & 15499 & 200 & 15990 & 15991 & 15992 & 15994 & 15995 & 15996 & 15997 & 15998 & 15999 \\
\hline
\end{tabular}
(3) For axis 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Command } \\
\text { speed }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} & \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Command } \\
\text { speed }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & \[
\begin{aligned}
& \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & & & & & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
\hline
\end{array}
\] & & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
\hline
\end{array}
\] & & Highorder \\
\hline 201 & 16000 & 1600 & 16002 & 16004 & 16005 & 16006 & 16007 & 16008 & 16 & 251 & 00 & 16501 & 02 & 504 & 505 & 506 & 507 & 508 & 509 \\
\hline 20 & 1601 & 1601 & 16012 & 16014 & 16015 & 16016 & 16017 & 16018 & 160 & 252 & 16510 & 16 & 165 & 4 & 16515 & 16516 & 16517 & 16518 & 9 \\
\hline 20 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16028 & 16 & 253 & 16520 & 16521 & 165 & 2 & 16525 & 16526 & 16527 & 16528 & 9 \\
\hline 204 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16038 & 16039 & & 16530 & 16531 & 16 & 16534 & 16535 & 36 & 537 & 38 & 39 \\
\hline 205 & 160 & 16041 & 16042 & 160 & 16045 & 16046 & 16047 & 16048 & 16 & 25 & 16540 & 1654 & 16542 & 16544 & 16545 & 16546 & 16547 & 16548 & 16549 \\
\hline 206 & 16 & 160 & 16 & 16054 & 16055 & 16 & 16057 & 16058 & 16 & 256 & 16550 & 16551 & 16552 & 16554 & 5 & 6 & 57 & 58 & 9 \\
\hline 20 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16068 & 16069 & 257 & 16560 & 16561 & 16562 & 16564 & 5 & 566 & 16567 & 568 & 9 \\
\hline 20 & 16 & 16 & 16 & 16 & 16 & 160 & 1607 & 16078 & 16 & 258 & 16570 & 16 & 16572 & 16 & 16575 & 16576 & 16577 & 16578 & 9 \\
\hline 209 & 16 & 1608 & 16082 & 16 & 16085 & 16086 & 16087 & 16088 & 16089 & 259 & 16580 & 16581 & 16 & 16584 & 5 & 558 & 16587 & 588 & 589 \\
\hline 210 & 16090 & 16091 & 16092 & 16094 & 16095 & 16096 & 16097 & 16098 & 1609 & 260 & 16590 & 16591 & 16592 & 16594 & 16595 & 16596 & 16597 & 16598 & 9 \\
\hline 21 & 16 & 16 & 16 & 16 & 16105 & 16 & 16107 & & & 261 & 16600 & 16601 & 2 & 4 & 5 & 06 & 7 & 08 & \\
\hline 2 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16119 & 262 & 16610 & 16 & 16 & 16614 & 16615 & 16616 & 16617 & 618 & 16619 \\
\hline 21 & 16 & 16 & 16 & 16 & 16125 & 16 & 16127 & 16128 & 16 & 263 & 16620 & 16 & 16622 & 16624 & 16625 & 16626 & 16627 & 628 & 29 \\
\hline 214 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16139 & 264 & 16630 & 16631 & 16 & 16634 & 5 & 36 & 37 & 38 & 9 \\
\hline 215 & 16140 & 16141 & 16142 & 1614 & 16145 & 16146 & 16147 & 16148 & 16 & 265 & 16640 & 16641 & 16642 & 1664 & 16645 & 16646 & 16647 & 16648 & 16649 \\
\hline 21 & 16 & 16 & & & & & & & & 266 & & & 16652 & & 16655 & 6 & 16657 & 58 & \\
\hline 217 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 267 & 16660 & 16 & 1668 & 16 & 16 & 16666 & 16667 & 16668 & 16669 \\
\hline 21 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 1617 & 26 & 16670 & 16 & 16 & 16674 & 16675 & 16676 & 7 & 678 & 79 \\
\hline 21 & & 16 & 16182 & 16 & 16 & 16 & 16187 & 16188 & 16189 & 26 & 16680 & 16681 & 16 & 16684 & 16685 & 6 & 7 & 88 & 9 \\
\hline 220 & 16 & 16 & & & & & & & & 270 & 0 & 91 & 16692 & 4 & 16695 & 16696 & 16697 & 16698 & 16699 \\
\hline 22 & 16 & 16 & & & & & & & & & & & & & & & 7 & 8 & \\
\hline 222 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16218 & 16219 & 27 & 16710 & 16711 & 16 & 16714 & 16715 & 6 & 7 & 18 & 9 \\
\hline 223 & 16 & 162 & 1622 & 16 & 16225 & 16 & 16 & 16 & 16 & 27 & 16720 & 16721 & 16 & 16724 & 16725 & 6 & 7 & 28 & 29 \\
\hline 224 & & 16 & 16232 & 16 & 16 & 16 & 16 & 8 & 16239 & 27 & & & 16 & 16734 & 16735 & 16736 & 16737 & 38 & 16739 \\
\hline 225 & 162 & 162 & 16242 & 16 & 16245 & 16 & 16247 & 16248 & & 27 & 40 & 16741 & 16742 & 16744 & 16745 & 16746 & 16747 & 16748 & 16749 \\
\hline 226 & & & & & & & & & & & & & & & & & 16757 & & 16759 \\
\hline 22 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16269 & 277 & 16760 & 16761 & 16762 & 16764 & 16765 & 16766 & 16767 & 16768 & 16769 \\
\hline 228 & & 16 & 16 & 16 & 16 & 16 & 16 & 16278 & 16279 & 278 & & & 16772 & 16774 & 16775 & 16776 & 16777 & 8 & \\
\hline 229 & & & & & & & & & & & & & & & & & & & 9 \\
\hline 230 & 1629 & 1629 & 16292 & 162 & 16295 & 16 & 16297 & 16298 & 16299 & 28 & 16790 & 16791 & 792 & 16794 & 16795 & 16796 & 16797 & 16798 & 16799 \\
\hline 231 & & & & & & & & & & 281 & & & & & & & & & \\
\hline 23 & & & 16 & 16 & 16 & 16 & 16 & & 16319 & 282 & & & & & & 16816 & 16817 & 16818 & \\
\hline 23 & & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 28 & & 16 & 16 & 16824 & 16825 & 16826 & 27 & 16828 & 829 \\
\hline 23 & & & & & & 16 & 16 & & & 284 & & & & & & & 16837 & 8 & 39 \\
\hline 235 & 163 & 1634 & 163 & 16 & 16 & 16 & 16 & 16 & & 28 & 16840 & 16841 & 2 & 16844 & 16845 & 16846 & 16847 & 848 & 16849 \\
\hline 23 & & & & & & & & & & 286 & & & & & & & & & \\
\hline 23 & & & 16 & & 16 & 16 & 16367 & 8 & 16 & 28 & & & & & 16865 & 16866 & 16867 & 868 & 16869 \\
\hline 238 & & & 16 & & 16 & 16 & 16 & 16378 & 16 & 28 & & & & & & 1687 & 7 & 16878 & 16879 \\
\hline 239 & & & & & & 16 & 16 & & & 28 & & & & & 5 & 6 & 7 & 88 & 39 \\
\hline 240 & 16390 & 16391 & 16392 & 16394 & 16395 & 16396 & 16397 & 16398 & 16 & 290 & 16890 & 1689 & 16892 & 16894 & 16895 & 16896 & 16897 & 16898 & 89 \\
\hline 241 & & & & & & & & & & & & & & & & & & & \\
\hline 242 & & & 16 & & 16 & 16 & 16 & & 16 & 29 & & 16 & 169 & 16 & 16915 & 16916 & 16917 & 18 & 19 \\
\hline 243 & 16 & 164 & 16422 & 16424 & 16425 & 16426 & 16427 & 16428 & 16 & 29 & 16920 & 16 & 1692 & 169 & 16925 & 16926 & 16927 & 16928 & 16929 \\
\hline 2 & & 16 & 16 & 16 & 16 & 16 & 16 & & & 294 & & & 16 & 16934 & 16935 & 16936 & 16937 & 38 & 39 \\
\hline 245 & 16440 & 16441 & 16442 & 16 & 16445 & 16446 & 16447 & 16448 & 16 & 295 & 16940 & 16941 & 16942 & 16944 & 16945 & 16946 & 16947 & 16948 & 94 \\
\hline 246 & & & & & & & & & & 29 & & & & & & 16956 & & 16958 & \\
\hline 24 & 16460 & 16461 & 16462 & 16464 & 16465 & 16466 & 16467 & 16468 & 16 & 29 & 16960 & 16 & 16962 & 1696 & 16 & 1696 & 16967 & 96 & 16969 \\
\hline 248 & 16470 & 16471 & 16472 & 16 & 16475 & 16476 & 16477 & 16478 & 16 & 29 & 16970 & 16 & 169 & 169 & 16975 & 16976 & 16977 & 16978 & 16979 \\
\hline 249 & 16480 & 16481 & 16482 & 16484 & 16485 & 16486 & 16487 & 16488 & 1648 & 299 & 16980 & 169 & 16982 & 16984 & 16985 & 16986 & 16987 & 16988 & 16989 \\
\hline 250 & 16490 & 16491 & 16492 & 1649 & 16495 & 16496 & 16497 & 16498 & 16499 & 300 & 16990 & 16991 & 16992 & 16994 & 16995 & 16996 & 16997 & 16998 & 16999 \\
\hline
\end{tabular}

\section*{（3）For axis 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No．} & \multirow[t]{2}{*}{Posi－ tioning identi－ fier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Low－ & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & Low－ order & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & Low－ order & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] \\
\hline 301 & 17000 & 17001 & 17002 & 17004 & 17005 & 17006 & 17007 & 17008 & 17009 \\
\hline 302 & 17010 & 17011 & 17012 & 17014 & 17015 & 17016 & 17017 & 17018 & 17019 \\
\hline 303 & 17020 & 17021 & 17022 & 17024 & 17025 & 17026 & 17027 & 17028 & 17029 \\
\hline 304 & 17030 & 17031 & 17032 & 17034 & 17035 & 17036 & 17037 & 17038 & 17039 \\
\hline 305 & 17040 & 17041 & 17042 & 17044 & 17045 & 17046 & 17047 & 17048 & 17049 \\
\hline 306 & 17050 & 17051 & 17052 & 17054 & 17055 & 17056 & 17057 & 17058 & 17059 \\
\hline 307 & 17060 & 17061 & 17062 & 17064 & 17065 & 17066 & 17067 & 17068 & 17069 \\
\hline 308 & 17070 & 17071 & 17072 & 17074 & 17075 & 17076 & 17077 & 17078 & 17079 \\
\hline 309 & 17080 & 17081 & 17082 & 17084 & 17085 & 17086 & 17087 & 17088 & 17089 \\
\hline 310 & 17090 & 17091 & 17092 & 17094 & 17095 & 17096 & 17097 & 17098 & 17099 \\
\hline 311 & 17100 & 17101 & 17102 & 17104 & 17105 & 17106 & 17107 & 17108 & 17109 \\
\hline 312 & 17110 & 17111 & 17112 & 17114 & 17115 & 17116 & 17117 & 17118 & 17119 \\
\hline 313 & 17120 & 17121 & 17122 & 17124 & 17125 & 17126 & 17127 & 17128 & 17129 \\
\hline 314 & 17130 & 17131 & 17132 & 17134 & 17135 & 17136 & 17137 & 17138 & 17139 \\
\hline 315 & 17140 & 17141 & 17142 & 17144 & 17145 & 17146 & 17147 & 17148 & 49 \\
\hline 316 & 17 & 17 & 17 & 17154 & 17155 & 17156 & 17157 & 17158 & 17159 \\
\hline 317 & 17160 & 17161 & 17162 & 17164 & 17165 & 17166 & 17167 & 17168 & 17169 \\
\hline 318 & 17170 & 17171 & 17172 & 17174 & 17175 & 17176 & 17177 & 17178 & 17179 \\
\hline 319 & 17 & 1718 & 1718 & 17184 & 17185 & 17186 & 17187 & 17188 & 89 \\
\hline 320 & 17190 & 17191 & 17192 & 17194 & 17195 & 17196 & 17197 & 17198 & 99 \\
\hline 321 & 17200 & 17201 & 17202 & 17204 & 17205 & 17206 & 17207 & 17208 & 17209 \\
\hline 322 & 17210 & 17211 & 17212 & 17214 & 17215 & 17216 & 17217 & 17218 & 17219 \\
\hline 323 & 17220 & 17221 & 17222 & 17224 & 17225 & 17226 & 17227 & 17228 & 17229 \\
\hline 324 & 17 & 1723 & 1723 & 17 & 17235 & 17236 & 17237 & 17238 & 17239 \\
\hline 325 & 17240 & 17241 & 17242 & 17244 & 17245 & 17246 & 17247 & 17248 & 17249 \\
\hline 326 & 17250 & 17251 & 17252 & 17254 & 17255 & 17256 & 17257 & 17258 & 17259 \\
\hline 327 & 17260 & 17261 & 17262 & 17264 & 17265 & 17266 & 17267 & 17268 & 17269 \\
\hline 328 & 17270 & 1727 & 1727 & 172 & 17275 & 17276 & 17277 & 17278 & 17279 \\
\hline 329 & 17280 & 17281 & 17282 & 17284 & 17285 & 17286 & 17287 & 17288 & 17289 \\
\hline 330 & 17290 & 17291 & 17292 & 17294 & 17295 & 17296 & 17297 & 17298 & 17299 \\
\hline 331 & 17300 & 17301 & 17302 & 17304 & 17305 & 17306 & 17307 & 17308 & 17309 \\
\hline 332 & 17310 & 17311 & 17312 & 17314 & 17315 & 17316 & 17317 & 17318 & 17319 \\
\hline 333 & 17320 & 17321 & 17322 & 17324 & 17325 & 17326 & 17327 & 17328 & 17329 \\
\hline 334 & 17330 & 1733 & 17332 & 17334 & 17335 & 17336 & 17337 & 17338 & 17339 \\
\hline 335 & 17340 & 17341 & 17342 & 17344 & 17345 & 17346 & 17347 & 17348 & 17349 \\
\hline 336 & 17350 & 17351 & 17352 & 17354 & 17355 & 17356 & 17357 & 17358 & 17359 \\
\hline 337 & 17360 & 17361 & 17362 & 17364 & 17365 & 17366 & 17367 & 17368 & 17369 \\
\hline 338 & 17370 & 1737 & 17372 & 17374 & 17375 & 17376 & 17377 & 17378 & 17379 \\
\hline 339 & 17380 & 17381 & 17382 & 17384 & 17385 & 17386 & 17387 & 17388 & 17389 \\
\hline 340 & 17390 & 17391 & 17392 & 17394 & 17395 & 17396 & 17397 & 17398 & 17399 \\
\hline 341 & 17400 & 17401 & 1740 & 17404 & 17405 & 17406 & 17407 & 17408 & 17409 \\
\hline 342 & 17410 & 17411 & 17412 & 17414 & 17415 & 17416 & 17417 & 17418 & 17419 \\
\hline 343 & 17420 & 17421 & 17422 & 17424 & 17425 & 17426 & 17427 & 17428 & 17429 \\
\hline 344 & 17430 & 17431 & 17432 & 17434 & 17435 & 17436 & 17437 & 17438 & 17439 \\
\hline 345 & 17440 & 17441 & 17442 & 17444 & 17445 & 17446 & 17447 & 17448 & 17449 \\
\hline 346 & 17450 & 17451 & 17452 & 17454 & 17455 & 17456 & 17457 & 17458 & 17459 \\
\hline 347 & 17460 & 17461 & 17462 & 17464 & 17465 & 17466 & 17467 & 17468 & 17469 \\
\hline 348 & 17470 & 17471 & 17472 & 17474 & 17475 & 17476 & 17477 & 17478 & 17479 \\
\hline 349 & 17480 & 17481 & 17482 & 17484 & 17485 & 17486 & 17487 & 17488 & 17489 \\
\hline 350 & 17490 & 17491 & 17492 & 17494 & 17495 & 17496 & 17497 & 17498 & 17499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Data } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{aligned}
& \hline \text { Low- } \\
& \text { order }
\end{aligned}
\] & High-
order & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & High－ order & \[
\begin{aligned}
& \hline \text { Low- } \\
& \text { order }
\end{aligned}
\] & ligh- \\
\hline 351 & 17500 & 17501 & 17 & 1754 & 17505 & 17506 & 17507 & 17508 & \\
\hline 352 & 17510 & 17511 & 17512 & 17514 & 17515 & 17516 & 17517 & 17518 & 7519 \\
\hline 353 & 17520 & 17521 & 17522 & 24 & 17525 & 17526 & 17527 & 17528 & \\
\hline 354 & 17530 & 17531 & 17532 & 17534 & & 17536 & 17537 & 17538 & \\
\hline 355 & 17540 & & 17 & 17544 & 17545 & 17546 & 17547 & 17548 & \\
\hline 356 & 17550 & 175 & 17552 & 175 & 17555 & 17556 & 17557 & 17558 & \\
\hline 357 & 17560 & 17561 & 17562 & 17564 & 17565 & 17566 & 17567 & 17568 & \\
\hline 358 & 17570 & 17571 & 17 & 17574 & 17575 & 17576 & 17577 & 17578 & 17579 \\
\hline 35 & 17580 & 17581 & 17582 & 17584 & 17585 & 17586 & 17587 & 17588 & \\
\hline 360 & 17590 & 1759 & 17592 & 17594 & 17595 & 1759 & 175 & 17598 & \\
\hline 361 & 17600 & 17 & 02 & 17604 & 17605 & 17606 & 17607 & 17608 & \\
\hline 362 & 17610 & 17611 & 17612 & 17614 & 17615 & 17616 & 17617 & 17618 & \\
\hline 363 & 17620 & 17621 & 17622 & 17624 & 17625 & 17626 & 17627 & 17628 & \\
\hline 364 & 17630 & 17631 & 17632 & 17634 & 17635 & 17636 & 17637 & 17638 & 17639 \\
\hline 365 & 17640 & 17641 & 17642 & 17644 & 17645 & 17646 & 17647 & 17648 & \\
\hline 36 & 17650 & 17651 & 17652 & 17654 & 17655 & 17656 & 17657 & 17658 & 17659 \\
\hline 367 & 17660 & 176 & 17 & 176 & 176 & 17666 & 17667 & 17668 & \\
\hline 368 & 17670 & 17 & 17672 & 7674 & 17675 & 17676 & 17677 & 17678 & \\
\hline 369 & 17680 & 17681 & 17682 & 17684 & 17685 & 17686 & 17687 & 17688 & \\
\hline 370 & 17690 & 17691 & 17692 & 17694 & 17695 & 17696 & 17697 & 7698 & \\
\hline 371 & 17700 & 17701 & 17702 & 17704 & 17705 & 17706 & 17707 & & \\
\hline 37 & 17710 & 177 & 17 & 177 & 17715 & 17716 & 17717 & 17718 & \\
\hline 373 & 17720 & 17721 & 17 & 177 & 1772 & 17726 & 17727 & 17728 & \\
\hline 374 & 1773 & & & 17734 & & & 17737 & 17738 & \\
\hline 375 & 左 & 17741 & 17742 & 17744 & 17745 & 17746 & 774 & 17748 & \\
\hline 37 & & & & & & & & & \\
\hline 377 & 17760 & 17761 & 17762 & 17764 & 17765 & 17766 & 17767 & 17768 & \\
\hline 378 & & 17 & 17772 & 17774 & 17775 & 17776 & 17777 & 17778 & \\
\hline 379 & 17780 & 17781 & 17782 & 17784 & 17785 & 17786 & 17787 & 17788 & \\
\hline 380 & 17790 & 177 & 17792 & 17794 & 177 & 177 & 17797 & 17798 & \\
\hline 381 & & & 17802 & 17804 & & & & 17808 & \\
\hline 38 & 17810 & 17811 & 17812 & 17814 & 15 & 17816 & 17817 & 17818 & \\
\hline 383 & & 17821 & 17822 & 17824 & & & 17827 & 17828 & \\
\hline 384 & 17830 & 17831 & 17832 & 17834 & 17835 & 17836 & 17837 & 17838 & \\
\hline 385 & 17840 & 17841 & 17842 & 1744 & 17845 & 17846 & 1784 & 17848 & \\
\hline 38 & & 17851 & 17852 & 17854 & 17855 & 17856 & 17857 & & \\
\hline 387 & 17860 & 17 & 17862 & 17864 & 17865 & 17866 & 17867 & 17868 & 楮 \\
\hline 38 & 17870 & 17871 & 72 & 17874 & 17875 & 17876 & 17877 & 17878 & 889 \\
\hline 389 & & & & & & & 17887 & 17888 & \\
\hline 390 & 1789 & 17891 & 1789 & 178 & 178 & 17896 & 17897 & 17898 & \\
\hline 391 & & 179 & 17902 & 17904 & 17905 & 17906 & 17907 & 17908 & \\
\hline 392 & 17910 & 17911 & 17912 & 17914 & 17915 & 17916 & 17917 & 17918 & \\
\hline 393 & 17920 & 17921 & 17922 & 17924 & 17925 & 17926 & 17927 & 17928 & 7929 \\
\hline 394 & & & & 17934 & & & 17937 & 17938 & 楮 \\
\hline 395 & 17940 & 17941 & 42 & 17944 & 17945 & 17946 & 17947 & 17948 & 1794 \\
\hline 396 & 17950 & 17951 & 17952 & 17954 & 17955 & 17956 & 17957 & 17958 & 17959 \\
\hline 397 & 17960 & 17961 & 62 & 17964 & 17965 & 17966 & 17967 & 17968 & \\
\hline 398 & 17970 & 17971 & 17972 & 17974 & 75 & 17976 & 17977 & 17978 & 17979 \\
\hline 399 & 17980 & 17981 & 17982 & 17984 & 17985 & 17986 & 17987 & 17988 & 1798 \\
\hline 400 & 1799 & 179 & 17992 & 1799 & 179 & 17996 & 17997 & 179 & 1799 \\
\hline
\end{tabular}
(3) For axis 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Command } \\
\text { speed }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} & \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Command } \\
\text { speed }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & & \[
\begin{aligned}
& \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & & & & & \[
\begin{aligned}
& \hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array}
\end{aligned}
\] \\
\hline 401 & 18000 & 180 & 18002 & 18004 & 18005 & 18006 & 18007 & 8 & 18 & & 00 & 18501 & 2 & 04 & 05 & 506 & 507 & 508 & 509 \\
\hline 402 & 18010 & 180 & 1801 & 18 & 18015 & 18 & 1801 & 8 & 18019 & 452 & 18510 & 18 & 18 & 4 & 15 & 18516 & 18517 & 18518 & 9 \\
\hline 403 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18028 & 18029 & 453 & 18520 & 18521 & 185 & 18524 & 18525 & 18526 & 18527 & 18528 & 9 \\
\hline 404 & 18 & 18 & 18 & 18 & 18 & 18 & 18037 & 18038 & 18039 & 454 & 18530 & 18 & 18532 & 18 & 18535 & 18536 & 18537 & 18538 & 39 \\
\hline 405 & 180 & 18041 & 18042 & 180 & 18045 & 18046 & 18047 & 18048 & 18049 & 455 & 18540 & 18541 & 18542 & 18544 & 18545 & 18546 & 18547 & 18548 & 18549 \\
\hline 406 & 18 & 18 & 18 & 18 & 18055 & 18 & 18 & 18058 & & 456 & 18550 & 18551 & 18552 & 18554 & 18555 & 18556 & 5 & 88 & \\
\hline 40 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18068 & 18069 & 457 & 18560 & 18561 & 18562 & 18564 & 5 & 566 & 18567 & 568 & 9 \\
\hline 40 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18078 & 18079 & 458 & 18570 & 18 & 18 & 18 & 18575 & 18576 & 18577 & 18578 & 9 \\
\hline 409 & 18 & 18 & 18082 & 18 & 18085 & 18086 & 18087 & 18088 & 18089 & 459 & 18580 & 18581 & 18 & 18584 & 55 & 18586 & 18587 & 8588 & 589 \\
\hline 410 & 18090 & 18091 & 18092 & 18094 & 18095 & 18096 & 18097 & 18098 & 1809 & 460 & 590 & 18591 & 18592 & 18594 & 18595 & 18596 & 18597 & 18598 & 99 \\
\hline 4 & 18 & 18 & 18 & 18 & 18105 & 18 & 18107 & & & 461 & 18600 & 18601 & 2 & 18604 & 5 & 66 & 7 & 8 & \\
\hline 4 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18118 & 18119 & 462 & 18610 & 18 & 18612 & 18614 & 5 & 18616 & 18617 & 18618 & 18619 \\
\hline 41 & 18 & 18 & 18 & 18 & 18125 & 18 & 18 & 18128 & 18129 & 463 & 18620 & 18 & 18 & 18 & 5 & 18626 & 627 & 18628 & 18629 \\
\hline 41 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18138 & 18139 & 464 & 18630 & 18631 & 18632 & 18634 & 5 & 6 & 37 & 38 & 39 \\
\hline 415 & 18140 & 18141 & 18142 & 18144 & 18145 & 18146 & 18147 & 18148 & 18 & 465 & 18640 & 18641 & 18642 & 1864 & 18645 & 18646 & 18647 & 18648 & 18649 \\
\hline 41 & 18 & 18 & & & & & & & & 466 & & & & & 18655 & 6 & 18657 & 58 & \\
\hline 417 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 467 & 18660 & 18 & 18 & 18 & 18 & 1866 & 18667 & 668 & 18669 \\
\hline 418 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 1817 & 46 & 18670 & 18 & 18 & 18674 & 18675 & 18676 & 18677 & 678 & 79 \\
\hline 41 & & 18 & 18182 & 18 & 18 & 18 & 18187 & 18188 & & 46 & 18680 & 18681 & 18 & 18684 & 5 & 18686 & 7 & 88 & 89 \\
\hline 420 & & & & & & & 18197 & 8 & & 470 & 18690 & 18 & 18692 & 18694 & 18695 & 18696 & 18697 & 18698 & 18699 \\
\hline 421 & 18 & 18 & & & & & & & & & & & & & & & 7 & & \\
\hline 422 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18219 & 47 & 18710 & 18711 & 18 & 18714 & 18715 & 18716 & 18717 & 18 & 18719 \\
\hline 423 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18229 & 47 & 18720 & 18721 & 18 & 18724 & 18725 & 18726 & 18727 & 8 & 9 \\
\hline 424 & & & 18232 & 18 & 18 & 18 & 18 & 8 & & 47 & & & 18732 & 18734 & 18735 & 18736 & 18737 & 38 & \\
\hline 425 & 182 & 182 & 18242 & 18 & 18245 & 18 & 18 & 18248 & & 475 & 0 & 18741 & 18742 & 18744 & 18745 & 18746 & 18747 & 18748 & \\
\hline 426 & & & & & & & & & & & & & & & & & & & 18759 \\
\hline 42 & 18 & 18 & 18 & 18 & 18 & 18 & 18 & 18268 & 18269 & 47 & 18760 & 18761 & 18762 & 18764 & 18765 & 18766 & 18767 & 18768 & 18769 \\
\hline 42 & & 18 & 18 & 18 & 18 & 18 & 18 & 18278 & 1827 & 478 & & & 18772 & 18774 & 18775 & 18776 & 18777 & 8 & \\
\hline 42 & & & & & 18 & 18 & 18 & 18 & 18 & 47 & & & 18 & & & 18786 & 18787 & 888 & 18789 \\
\hline 430 & 1829 & 1829 & 18292 & 18 & 18295 & 18 & 18297 & 18298 & 18299 & 48 & 18790 & 18791 & 792 & 18794 & 795 & 796 & 18797 & 798 & 18799 \\
\hline 43 & & & & & & & & & & 481 & & & & & & & & & \\
\hline 43 & & & 18 & & 18 & & & & & 48 & & & & & & & 18817 & 18818 & \\
\hline 43 & & 18 & & & 18 & 18 & 18 & 8 & 18 & 483 & & & 18 & 18 & 18 & 18826 & 827 & 18828 & 9 \\
\hline 43 & \[
18
\] & & & & & 18 & 18 & & |18339 & 484 & & & & & & & 7 & 8 & 39 \\
\hline 435 & 183 & 1834 & 18 & 18 & 18 & 18 & 18347 & 18348 & & 48 & & 18841 & 18842 & 18844 & 18845 & 18846 & 18847 & 848 & 18849 \\
\hline 43 & & & & & & & & & & 486 & & & & & & & & & \\
\hline 43 & & & & & 18 & 18 & 18367 & 18368 & 18 & 48 & & & 18862 & 18864 & 18865 & 18866 & 18867 & 868 & 86 \\
\hline 43 & & & 18 & & 18 & 18 & 18 & 18378 & 18 & 48 & & & 18 & 18 & 18 & 18 & 18877 & 18878 & 18879 \\
\hline 43 & & & & & & & 18 & & & 48 & & & & & & 6 & 7 & 88 & 9 \\
\hline 440 & 18390 & 18391 & 18392 & 18394 & 18395 & 18396 & 18397 & 18398 & 18 & 490 & 18 & 1889 & 18892 & 18894 & 18895 & 18896 & 18897 & 18898 & 89 \\
\hline 4 & & & & & & & & & & & & & & & & & & & \\
\hline 44 & & & 18 & & 18415 & 18 & 18 & & 18 & 49 & & & 189 & 18 & 18915 & 18 & 1891 & 18918 & 19 \\
\hline 44 & 18 & 18 & 18 & 18 & 18425 & 18426 & 18427 & 18428 & 18 & 49 & 18920 & 18 & 189 & 18924 & 18925 & 18926 & 18927 & 18928 & 18929 \\
\hline 44 & & 18 & 18 & 18 & 18 & 18 & 18 & & & 494 & & & 18 & 18934 & 18 & 18936 & 18937 & 38 & 39 \\
\hline 445 & 18440 & 18441 & 18442 & 18444 & 18445 & 18446 & 18447 & 18448 & 18 & 49 & 40 & 18941 & 18942 & 18944 & 18945 & 18946 & 18947 & 18948 & 18949 \\
\hline 446 & & & & & & & & & & 49 & & & & & & & 18957 & 18958 & \\
\hline 44 & 18460 & 18461 & 18462 & 18 & 18465 & 18 & 18467 & 18468 & 1846 & 49 & 18960 & 18961 & 18962 & 18964 & 18965 & 1896 & 18967 & 18968 & 18969 \\
\hline 448 & 18470 & 18471 & 18472 & 18 & 18475 & 18476 & 18477 & 18478 & 18 & 498 & 18970 & 18 & 18 & 18974 & 18975 & 18976 & 18977 & 18978 & 18979 \\
\hline 449 & 18480 & 18 & 18482 & 18 & 18485 & 18486 & 18487 & 18488 & 1848 & 499 & 18980 & 18 & 18982 & 18984 & 18985 & 18986 & 18987 & 18988 & 18989 \\
\hline 450 & 18490 & 18491 & 18492 & 18494 & 18495 & 18496 & 18497 & 18498 & 18499 & 500 & 18990 & 18991 & 18992 & 18994 & 18995 & 18996 & 18997 & 18998 & 18999 \\
\hline
\end{tabular}
(3) For axis 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Command } \\
\text { speed }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} & \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & code & & Loworder & \[
\begin{aligned}
& \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & & & & & \[
\begin{aligned}
& \hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
& \hline
\end{aligned}
\] & & Highorder & & Highorder \\
\hline 501 & 19000 & 1900 & 19002 & 19004 & 19005 & 19006 & 19007 & 19008 & 19009 & 551 & 00 & 01 & 502 & 504 & 505 & 506 & 507 & 508 & 19509 \\
\hline 50 & 1901 & 1901 & 19012 & 19014 & 19015 & 19016 & 1901 & 19018 & 19019 & 552 & 19510 & 19 & 195 & 19514 & 19515 & 19516 & 19517 & 19518 & 9 \\
\hline 503 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & & 1 & 553 & 19520 & 19521 & 19522 & 19524 & 19525 & 19526 & 19527 & 19528 & 9 \\
\hline 504 & 19 & 19 & 19 & 19 & 19035 & 19 & 19037 & 19038 & 19 & 554 & 19530 & 195 & 19532 & 19534 & 19535 & 19536 & 19537 & 19538 & 539 \\
\hline 505 & 19040 & 19041 & 19042 & 19044 & 19045 & 19046 & 19047 & 19048 & 19 & 55 & 19540 & 19541 & 19542 & 19544 & 19545 & 19546 & 19547 & 19548 & 19549 \\
\hline 506 & 19 & 190 & 19 & 19054 & 19055 & 19 & 19 & 19058 & 19 & 556 & 19550 & 19551 & 19552 & 19554 & 19555 & 56 & 57 & 58 & 9 \\
\hline 50 & 19 & 19 & 190 & 19 & 19 & 19 & 19 & 8 & 19069 & 557 & 19560 & 19561 & 19562 & 19564 & 19565 & 19566 & 19567 & 19568 & 9 \\
\hline 50 & 19 & 19 & 19 & 19 & 19 & 190 & 1907 & 19078 & 19 & 558 & 19570 & 19 & 19572 & 195 & 19575 & 19576 & 19577 & 19578 & 9 \\
\hline 509 & 19 & 19 & 19082 & 19 & 19085 & 19086 & 19087 & 19088 & 19089 & 559 & 19580 & 19581 & 19 & 19584 & 85 & 19586 & 19587 & 588 & 89 \\
\hline 510 & 19090 & 19091 & 19092 & 19094 & 19095 & 19096 & 19097 & 19098 & 1909 & 560 & 19590 & 19591 & 19592 & 19594 & 19595 & 19596 & 19597 & 19598 & 9 \\
\hline 51 & 19 & 19 & 19 & 19 & 19105 & 19 & 19107 & & & 561 & 19600 & 19601 & 2 & 4 & 5 & 06 & 7 & 8 & \\
\hline 5 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19118 & 19119 & 562 & 19610 & 19 & 19612 & 19 & 19615 & 19616 & 19617 & 19618 & 19619 \\
\hline 51 & 19 & 19 & 19 & 19 & 19125 & 19 & 19 & 19128 & 19 & 563 & 19620 & 19 & 19622 & 19624 & 19625 & 26 & 19627 & 28 & 29 \\
\hline 51 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19138 & 19139 & & 19630 & 19631 & 19632 & 19634 & 19635 & 6 & 7 & 38 & 3 \\
\hline 515 & 19140 & 19141 & 19142 & 19144 & 19145 & 19146 & 19147 & 19148 & & 565 & 19640 & 41 & 19642 & 19644 & 19645 & 19646 & 19647 & 19648 & 19649 \\
\hline 51 & 19 & 19 & & & & & & & & & & & 19652 & & 19655 & 56 & 19657 & 58 & \\
\hline 51 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 567 & 19660 & 19 & 19 & 19 & 19665 & 19666 & 19667 & 19668 & 19669 \\
\hline 518 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & & 568 & 19670 & 19671 & 1 & 19674 & 19675 & 19676 & 19677 & 78 & 79 \\
\hline 519 & & 19 & 19 & 19 & 19 & 19 & 19 & 19188 & 19189 & 569 & 19680 & 19681 & 19 & 19684 & 5 & 6 & 7 & 88 & 9 \\
\hline 520 & 19 & & & & & & & & & 570 & 90 & 91 & 19692 & 19694 & 19695 & 19696 & 19697 & 9698 & 19699 \\
\hline 52 & 19 & 19 & & & & & & & & & & & & & & 19706 & 7 & 88 & \\
\hline 522 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19218 & 19219 & 572 & 19710 & 19711 & 19712 & 19714 & 19715 & 19716 & 19717 & 8 & 9 \\
\hline 523 & 192 & 1922 & 1922 & 19 & 19225 & 19 & 19 & 19228 & 19 & 573 & 19720 & 19721 & 19 & 19724 & 19725 & 19726 & 19727 & 8 & 9 \\
\hline 524 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19238 & & & & & 19 & 19734 & 19735 & 36 & 19737 & 38 & \\
\hline 525 & 192 & 192 & 19242 & 19 & 19245 & 19 & 19 & 19248 & 19249 & 575 & 0 & 19741 & 19742 & 19744 & 19745 & 19746 & 19747 & 19748 & 19749 \\
\hline 526 & & & & & & & & & & & & & & & & & & & 19759 \\
\hline 52 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19268 & 19269 & 577 & 19760 & 19761 & 19762 & 19764 & 19765 & 19766 & 19767 & 19768 & 19769 \\
\hline 528 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 8 & 19279 & 578 & & & 19772 & 19774 & 19775 & 19776 & 19777 & 8 & \\
\hline 52 & & & & & 19 & 19 & 1928 & 19288 & 19 & 579 & & & 19 & & 19785 & 19786 & 19787 & 19788 & 19789 \\
\hline 530 & 1929 & 1929 & 19292 & 19 & 19295 & 19 & 19 & 19298 & 19299 & 58 & 19790 & 19791 & 792 & 19794 & 19795 & 19796 & 19797 & 19798 & 19799 \\
\hline 53 & & & & & & & 19 & & & & & & & & & & & & 19809 \\
\hline 53 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19318 & 19319 & & & & 19812 & & 19815 & 19816 & 19817 & 19818 & \\
\hline 53 & 19 & 19 & 19 & 19 & 19 & 19 & 19 & 19328 & 19 & 583 & & 19821 & 19822 & 19824 & 19825 & 19826 & 827 & 828 & 829 \\
\hline 53 & \[
19
\] & & & & & 19 & 19 & 19338 & |19339 & & & & & & & & 19837 & 88 & 39 \\
\hline 535 & 1934 & 1934 & 1934 & 19 & 19 & 19 & 19 & 8 & 19349 & 585 & 19840 & 19841 & 2 & 19844 & 19845 & 19846 & 19847 & 19848 & 19849 \\
\hline 53 & & & & & & & & & & & & & & & & & & & \\
\hline 53 & & & 19 & & 19 & 19 & 19367 & 8 & 1 & 587 & & & 19 & 19864 & 19865 & 19866 & 1986 & 868 & 19869 \\
\hline 53 & & & 19 & & 19 & 19 & 19 & 19378 & 19 & 58 & & 19 & 1987 & 19 & 1987 & 1987 & 19877 & 19878 & 19879 \\
\hline 53 & & & & & & 19 & 19 & 19388 & & 58 & & & 19882 & & 5 & 6 & 7 & 88 & 9 \\
\hline 540 & 19390 & 19391 & 19392 & 19394 & 19395 & 19396 & 19397 & 19398 & 19399 & 590 & 19 & 19891 & 19892 & 19894 & 19895 & 19896 & 19897 & 19898 & 19899 \\
\hline 5 & & & & & & & & & & & & & & & & & & 8 & \\
\hline 5 & & & & & 19 & 19 & 19 & 8 & 19419 & 59 & & & 199 & 19 & 19 & 19 & 19917 & 918 & \\
\hline 54 & 19 & 19 & 19 & 19424 & 19425 & 19426 & 19427 & 19428 & 19 & 59 & 19920 & 19 & 1992 & 19924 & 19925 & 19926 & 19927 & 19928 & 929 \\
\hline 5 & & 19 & 19 & 19 & 19 & 19 & 19 & & & 594 & & & 19 & 19 & 19 & 19936 & 19937 & 19938 & 39 \\
\hline 545 & 19440 & 19441 & 19442 & 19444 & 19445 & 19446 & 19447 & 19448 & 19 & 595 & 19940 & 19941 & 19942 & 19944 & 19945 & 19946 & 19947 & 19948 & 19949 \\
\hline 546 & & & & & & & & & & & & & & & & 19956 & & 58 & \\
\hline 5 & 19460 & 1946 & 19462 & 19 & 19465 & 19 & 19467 & 19468 & 19 & 597 & 19960 & 19 & 19962 & 19 & 19 & 19 & 19 & 968 & 19969 \\
\hline 548 & 19470 & 1947 & 19472 & 19 & 19475 & 19476 & 19 & 19478 & 19 & 59 & 19970 & & 19 & 19974 & 19975 & 19976 & 199 & 19978 & 19 \\
\hline 549 & 19480 & 19 & 19482 & 19484 & 19485 & 19486 & 19487 & 19488 & 19 & 599 & 19980 & 19 & 19982 & 19984 & 19985 & 19986 & 19987 & 19988 & 19989 \\
\hline 550 & 19490 & 19491 & 19492 & 19494 & 19495 & 19496 & 19497 & 19498 & 19499 & 600 & 19990 & 19991 & 19992 & 19994 & 19995 & 19996 & 19997 & 19998 & 19999 \\
\hline
\end{tabular}

\section*{(4) For axis 4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\begin{tabular}{c} 
Posi- \\
tioning \\
identi- \\
fier
\end{tabular} \\
\hline
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Low- & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & Loworder & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & Loworder & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] \\
\hline 1 & 20000 & 20001 & 20002 & 20004 & 20005 & 20006 & 20007 & 20008 & 20009 \\
\hline 2 & 20010 & 20011 & 20012 & 20014 & 20015 & 20016 & 20017 & 20018 & 20019 \\
\hline 3 & 20020 & 20021 & 20022 & 20024 & 20025 & 20026 & 20027 & 20028 & 20029 \\
\hline 4 & 20030 & 20031 & 20032 & 20034 & 20035 & 20036 & 20037 & 20038 & 20039 \\
\hline 5 & 20040 & 20041 & 20042 & 20044 & 20045 & 20046 & 20047 & 20048 & 20049 \\
\hline 6 & 20050 & 20051 & 20052 & 20054 & 20055 & 20056 & 20057 & 20058 & 20059 \\
\hline 7 & 20060 & 20061 & 20062 & 2006 & 20065 & 20066 & 20067 & 20068 & 20069 \\
\hline 8 & 20070 & 20071 & 20072 & 20074 & 20075 & 20076 & 20077 & 20078 & 20079 \\
\hline 9 & 20080 & 20081 & 20082 & 20084 & 20085 & 20086 & 20087 & 20088 & 20089 \\
\hline 10 & 20090 & 20091 & 20092 & 20094 & 20095 & 20096 & 20097 & 20098 & 20099 \\
\hline 11 & 20100 & 2010 & 20102 & 20104 & 20105 & 20106 & 20107 & 20108 & 20109 \\
\hline 12 & 20110 & 20111 & 20112 & 20114 & 20115 & 20116 & 20117 & 20118 & 20119 \\
\hline 13 & 20120 & 20121 & 20122 & 20124 & 20125 & 20126 & 20127 & 20128 & 20129 \\
\hline 14 & 20130 & 20131 & 20132 & 20134 & 20135 & 20136 & 20137 & 20138 & 20139 \\
\hline 15 & 20140 & 20141 & 20142 & 20144 & 20145 & 20146 & 20147 & 20148 & 149 \\
\hline 16 & 20150 & 2015 & 2015 & 20154 & 20155 & 20156 & 20157 & 20 & 20 \\
\hline 17 & 20160 & 20161 & 20162 & 20164 & 20165 & 20166 & 20167 & 20168 & 20169 \\
\hline 18 & 20170 & 20171 & 20172 & 20174 & 20175 & 20176 & 20177 & 20178 & 20179 \\
\hline 19 & 20 & 20181 & 20182 & 20184 & 20185 & 20186 & 20187 & 20188 & 20189 \\
\hline 20 & 20190 & 20191 & 20192 & 20194 & 20195 & 20196 & 20197 & 20198 & 20199 \\
\hline 21 & 20200 & 20201 & 20202 & 20204 & 20205 & 20206 & 20207 & 20208 & 20209 \\
\hline 22 & 20210 & 20211 & 20212 & 20214 & 20215 & 20216 & 20217 & 20218 & 20219 \\
\hline 23 & 20220 & 20221 & 20222 & 20224 & 20225 & 20226 & 20227 & 20228 & 20229 \\
\hline 24 & 20230 & 2023 & 2023 & 20234 & 20235 & 20236 & 20237 & 20238 & 20239 \\
\hline 25 & 20240 & 20241 & 20242 & 20244 & 20245 & 20246 & 20247 & 20248 & 20249 \\
\hline 26 & 20250 & 20251 & 20252 & 20254 & 20255 & 20256 & 20257 & 20258 & 20259 \\
\hline 27 & 20260 & 20261 & 20262 & 20264 & 20265 & 20266 & 20267 & 20268 & 20269 \\
\hline 28 & 20270 & 20271 & 2027 & 20274 & 20275 & 20276 & 20277 & 20278 & 20279 \\
\hline 29 & 20280 & 20281 & 20282 & 20284 & 20285 & 20286 & 20287 & 20288 & 20289 \\
\hline 30 & 20290 & 20291 & 20292 & 20294 & 20295 & 20296 & 20297 & 20298 & 20299 \\
\hline 31 & 20300 & 20301 & 20302 & 20304 & 20305 & 20306 & 20307 & 20308 & 20309 \\
\hline 32 & 20310 & 20311 & 20312 & 20314 & 20315 & 20316 & 20317 & 20318 & 20319 \\
\hline 33 & 20320 & 20321 & 20322 & 20324 & 20325 & 20326 & 20327 & 20328 & 20329 \\
\hline 34 & 20330 & 2033 & 20332 & 20334 & 20335 & 20336 & 20337 & 20338 & 20339 \\
\hline 35 & 20340 & 20341 & 20342 & 20344 & 20345 & 20346 & 20347 & 20348 & 20349 \\
\hline 36 & 20350 & 20351 & 20352 & 20354 & 20355 & 20356 & 20357 & 20358 & 20359 \\
\hline 37 & 20360 & 20361 & 20362 & 20364 & 20365 & 20366 & 20367 & 20368 & 20369 \\
\hline 38 & 20370 & 2037 & 20372 & 20374 & 20375 & 20376 & 20377 & 20378 & 20379 \\
\hline 39 & 20380 & 20381 & 20382 & 20384 & 20385 & 20386 & 20387 & 20388 & 20389 \\
\hline 40 & 20390 & 20391 & 20392 & 20394 & 20395 & 20396 & 20397 & 20398 & 20399 \\
\hline 41 & 20400 & 2040 & 20402 & 20404 & 20405 & 20406 & 20407 & 20408 & 409 \\
\hline 42 & 20410 & 20411 & 20412 & 20414 & 20415 & 20416 & 20417 & 20418 & 20419 \\
\hline 43 & 20420 & 20421 & 20422 & 20424 & 20425 & 20426 & 20427 & 20428 & 20429 \\
\hline 44 & 20430 & 20431 & 20432 & 20434 & 20435 & 20436 & 20437 & 20438 & 20439 \\
\hline 45 & 20440 & 20441 & 20442 & 20444 & 20445 & 20446 & 20447 & 20448 & 20449 \\
\hline 46 & 20450 & 20451 & 20452 & 20454 & 20455 & 20456 & 20457 & 20458 & 20459 \\
\hline 47 & 20460 & 20461 & 20462 & 20464 & 20465 & 20466 & 20467 & 20468 & 20469 \\
\hline 48 & 20470 & 20471 & 20472 & 20474 & 20475 & 20476 & 20477 & 20478 & 20479 \\
\hline 49 & 20480 & 20481 & 20482 & 20484 & 20485 & 20486 & 20487 & 20488 & 20489 \\
\hline 50 & 20490 & 20491 & 20492 & 20494 & 20495 & 20496 & 20497 & 20498 & 20499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command} & \multicolumn{2}{|l|}{Positioning} & \multicolumn{2}{|r|}{Arc data} \\
\hline & & & & Low-
order & Highorder & Loworder & Highorder & order & order \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 51 & 20500 & 20501 & 20502 & 20504 & 20505 & 20506 & 20507 & 20508 & 20509 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
52 & 20510 & 20511 & 20512 & 20514 & 20515 & 20516 & 20517 & 20518 & 20519 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
53 & 20520 & 20521 & 20522 & 20524 & 20525 & 20526 & 20527 & 20528 & 20529
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
54 & 20530 & 20531 & 20532 & 20534 & 20535 & 20536 & 20537 & 20538 & 20539
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|}
20540 & 20541 & 20542 & 20544 & 20545 & 20546 & 20547 & 20548 & 20549 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 20550 & 20551 & 20552 & 20554 & 20555 & 20556 & 20557 & 20558 & 20559 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
20560 & 20561 & 20562 & 20564 & 20565 & 20566 & 20567 & 20568 & 20569 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
20570 & 20571 & 20572 & 20574 & 20575 & 20576 & 20577 & 20578 & 20579 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
20580 & 20581 & 20582 & 20584 & 20585 & 20586 & 20587 & 20588 & 20589 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
20590 & 20591 & 20592 & 20594 & 20595 & 20596 & 20597 & 20598 & 20599 \\
\hline
\end{tabular} \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
20600 & 20601 & 20602 & 20604 & 20605 & 20606 & 20607 & 20608 & 20609 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20610 & 20611 & 20612 & 20614 & 20615 & 20616 & 20617 & 20618 & 20619 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20620 & 20621 & 20622 & 20624 & 20625 & 20626 & 20627 & 20628 & 20629 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|}
20630 & 20631 & 20632 & 20634 & 20635 & 20636 & 20637 & 20638 & 20639 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
20640 & 20641 & 20642 & 20644 & 20645 & 20646 & 20647 & 20648 & 20649 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 20650 & 20651 & 20652 & 20654 & 20655 & 20656 & 20657 & 20658 & 20659 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20660 & 20661 & 20662 & 20664 & 20665 & 20666 & 20667 & 20668 & 20669 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20670 & 20671 & 20672 & 20674 & 20675 & 20676 & 20677 & 20678 & 20679 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20680 & 20681 & 20682 & 20684 & 20685 & 20686 & 20687 & 20688 & 20689 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20690 & 20691 & 20692 & 20694 & 20695 & 20696 & 20697 & 20698 & 20699 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20700 & 20701 & 20702 & 20704 & 20705 & 20706 & 20707 & 20708 & 20709 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|}
20710 & 20711 & 20712 & 20714 & 20715 & 20716 & 20717 & 20718 & 20719 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20720 & 20721 & 20722 & 20724 & 20725 & 20726 & 20727 & 20728 & 20729 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20730 & 20731 & 20732 & 20734 & 20735 & 20736 & 20737 & 20738 & 20739 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
20740 & 20741 & 20742 & 20744 & 20745 & 20746 & 20747 & 20748 & 20749 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20750 & 20751 & 20752 & 20754 & 20755 & 20756 & 20757 & 20758 & 20759 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20760 & 20761 & 20762 & 20764 & 20765 & 20766 & 20767 & 20768 & 20769 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20770 & 20771 & 20772 & 20774 & 20775 & 20776 & 20777 & 20778 & 20779 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20780 & 20781 & 20782 & 20784 & 20785 & 20786 & 20787 & 20788 & 20789 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20790 & 20791 & 20792 & 20794 & 20795 & 20796 & 20797 & 20798 & 20799 \\
\hline
\end{tabular} \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 20800 & 20801 & 20802 & 20804 & 20805 & 20806 & 20807 & 20808 & 20809 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20810 & 20811 & 20812 & 20814 & 20815 & 20816 & 20817 & 20818 & 20819 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20820 & 20821 & 20822 & 20824 & 20825 & 20826 & 20827 & 20828 & 20829 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20830 & 20831 & 20832 & 20834 & 20835 & 20836 & 20837 & 20838 & 20839 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 20840 & 20841 & 20842 & 20844 & 20845 & 20846 & 20847 & 20848 & 20849 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20850 & 20851 & 20852 & 20854 & 20855 & 20856 & 20857 & 20858 & 20859 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20860 & 20861 & 20862 & 20864 & 20865 & 20866 & 20867 & 20868 & 20869 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20870 & 20871 & 20872 & 20874 & 20875 & 20876 & 20877 & 20878 & 20879 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
20880 & 20881 & 20882 & 20884 & 20885 & 20886 & 20887 & 20888 & 20889 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
20890 & 20891 & 20892 & 20894 & 20895 & 20896 & 20897 & 20898 & 20899 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
20900 & 20901 & 20902 & 20904 & 20905 & 20906 & 20907 & 20908 & 20909 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20910 & 20911 & 20912 & 20914 & 20915 & 20916 & 20917 & 20918 & 20919 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
20920 & 20921 & 20922 & 20924 & 20925 & 20926 & 20927 & 20928 & 20929 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20930 & 20931 & 20932 & 20934 & 20935 & 20936 & 20937 & 20938 & 20939 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20940 & 20941 & 20942 & 20944 & 20945 & 20946 & 20947 & 20948 & 20949 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 20950 & 20951 & 20952 & 20954 & 20955 & 20956 & 20957 & 20958 & 20959 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
20960 & 20961 & 20962 & 20964 & 20965 & 20966 & 20967 & 20968 & 20969 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|} 
& 20970 & 20971 & 20972 & 20974 & 20975 & 20976 & 20977 & 20978 & 20979 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
20980 & 20981 & 20982 & 20984 & 20985 & 20986 & 20987 & 20988 & 20989 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
100 & 20990 & 20991 & 20992 & 20994 & 20995 & 20996 & 20997 & 20998 & 20999 \\
\hline
\end{tabular}

\section*{(4) For axis 4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & Loworder & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & Loworder & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] \\
\hline 101 & 21000 & 21001 & 21002 & 21004 & 21005 & 21006 & 21007 & 21008 & 21009 \\
\hline 102 & 21010 & 2101 & 21012 & 21014 & 21015 & 21016 & 21017 & 21018 & 21019 \\
\hline 103 & 21020 & 21021 & 21022 & 21024 & 21025 & 21026 & 21027 & 21028 & 21029 \\
\hline 104 & 21030 & 21031 & 21032 & 21034 & 21035 & 21036 & 21037 & 21038 & 21039 \\
\hline 105 & 21040 & 21041 & 21042 & 21044 & 21045 & 21046 & 21047 & 21048 & 21049 \\
\hline 106 & 21050 & 2105 & 21052 & 21054 & 21055 & 21056 & 21057 & 21058 & 21059 \\
\hline 107 & 21060 & 21061 & 21062 & 21064 & 21065 & 21066 & 21067 & 21068 & 21069 \\
\hline 108 & 21070 & 21071 & 21072 & 21074 & 21075 & 21076 & 21077 & 21078 & 21079 \\
\hline 109 & 21080 & 21081 & 21082 & 21084 & 21085 & 21086 & 21087 & 21088 & 21089 \\
\hline 110 & 21090 & 21091 & 21092 & 21094 & 21095 & 21096 & 21097 & 21098 & 21099 \\
\hline 11 & 21100 & 2110 & 2110 & 21104 & 21105 & 21106 & 21107 & 21108 & 21109 \\
\hline 112 & 21110 & 21111 & 21112 & 21114 & 21115 & 21116 & 21117 & 21118 & 21119 \\
\hline 113 & 21120 & 21121 & 21122 & 21124 & 21125 & 21126 & 21127 & 21128 & 21129 \\
\hline 11 & 2113 & 2113 & 2113 & 21134 & 21135 & 21136 & 21137 & 21138 & 21139 \\
\hline 115 & 21140 & 21141 & 21142 & 21144 & 21145 & 21146 & 21147 & 21148 & 21149 \\
\hline 116 & 21150 & 2115 & 21152 & 21154 & 21155 & 21156 & 21157 & 21158 & 21159 \\
\hline 117 & 21160 & 21161 & 21162 & 21164 & 21165 & 21166 & 21167 & 21168 & 21169 \\
\hline 118 & 2117 & 2117 & 2117 & 21174 & 21175 & 21176 & 21177 & 21178 & 211 \\
\hline 119 & 211 & 2118 & 21 & 21184 & 21185 & 21186 & 21187 & 8 & 89 \\
\hline 120 & 21190 & 21191 & 21192 & 21194 & 21195 & 21196 & 21197 & 21198 & 21199 \\
\hline 121 & 21200 & 21201 & 21202 & 21204 & 21205 & 21206 & 21207 & 21208 & 21209 \\
\hline 122 & 21210 & 2121 & 2121 & 21214 & 21215 & 21216 & 21217 & 21218 & 21219 \\
\hline 123 & 2122 & 2122 & 2122 & 21224 & 21225 & 21226 & 21227 & 21228 & 21229 \\
\hline 124 & 2123 & 2123 & 21232 & 21234 & 21235 & 21236 & 21237 & 21238 & 21239 \\
\hline 125 & 21240 & 21241 & 21242 & 21244 & 21245 & 21246 & 21247 & 21248 & 21249 \\
\hline 126 & 21250 & 21251 & 21252 & 21254 & 21255 & 21256 & 21257 & 21258 & 21259 \\
\hline 127 & 21260 & 21261 & 21262 & 21264 & 21265 & 21266 & 21267 & 21268 & 21269 \\
\hline 128 & 21270 & 2127 & 2127 & 21274 & 21275 & 21276 & 21277 & 21278 & 21279 \\
\hline 129 & 212 & 2128 & 2128 & 21284 & 21285 & 21286 & 21287 & 21288 & 21289 \\
\hline 130 & 21290 & 21291 & 21292 & 21294 & 21295 & 21296 & 21297 & 21298 & 2129 \\
\hline 131 & 21300 & 21301 & 21302 & 21304 & 21305 & 21306 & 21307 & 21308 & 21309 \\
\hline 132 & 21310 & 2131 & 2131 & 21314 & 21315 & 21316 & 21317 & 21318 & 21319 \\
\hline 133 & 21320 & 2132 & 21322 & 21324 & 21325 & 21326 & 21327 & 21328 & 21329 \\
\hline 134 & 21330 & 2133 & 21332 & 21334 & 21335 & 21336 & 21337 & 21338 & 21339 \\
\hline 135 & 21340 & 21341 & 21342 & 21344 & 21345 & 21346 & 21347 & 21348 & 349 \\
\hline 136 & 21350 & 21351 & 21352 & 21354 & 21355 & 21356 & 21357 & 21358 & 21359 \\
\hline 137 & 21360 & 21361 & 21362 & 21364 & 21365 & 21366 & 21367 & 21368 & 21369 \\
\hline 138 & 21370 & 2137 & 21372 & 21374 & 21375 & 21376 & 21377 & 21378 & 21379 \\
\hline 139 & 21380 & 21381 & 21382 & 21384 & 21385 & 21386 & 21387 & 21388 & 21389 \\
\hline 140 & 21390 & 21391 & 21392 & 21394 & 21395 & 21396 & 21397 & 21398 & 21399 \\
\hline 141 & 21400 & 21401 & 21402 & 21404 & 21405 & 21406 & 21407 & 21408 & 21409 \\
\hline 142 & 21410 & 21411 & 21412 & 21414 & 21415 & 21416 & 21417 & 21418 & 21419 \\
\hline 143 & 21420 & 21421 & 21422 & 21424 & 21425 & 21426 & 21427 & 21428 & 21429 \\
\hline 144 & 21430 & 21431 & 21432 & 21434 & 21435 & 21436 & 21437 & 21438 & 21439 \\
\hline 145 & 21440 & 21441 & 21442 & 21444 & 21445 & 21446 & 21447 & 21448 & 21449 \\
\hline 146 & 21450 & 21451 & 21452 & 21454 & 21455 & 21456 & 21457 & 21458 & 21459 \\
\hline 147 & 21460 & 21461 & 21462 & 21464 & 21465 & 21466 & 21467 & 21468 & 21469 \\
\hline 148 & 21470 & 21471 & 21472 & 21474 & 21475 & 21476 & 21477 & 21478 & 21479 \\
\hline 149 & 21480 & 21481 & 21482 & 21484 & 21485 & 21486 & 21487 & 21488 & 21489 \\
\hline 150 & 21490 & 21491 & 21492 & 21494 & 21495 & 21496 & 21497 & 21498 & 21499 \\
\hline
\end{tabular}

\section*{(4) For axis 4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command
speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & \[
\begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & Loworder & High-
order & \[
\begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}
\] & Highorder \\
\hline 201 & 22000 & 22001 & 22002 & 22004 & 22005 & 22006 & 22007 & 22008 & 22009 \\
\hline 202 & 22010 & 22011 & 22012 & 22014 & 22015 & 22016 & 22017 & 22018 & 22019 \\
\hline 203 & 22020 & 22021 & 22022 & 22024 & 22025 & 22026 & 22027 & 22028 & 22029 \\
\hline 204 & 22030 & 22031 & 22032 & 22034 & 22035 & 22036 & 22037 & 22038 & 22039 \\
\hline 205 & 22040 & 22041 & 22042 & 22044 & 22045 & 22046 & 22047 & 22048 & 22049 \\
\hline 206 & 22050 & 22051 & 22052 & 22054 & 22055 & 22056 & 22057 & 22058 & 22059 \\
\hline 207 & 22060 & 22061 & 22062 & 22064 & 22065 & 22066 & 22067 & 22068 & 22069 \\
\hline 208 & 22070 & 22071 & 22072 & 22074 & 22075 & 22076 & 22077 & 22078 & 22079 \\
\hline 209 & 22080 & 22081 & 22082 & 22084 & 22085 & 22086 & 22087 & 22088 & 22089 \\
\hline 210 & 22090 & 22091 & 22092 & 22094 & 22095 & 22096 & 22097 & 22098 & 22099 \\
\hline 21 & 22100 & 22101 & 22102 & 22104 & 22105 & 22106 & 22107 & 08 & 22109 \\
\hline 212 & 22110 & 22111 & 22112 & 22114 & 22115 & 22116 & 22117 & 22118 & 22119 \\
\hline 213 & 22120 & 22121 & 22122 & 22124 & 22125 & 22126 & 22127 & 22128 & 22129 \\
\hline 214 & 2213 & 2213 & 2213 & 22134 & 22135 & 22136 & 22137 & 22138 & 22139 \\
\hline 215 & 22140 & 22141 & 22142 & 22144 & 22145 & 22146 & 22147 & 22148 & 22149 \\
\hline 216 & 22150 & 22151 & 22152 & 22154 & 22155 & 22156 & 22157 & 22158 & 22159 \\
\hline 217 & 22160 & 22161 & 22162 & 22164 & 22165 & 22166 & 22167 & 22168 & 22169 \\
\hline 218 & 22170 & 22171 & 22172 & 22174 & 22175 & 22176 & 22177 & 22178 & 22179 \\
\hline 219 & 2218 & 2218 & 22 & 22184 & 22185 & 22186 & 22187 & 22188 & 89 \\
\hline 220 & 22190 & 22191 & 22192 & 22194 & 22195 & 22196 & 22197 & 22198 & 22199 \\
\hline 221 & 22200 & 22201 & 22202 & 22204 & 22205 & 22206 & 22207 & 22208 & 22209 \\
\hline 222 & 22210 & 22211 & 22212 & 22214 & 22215 & 22216 & 22217 & 22218 & 22219 \\
\hline 223 & 22220 & 22221 & 22222 & 22224 & 22225 & 22226 & 22227 & 22228 & 22229 \\
\hline 224 & 22230 & 22231 & 22232 & 22234 & 22235 & 22236 & 22237 & 22238 & 22239 \\
\hline 225 & 22240 & 22241 & 22242 & 22244 & 22245 & 22246 & 22247 & 22248 & 22249 \\
\hline 226 & 22250 & 22251 & 22252 & 22254 & 22255 & 22256 & 22257 & 22258 & 22259 \\
\hline 227 & 22260 & 22261 & 22262 & 22264 & 22265 & 22266 & 22267 & 22268 & 22269 \\
\hline 228 & 22270 & 2227 & 22272 & 22274 & 22275 & 22276 & 22277 & 22278 & 22279 \\
\hline 229 & 22280 & 22281 & 22282 & 22284 & 22285 & 22286 & 22287 & 22288 & 22289 \\
\hline 230 & 22290 & 22291 & 22292 & 22294 & 22295 & 22296 & 22297 & 22298 & 2229 \\
\hline 231 & 22300 & 22301 & 22302 & 22304 & 22305 & 22306 & 22307 & 22308 & 22309 \\
\hline 232 & 22310 & 22311 & 22312 & 22314 & 22315 & 22316 & 22317 & 22318 & 22319 \\
\hline 233 & 22320 & 22321 & 22322 & 22324 & 22325 & 22326 & 22327 & 22328 & 22329 \\
\hline 234 & 22330 & 2233 & 22332 & 22334 & 22335 & 22336 & 22337 & 22338 & 22339 \\
\hline 235 & 22340 & 22341 & 22342 & 22344 & 22345 & 22346 & 22347 & 22348 & 22349 \\
\hline 236 & 22350 & 22351 & 22352 & 22354 & 22355 & 22356 & 22357 & 22358 & 22359 \\
\hline 237 & 22360 & 22361 & 22362 & 22364 & 22365 & 22366 & 22367 & 22368 & 22369 \\
\hline 238 & 22370 & 22371 & 22372 & 22374 & 22375 & 22376 & 22377 & 22378 & 22379 \\
\hline 239 & 223 & 22381 & 22382 & 22384 & 22385 & 22386 & 22387 & 22388 & 22389 \\
\hline 240 & 22390 & 22391 & 22392 & 22394 & 22395 & 22396 & 22397 & 22398 & 22399 \\
\hline 241 & 22400 & 22401 & 22402 & 22404 & 22405 & 22406 & 22407 & 22408 & 22409 \\
\hline 242 & 22410 & 22411 & 22412 & 22414 & 22415 & 22416 & 22417 & 22418 & 22419 \\
\hline 243 & 22420 & 22421 & 22422 & 22424 & 22425 & 22426 & 22427 & 22428 & 22429 \\
\hline 244 & 22430 & 22431 & 22432 & 22434 & 22435 & 22436 & 22437 & 22438 & 22439 \\
\hline 245 & 22440 & 22441 & 22442 & 22444 & 22445 & 22446 & 22447 & 22448 & 22449 \\
\hline 246 & 22450 & 22451 & 22452 & 22454 & 22455 & 22456 & 22457 & 22458 & 22459 \\
\hline 247 & 22460 & 22461 & 22462 & 22464 & 22465 & 22466 & 22467 & 22468 & 22469 \\
\hline 248 & 22470 & 22471 & 22472 & 22474 & 22475 & 22476 & 22477 & 22478 & 22479 \\
\hline 249 & 22480 & 22481 & 22482 & 22484 & 22485 & 22486 & 22487 & 22488 & 22489 \\
\hline 250 & 22490 & 22491 & 22492 & 22494 & 22495 & 22496 & 22497 & 22498 & 22499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|r|}{Arc data} \\
\hline & & & & Loworder & Highorder & Loworder & \[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { High- } \\
\text { order }
\end{array} \\
\hline
\end{array}
\] & Loworder & order \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline 251 & 22500 & 22501 & 22502 & 22504 & 22505 & 22506 & 22507 & 22508 & 22509 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
252 & 22510 & 22511 & 22512 & 22514 & 22515 & 22516 & 22517 & 22518 & 22519 \\
\hline
\end{tabular}

 \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|}
255 & 22540 & 22541 & 22542 & 22544 & 22545 & 22546 & 22547 & 22548 & 22549 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
256 & 22550 & 22551 & 22552 & 22554 & 22555 & 22556 & 22557 & 22558 & 22559 \\
\hline
\end{tabular}
 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
258 & 22570 & 22571 & 22572 & 22574 & 22575 & 22576 & 22577 & 22578 & 22579 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
259 & 22580 & 22581 & 22582 & 22584 & 22585 & 22586 & 22587 & 22588 & 22589 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
260 & 22590 & 22591 & 22592 & 22594 & 22595 & 22596 & 22597 & 22598 & 22599 \\
\hline
\end{tabular}
 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
262 & 22610 & 22611 & 22612 & 22614 & 22615 & 22616 & 22617 & 22618 & 22619
\end{tabular}




 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
268 & 22670 & 22671 & 22672 & 22674 & 22675 & 22676 & 22677 & 22678 & 22679 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
269 & 22680 & 22681 & 22682 & 22684 & 22685 & 22686 & 22687 & 22688 & 22689 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
270 & 22690 & 22691 & 22692 & 22694 & 22695 & 22696 & 22697 & 22698 & 22699 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
22700 & 22701 & 22702 & 22704 & 22705 & 22706 & 22707 & 22708 & 22709 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
22710 & 22711 & 22712 & 22714 & 22715 & 22716 & 22717 & 22718 & 22719 \\
\hline
\end{tabular}

 \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
22740 & 22741 & 22742 & 22744 & 22745 & 22746 & 22747 & 22748 & 22749 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|}
22750 & 22751 & 22752 & 22754 & 22755 & 22756 & 22757 & 22758 & 22759 \\
\hline
\end{tabular}
 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
22770 & 22771 & 22772 & 22774 & 22775 & 22776 & 22777 & 22778 & 22779 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
22780 & 22781 & 22782 & 22784 & 22785 & 22786 & 22787 & 22788 & 22789 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
22790 & 22791 & 22792 & 22794 & 22795 & 22796 & 22797 & 22798 & 22799 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|}
22800 & 22801 & 22802 & 22804 & 22805 & 22806 & 22807 & 22808 & 22809 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
22810 & 22811 & 22812 & 22814 & 22815 & 22816 & 22817 & 22818 & 22819 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
22820 & 22821 & 22822 & 22824 & 22825 & 22826 & 22827 & 22828 & 22829 \\
\hline
\end{tabular}
 \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
285 & 22840 & 22841 & 22842 & 22844 & 22845 & 22846 & 22847 & 22848 & 22849 \\
\hline
\end{tabular}
 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
287 & 22860 & 22861 & 22862 & 22864 & 22865 & 22866 & 22867 & 22868 & 22869 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
288 & 22870 & 22871 & 22872 & 22874 & 22875 & 22876 & 22877 & 22878 & 22879 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
289 & 22880 & 22881 & 22882 & 22884 & 22885 & 22886 & 22887 & 22888 & 22889 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
290 & 22890 & 22891 & 22892 & 22894 & 22895 & 22896 & 22897 & 22898 & 22899 \\
\hline
\end{tabular}



 \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
295 & 22940 & 22941 & 22942 & 22944 & 22945 & 22946 & 22947 & 22948 & 22949 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline 296 & 22950 & 22951 & 22952 & 22954 & 22955 & 22956 & 22957 & 22958 & 22959 \\
\hline
\end{tabular}





\section*{(4) For axis 4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command
speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & Highorder & Loworder & Highorder & \[
\begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}
\] & Highorder \\
\hline 301 & 23000 & 23001 & 23002 & 23004 & 23005 & 23006 & 23007 & 23008 & 23009 \\
\hline 302 & 23010 & 23011 & 23012 & 23014 & 23015 & 23016 & 23017 & 23018 & 23019 \\
\hline 303 & 23020 & 23021 & 23022 & 23024 & 23025 & 23026 & 23027 & 23028 & 23029 \\
\hline 304 & 23030 & 23031 & 23032 & 23034 & 23035 & 23036 & 23037 & 23038 & 23039 \\
\hline 305 & 23040 & 23041 & 23042 & 23044 & 23045 & 23046 & 23047 & 23048 & 23049 \\
\hline 306 & 23050 & 23051 & 23052 & 23054 & 23055 & 23056 & 23057 & 23058 & 23059 \\
\hline 307 & 23060 & 23061 & 23062 & 23064 & 23065 & 23066 & 23067 & 23068 & 23069 \\
\hline 308 & 23070 & 23071 & 23072 & 23074 & 23075 & 23076 & 23077 & 23078 & 23079 \\
\hline 309 & 23080 & 23081 & 23082 & 23084 & 23085 & 23086 & 23087 & 23088 & 23089 \\
\hline 310 & 23090 & 23091 & 23092 & 23094 & 23095 & 23096 & 23097 & 23098 & 23099 \\
\hline 311 & 23100 & 23101 & 23102 & 23104 & 23105 & 23106 & 23107 & 23108 & 23109 \\
\hline 312 & 23110 & 23111 & 23112 & 23114 & 23115 & 23116 & 23117 & 23118 & 23119 \\
\hline 313 & 23120 & 23121 & 23122 & 23124 & 23125 & 23126 & 23127 & 23128 & 23129 \\
\hline 31 & 2313 & 2313 & 23 & 2313 & 23135 & 23136 & 23137 & 23138 & 23139 \\
\hline 315 & 23140 & 23141 & 23142 & 23144 & 23145 & 23146 & 23147 & 23148 & 23149 \\
\hline 316 & 23150 & 23151 & 23152 & 23154 & 23155 & 23156 & 23157 & 23158 & 23159 \\
\hline 317 & 23160 & 23161 & 23162 & 23164 & 23165 & 23166 & 23167 & 23168 & 23169 \\
\hline 318 & 23170 & 2317 & 23172 & 23174 & 23175 & 23176 & 23177 & 23178 & 23179 \\
\hline 319 & 231 & 23 & 23 & 23 & 23185 & 23186 & 23187 & 23188 & 23189 \\
\hline 320 & 23190 & 23191 & 23192 & 23194 & 23195 & 23196 & 23197 & 23198 & 23199 \\
\hline 321 & 23200 & 23201 & 23202 & 23204 & 23205 & 23206 & 23207 & 23208 & 23209 \\
\hline 322 & 23210 & 23211 & 23212 & 23214 & 23215 & 23216 & 23217 & 23218 & 23219 \\
\hline 323 & 23220 & 23221 & 23222 & 23224 & 23225 & 23226 & 23227 & 23228 & 23229 \\
\hline 324 & 23230 & 23231 & 23232 & 23234 & 23235 & 23236 & 23237 & 23238 & 23239 \\
\hline 325 & 23240 & 23241 & 23242 & 23244 & 23245 & 23246 & 23247 & 23248 & 23249 \\
\hline 326 & 23250 & 23251 & 23252 & 23254 & 23255 & 23256 & 23257 & 23258 & 23259 \\
\hline 327 & 23260 & 23261 & 23262 & 23264 & 23265 & 23266 & 23267 & 23268 & 23269 \\
\hline 328 & 23270 & 2327 & 23272 & 23274 & 23275 & 23276 & 23277 & 23278 & 23279 \\
\hline 329 & 23280 & 23281 & 23282 & 23284 & 23285 & 23286 & 23287 & 23288 & 23289 \\
\hline 330 & 23290 & 23291 & 23292 & 23294 & 23295 & 23296 & 23297 & 23298 & 2329 \\
\hline 331 & 23300 & 23301 & 23302 & 23304 & 23305 & 23306 & 23307 & 23308 & 23309 \\
\hline 332 & 23310 & 23311 & 23312 & 23314 & 23315 & 23316 & 23317 & 23318 & 23319 \\
\hline 333 & 23320 & 23321 & 23322 & 23324 & 23325 & 23326 & 23327 & 23328 & 23329 \\
\hline 334 & 23 & 2333 & 23332 & 2333 & 23335 & 23336 & 23337 & 23338 & 23339 \\
\hline 335 & 23340 & 23341 & 23342 & 23344 & 23345 & 23346 & 23347 & 23348 & 23349 \\
\hline 336 & 23350 & 23351 & 23352 & 23354 & 23355 & 23356 & 23357 & 23358 & 23359 \\
\hline 337 & 23360 & 23361 & 23362 & 23364 & 23365 & 23366 & 23367 & 23368 & 23369 \\
\hline 338 & 23370 & 23371 & 23372 & 23374 & 23375 & 23376 & 23377 & 23378 & 23379 \\
\hline 339 & 23380 & 23381 & 23382 & 23384 & 23385 & 23386 & 23387 & 23388 & 23389 \\
\hline 340 & 23390 & 23391 & 23392 & 23394 & 23395 & 23396 & 23397 & 23398 & 23399 \\
\hline 341 & 23400 & 23401 & 23402 & 23404 & 23405 & 23406 & 23407 & 23408 & 23409 \\
\hline 342 & 23410 & 23411 & 23412 & 23414 & 23415 & 23416 & 23417 & 23418 & 23419 \\
\hline 343 & 23420 & 23421 & 23422 & 23424 & 23425 & 23426 & 23427 & 23428 & 23429 \\
\hline 344 & 23430 & 23431 & 23432 & 23434 & 23435 & 23436 & 23437 & 23438 & 23439 \\
\hline 345 & 23440 & 23441 & 23442 & 23444 & 23445 & 23446 & 23447 & 23448 & 23449 \\
\hline 346 & 23450 & 23451 & 23452 & 23454 & 23455 & 23456 & 23457 & 23458 & 23459 \\
\hline 347 & 23460 & 23461 & 23462 & 23464 & 23465 & 23466 & 23467 & 23468 & 23469 \\
\hline 348 & 23470 & 23471 & 23472 & 23474 & 23475 & 23476 & 23477 & 23478 & 23479 \\
\hline 349 & 23480 & 23481 & 23482 & 23484 & 23485 & 23486 & 23487 & 23488 & 23489 \\
\hline 350 & 23490 & 23491 & 23492 & 23494 & 23495 & 23496 & 23497 & 23498 & 23499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Data & \multirow[t]{2}{*}{Positioning identifier} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { M } \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell time} & & & & ss & \multicolumn{2}{|l|}{Arc data} \\
\hline No. & & & & Loworder & Highorder & Loworder & order & order & ord \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
351 & 23500 & 23501 & 23502 & 23504 & 23505 & 23506 & 23507 & 23508 & 23509 \\
\hline
\end{tabular}


 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
355 & 23540 & 23541 & 23542 & 23544 & 23545 & 23546 & 23547 & 23548 & 23549 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|}
23550 & 23551 & 23552 & 23554 & 23555 & 23556 & 23557 & 23558 & 23559 \\
\hline
\end{tabular}




 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
23610 & 23611 & 23612 & 23614 & 23615 & 23616 & 23617 & 23618 & 23619 \\
\hline
\end{tabular}

 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
23640 & 23641 & 23642 & 23644 & 23645 & 23646 & 23647 & 23648 & 23649 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
23650 & 23651 & 23652 & 23654 & 23655 & 23656 & 23657 & 23658 & 23659 \\
\hline
\end{tabular}


 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
23690 & 23691 & 23692 & 23694 & 23695 & 23696 & 23697 & 23698 & 23699 \\
\hline
\end{tabular}
 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
23710 & 23711 & 23712 & 23714 & 23715 & 23716 & 23717 & 23718 & 23719 \\
\hline
\end{tabular}

 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
23740 & 23741 & 23742 & 23744 & 23745 & 23746 & 23747 & 23748 & 23749 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|}
23750 & 23751 & 23752 & 23754 & 23755 & 23756 & 23757 & 23758 & 23759 \\
\hline
\end{tabular}
 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
23770 & 23771 & 23772 & 23774 & 23775 & 23776 & 23777 & 23778 & 23779 \\
\hline
\end{tabular}
 \begin{tabular}{ll|l|l|l|l|l|l|l|l|}
23790 & 23791 & 23792 & 23794 & 23795 & 23796 & 23797 & 23798 & 23799 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
23800 & 23801 & 23802 & 23804 & 23805 & 23806 & 23807 & 23808 & 23809 \\
\hline
\end{tabular}


 \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
23840 & 23841 & 23842 & 23844 & 23845 & 23846 & 23847 & 23848 & 23849 \\
\hline
\end{tabular}

 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
23870 & 23871 & 23872 & 23874 & 23875 & 23876 & 23877 & 23878 & 23879 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
23880 & 23881 & 23882 & 23884 & 23885 & 23886 & 23887 & 23888 & 23889 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
23890 & 23891 & 23892 & 23894 & 23895 & 23896 & 23897 & 23898 & 23899 \\
\hline
\end{tabular}



 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
23940 & 23941 & 23942 & 23944 & 23945 & 23946 & 23947 & 23948 & 23949 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|}
23950 & 23951 & 23952 & 23954 & 23955 & 23956 & 23957 & 23958 & 23959 \\
\hline
\end{tabular}

 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l|l|}
399 & 23980 & 23981 & 23982 & 23984 & 23985 & 23986 & 23987 & 23988 & 23989 \\
\hline
\end{tabular}


\section*{(4) For axis 4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Data No.} & \multirow[t]{2}{*}{Positioning identifier} & \multirow[t]{2}{*}{M code} & \multirow[t]{2}{*}{Dwell time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} \\
\hline & & & & Loworder & Highorder & Loworder & High-
order & Loworder & Highorder \\
\hline 401 & 24000 & 24001 & 24002 & 24004 & 24005 & 24006 & 24007 & 24008 & 24009 \\
\hline 402 & 24010 & 24011 & 24012 & 24014 & 24015 & 24016 & 24017 & 24018 & 24019 \\
\hline 403 & 24020 & 24021 & 24022 & 24024 & 24025 & 24026 & 24027 & 24028 & 24029 \\
\hline 404 & 24030 & 24031 & 24032 & 24034 & 24035 & 24036 & 24037 & 24038 & 24039 \\
\hline 405 & 24040 & 24041 & 24042 & 24044 & 24045 & 24046 & 24047 & 24048 & 24049 \\
\hline 406 & 24050 & 24051 & 24052 & 24054 & 24055 & 24056 & 24057 & 24058 & 24059 \\
\hline 407 & 24060 & 24061 & 24062 & 24064 & 24065 & 24066 & 24067 & 24068 & 24069 \\
\hline 408 & 24070 & 24071 & 24072 & 24074 & 24075 & 24076 & 24077 & 24078 & 24079 \\
\hline 409 & 24080 & 24081 & 24082 & 24084 & 24085 & 24086 & 24087 & 24088 & 24089 \\
\hline 410 & 24090 & 24091 & 24092 & 24094 & 24095 & 24096 & 24097 & 24098 & 9 \\
\hline 4 & 24100 & 24101 & 24102 & 24104 & 24105 & 24106 & 24107 & 24108 & 24109 \\
\hline 412 & 24110 & 24111 & 24112 & 24114 & 24115 & 24116 & 24117 & 24118 & 24119 \\
\hline 413 & 24120 & 24121 & 24122 & 24124 & 24125 & 24126 & 24127 & 24128 & 24129 \\
\hline 41 & 24130 & 2413 & 2413 & 2413 & 24135 & 24136 & 24137 & 24138 & 24139 \\
\hline 415 & 24140 & 24141 & 24142 & 24144 & 24145 & 24146 & 24147 & 24148 & 24149 \\
\hline 416 & 24150 & 24151 & 24152 & 24154 & 24155 & 24156 & 24157 & 24158 & 24159 \\
\hline 417 & 24160 & 24161 & 24162 & 24164 & 24165 & 24166 & 24167 & 24168 & 24169 \\
\hline 418 & 24170 & 24171 & 24172 & 24174 & 24175 & 24176 & 24177 & 24178 & 24179 \\
\hline 419 & 24180 & 24181 & 24182 & 24 & 24185 & 24186 & 24187 & 24188 & 9 \\
\hline 420 & 24190 & 24191 & 24192 & 24194 & 24195 & 24196 & 24197 & 24198 & 24199 \\
\hline 421 & 24200 & 24201 & 24202 & 24204 & 24205 & 24206 & 24207 & 24208 & 24209 \\
\hline 422 & 24210 & 24211 & 24212 & 24214 & 24215 & 24216 & 24217 & 24218 & 242 \\
\hline 423 & 24220 & 24221 & 24222 & 2422 & 24225 & 24226 & 24227 & 24228 & 24229 \\
\hline 424 & 24230 & 24231 & 24232 & 24234 & 24235 & 24236 & 24237 & 24238 & 24239 \\
\hline 425 & 24240 & 24241 & 24242 & 24244 & 24245 & 24246 & 24247 & 24248 & 24249 \\
\hline 426 & 24250 & 24251 & 24252 & 24254 & 24255 & 24256 & 24257 & 24258 & 24259 \\
\hline 427 & 24260 & 24261 & 24262 & 24264 & 24265 & 24266 & 24267 & 24268 & 24269 \\
\hline 428 & 24270 & 24271 & 24272 & 24274 & 24275 & 24276 & 24277 & 24278 & 24279 \\
\hline 429 & 24280 & 24281 & 24282 & 24284 & 24285 & 24286 & 24287 & 24288 & 24289 \\
\hline 430 & 24290 & 24291 & 24292 & 24294 & 24295 & 24296 & 24297 & 24298 & 24299 \\
\hline 431 & 24300 & 24301 & 24302 & 24304 & 24305 & 24306 & 24307 & 24308 & 24309 \\
\hline 432 & 24310 & 24311 & 24312 & 24314 & 24315 & 24316 & 24317 & 24318 & 24319 \\
\hline 433 & 24320 & 24321 & 24322 & 24324 & 24325 & 24326 & 24327 & 24328 & 24329 \\
\hline 434 & 24330 & 24331 & 24332 & 24334 & 24335 & 24336 & 24337 & 24338 & 24339 \\
\hline 435 & 24340 & 24341 & 24342 & 24344 & 24345 & 24346 & 24347 & 24348 & 24349 \\
\hline 436 & 24350 & 24351 & 24352 & 24354 & 24355 & 24356 & 24357 & 24358 & 24359 \\
\hline 437 & 24360 & 24361 & 24362 & 24364 & 24365 & 24366 & 24367 & 24368 & 24369 \\
\hline 438 & 24370 & 24371 & 24372 & 24374 & 24375 & 24376 & 24377 & 24378 & 24379 \\
\hline 439 & 24380 & 24381 & 24382 & 24384 & 24385 & 24386 & 24387 & 24388 & 24389 \\
\hline 440 & 24390 & 24391 & 24392 & 24394 & 24395 & 24396 & 24397 & 24398 & 24399 \\
\hline 441 & 24400 & 24401 & 24402 & 24404 & 24405 & 24406 & 24407 & 24408 & 24409 \\
\hline 442 & 24410 & 24411 & 24412 & 24414 & 24415 & 24416 & 24417 & 24418 & 24419 \\
\hline 443 & 24420 & 24421 & 24422 & 24424 & 24425 & 24426 & 24427 & 24428 & 2442 \\
\hline 444 & 24430 & 24431 & 24432 & 24434 & 24435 & 24436 & 24437 & 24438 & 24439 \\
\hline 445 & 24440 & 24441 & 24442 & 24444 & 24445 & 24446 & 24447 & 24448 & 24449 \\
\hline 446 & 24450 & 24451 & 24452 & 24454 & 24455 & 24456 & 24457 & 24458 & 24459 \\
\hline 447 & 24460 & 24461 & 24462 & 24464 & 24465 & 24466 & 24467 & 24468 & 24469 \\
\hline 448 & 24470 & 24471 & 24472 & 24474 & 24475 & 24476 & 24477 & 24478 & 24479 \\
\hline 449 & 24480 & 24481 & 24482 & 24484 & 24485 & 24486 & 24487 & 24488 & 24489 \\
\hline 450 & 24490 & 24491 & 24492 & 24494 & 24495 & 24496 & 24497 & 24498 & 24499 \\
\hline
\end{tabular}

\section*{(4) For axis 4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Data } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{Positioning identi-
\(\qquad\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Command } \\
\text { speed }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|l|}{Arc data} & \multirow[b]{2}{*}{Data No.} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Posi- } \\
\text { tioning } \\
\text { identi- } \\
\text { fier }
\end{array} \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{M} \\
\text { code }
\end{gathered}
\]} & \multirow[b]{2}{*}{Dwell
time} & \multicolumn{2}{|l|}{Command speed} & \multicolumn{2}{|l|}{Positioning address} & \multicolumn{2}{|r|}{Arc data} \\
\hline & & & & \[
\begin{array}{|l|}
\hline \text { Low- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { Horder }
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \text { Low- } \\
\text { orddo }
\end{array}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { order }
\end{aligned}
\] & & & & & \[
\begin{aligned}
& \text { Low- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { High- } \\
\text { order }
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Low- } \\
& \text { Lorder }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { High- } \\
\text { order }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { Low- } \\
& \text { order }
\end{aligned}
\] & \[
\begin{aligned}
& \text { High- } \\
& \text { roger }
\end{aligned}
\]
rder \\
\hline & 25000 & 25 & 25002 & 25 & 25 & 25 & 25 & 25008 & 25009 & & 25500 & & & 04 & 25505 & 25506 & 25507 & 25508 & 25509 \\
\hline & 25010 & & 250 & 25 & 25015 & 25 & 25017 & 25018 & 25 & & & & & 25514 & 25515 & 16 & 25517 & 25518 & \\
\hline 503 & 25020 & & 25022 & 25024 & 25025 & 25026 & 25027 & 25028 & 25029 & 553 & 25520 & 25521 & 25522 & 25524 & 25525 & 25526 & 25527 & 25528 & 25529 \\
\hline 504 & 25030 & & 25032 & 25034 & 25 & 25036 & 25037 & 25038 & 25039 & 554 & 25530 & & 25532 & 25534 & 25535 & 25536 & 25537 & 25538 & \\
\hline 505 & 25040 & 25041 & 25042 & 25044 & 25045 & 25046 & 25047 & 25048 & 25049 & 555 & 25540 & 25541 & 25542 & 25544 & 25545 & 25546 & 25547 & 25548 & 25549 \\
\hline 506 & 25050 & 25051 & 25052 & 25054 & 25055 & 25056 & 25057 & 25058 & 25059 & 556 & 25550 & 25551 & 25552 & 25554 & 25555 & 25556 & 25557 & 25558 & 25559 \\
\hline 507 & 25060 & 25061 & 25062 & 25064 & 25065 & 25066 & 25067 & 25068 & 25069 & 557 & 25560 & & 25562 & 25564 & 25565 & 25566 & 25567 & 25568 & 25569 \\
\hline 508 & 25070 & & & 25074 & 25075 & 25076 & 25077 & 25078 & 2507 & & 25570 & & & 25574 & 25575 & 25576 & 25577 & 25578 & 579 \\
\hline 509 & & & & 25084 & 25085 & 25086 & 25087 & 25088 & 2508 & & 25580 & & 25582 & 25584 & 25585 & 25586 & 25587 & 25588 & \\
\hline 510 & 2509 & 2509 & 25092 & 2509 & 25095 & 25096 & 250 & 2509 & 2509 & 560 & 25590 & 25 & 25592 & 25594 & 25595 & 25596 & 2559 & 25598 & \\
\hline & 25100 & 25101 & 25102 & 25104 & 25105 & 25106 & 25107 & 25108 & 25109 & & & & & 25604 & 25605 & 6 & 25607 & & \\
\hline 512 & 25110 & 25 & & 25114 & 251 & 25116 & 25117 & 25118 & 25119 & 562 & 25610 & 25611 & 25612 & 614 & 25615 & 25616 & 25617 & 25618 & \\
\hline 513 & 25120 & 25121 & 25122 & 25124 & 25125 & 25126 & 25127 & 25128 & & 563 & 25620 & 25621 & & 25624 & 25625 & 25626 & 25627 & 25628 & \\
\hline 514 & 25130 & & 25132 & 25134 & 25135 & 25136 & 25137 & 25138 & & & 25630 & & & 25634 & 25635 & 25636 & 25637 & 25638 & 25639 \\
\hline 515 & 25140 & 25141 & 25142 & 25144 & 25145 & 25146 & 25147 & 25148 & 25149 & 565 & 25640 & 25641 & 25642 & 25644 & 25645 & 25646 & 25647 & 25648 & \\
\hline 51 & 25150 & 25151 & 25152 & 25154 & 25 & 25156 & 25157 & 25158 & 25159 & & 25650 & 25651 & 25652 & 25654 & 25655 & 25656 & 25657 & 25658 & \\
\hline 51 & 25160 & 25161 & 25162 & 25164 & 25165 & 25166 & 25167 & 25168 & 2516 & & 25660 & 25661 & 25662 & 25664 & 25665 & 25666 & 25667 & 25668 & \\
\hline 518 & 25170 & 25 & 25172 & 25174 & 25175 & 25 & 25177 & 78 & & 568 & & 25671 & & 574 & 25675 & 25676 & 25677 & 25678 & \\
\hline 519 & 25180 & 25181 & & 25184 & 25185 & 25186 & & & & & & & & 25684 & & & & 2568 & \\
\hline 520 & 25190 & 25191 & & 25194 & & 25196 & & 25198 & & 570 & & 25691 & & 25694 & 25695 & & & 25698 & \\
\hline 521 & 25200 & 25201 & & 25204 & 25205 & & & & & & & & & 25704 & & 25706 & & & \\
\hline 522 & 25210 & 25 & 25212 & 25214 & 25 & 25 & 25217 & 25218 & 25219 & 572 & & & & 25714 & & 25716 & 25717 & 25718 & \\
\hline 523 & 2522 & 25221 & 25222 & 2522 & 252 & 25 & 25227 & 25228 & 252 & & & & 25722 & 25724 & 25725 & 25726 & 25727 & 25728 & \\
\hline 524 & 2523 & 25231 & & 25234 & 25235 & 25236 & & 25238 & & & & & & 25734 & & 25736 & & & \\
\hline 525 & 25240 & 241 & 42 & 2524 & 245 & 25246 & 25247 & 248 & 25249 & 575 & 5740 & 25741 & 25742 & 25744 & 257 & 574 & 2574 & 25748 & \\
\hline 52 & 25250 & & & & & & & & & & & & & & & & & & \\
\hline 527 & 25260 & 25 & 25262 & 25264 & 25265 & 25266 & 25267 & 25268 & 25269 & & & & & 25764 & 25765 & 25766 & 25767 & 25768 & \\
\hline 528 & 2527 & 25 & 25 & 25274 & 25 & 25 & 25277 & 25278 & 252 & & & & & 25774 & & 25776 & 25777 & 25778 & \\
\hline 52 & 2528 & & & 25284 & 25285 & 25286 & & & 252 & & & & & 25784 & 25785 & 25786 & & & \\
\hline 530 & 25290 & 25291 & 25292 & 25294 & 25295 & 2529 & 25297 & 25298 & 25299 & 580 & 25790 & 25791 & 25792 & 2579 & 25795 & 25796 & 25797 & 25798 & \\
\hline 531 & 2530 & & & 25304 & 25305 & & & & & & & & & & & & & & \\
\hline 532 & 25310 & 25311 & 25312 & 25314 & 25315 & 25316 & 25317 & 25318 & & & & & & 25814 & & & 25817 & 25818 & \\
\hline 533 & 25320 & 25321 & & 25324 & 25325 & 25326 & & 25328 & & & & & & 25824 & & & 25827 & 25828 & \\
\hline 53 & 2533 & 25331 & & 25334 & 253 & 25336 & & 253 & 253 & & & & & 25834 & & 25836 & 25837 & 25838 & \\
\hline 535 & 25340 & 25 & 25342 & 25344 & 25345 & 25346 & 25347 & 25348 & 25349 & & 25840 & 258 & 258 & 258 & 258 & 258 & 25847 & 25848 & \\
\hline & & & & & 25355 & & & & & & & & & 25854 & 25855 & & & & \\
\hline 537 & 2536 & 25361 & & 25364 & 25 & 25366 & 25367 & 25368 & 25369 & & & & & 25864 & & & & 25868 & \\
\hline 538 & 253 & & & & & & & & & & & & & 25874 & & & 25877 & 25878 & \\
\hline 53 & & & & & & & & & & & & & & & & & & 25888 & \\
\hline 540 & 25390 & 25391 & & 25394 & 25395 & 25396 & & 25398 & & & & 25891 & & 25894 & 25895 & 25896 & 25897 & 25898 & \\
\hline 541 & & & & & & & & & & & & & & & & & & & \\
\hline 54 & 2541 & 25411 & & 25414 & 25415 & 25416 & & 25418 & 25419 & & & & 25912 & 2 & 25915 & 25916 & 25917 & 25918 & \\
\hline 543 & & & & & & & & 25428 & & & & & & 25924 & & 25926 & & 25928 & \\
\hline 544 & & & & & & & & & & & & & & 25934 & & & & & \\
\hline 545 & 25440 & 25441 & & 25444 & 25445 & 25446 & & 25448 & 25449 & 595 & & 25941 & 25942 & 259 & 25945 & 25946 & 25947 & 259 & 2594 \\
\hline 546 & 25450 & 25451 & 25452 & 25454 & 25455 & 25456 & 25457 & 25458 & 25459 & 596 & & & & 259 & 25955 & & & 25958 & \\
\hline 547 & 25460 & 25461 & & 25464 & 25465 & 25466 & 25467 & 25468 & & 597 & & & 25962 & 25964 & 25965 & 25966 & 25967 & 25968 & \\
\hline 548 & 25470 & 25471 & & 25474 & 254 & 25 & 25477 & 25478 & 25479 & & 25970 & 25971 & 25972 & 2597 & 25 & 25976 & 25977 & 25978 & 25979 \\
\hline 549 & 25480 & & & & & & & & & & & & & 25984 & 25985 & & & 2598 & \\
\hline 550 & 2549 & 25 & 25492 & 25494 & 25495 & 254 & 25497 & 25498 & 25499 & 600 & 25990 & 25991 & 259 & 25994 & 2599 & 25996 & 259 & 2599 & 259 \\
\hline
\end{tabular}

\section*{Appendix 4 Connection examples with servo amplifiers manufactured by MITSUBISHI Electric Corporation}

\section*{Appendix 4.1 Connection example of QD75D \(\square \mathrm{N}\) and MR-J3- \(\square \mathrm{A}\) (Differential driver) *5}


\section*{REMARK}
(1) It is recommended to make differential driver connection since differential driver connection is more excellent than open collector connection in max. output pulse and max. connection distance between servos. (Refer to Section 3.1 "Performance specifications".)
(2) \(*\) 1:The logic for each I/O terminal can be changed with " Pr. 22 Input signal logic selection" and " Pr. 23

Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
(3) \(* 2\) :The QD75D \(\square\) N upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
(4) \(* 3\) :These are limit switches for the servo (for stop).
(5) \(* 4\) :This indicates the distance between the QD75D \(\square \mathrm{N}\) and servo amplifier.
(6) \(* 5\) :When used, check the logic for the QD75D \(\square \mathrm{N}\) and servo amplifier in Section 3.4.1, (2) "Output specifications". The QD75D \(\square \mathrm{N}\) is initially set to negative logic.
(7) "FA-CBLQ75M2J3(-P) cable" can be used for connecting the QD75D \(\square \mathrm{N}\) and MR-J3- \(\square\) A.

\section*{Appendix 4.2 Connection example of QD75D \(\square \mathrm{N}\) and MR-H \(\square \mathrm{A}\) (Differential driver) *6}


\section*{REMARK}
(1) It is recommended to make differential driver connection since differential driver connection is more excellent than open collector connection in max. output pulse and max. connection distance between servos. (Refer to Section 3.1 "Performance specifications".)
(2) \(* 1\) :The logic for each I/O terminal can be changed with " Pr. 22 Input signal logic selection" and " Pr. 23 Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
(3) \(* 2\) :The QD75D \(\square\) N upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
(4) \(* 3\) :These are limit switches for the servo (for stop).
(5) \(* 4\) :Refer to the specification and handling instruction manual of the servo amplifier MR-H for details on connection.
(6) \(* 5\) :This indicates the distance between the QD75D \(\square \mathrm{N}\) and servo amplifier.
(7) \(* 6:\) Use the same logic (positive logic/negative logic) for the QD75D \(\square \mathrm{N}\) and servo amplifier. The QD75D \(\square \mathrm{N}\) is initially set to negative logic.

Appendix 4.3 Connection example of QD75D \(\square \mathrm{N}\) and MR-J2/J2S- \(\square \mathrm{A}\) (Differential driver)


\section*{REMARK}
(1) It is recommended to make differential driver connection since differential driver connection is more excellent than open collector connection in max. output pulse and max. connection distance between servos. (Refer to Section 3.1 "Performance specifications".)
(2) \(*\) 1:The logic for each I/O terminal can be changed with " Pr. 22 Input signal logic selection" and " Pr. 23

Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
(3) \(* 2\) :The QD75D \(\square\) N upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
(4) \(* 3\) :These are limit switches for the servo amplifier (for stop).
(5) \(* 4\) :This indicates the distance between the QD75D \(\square \mathrm{N}\) and servo amplifier.
(6) \(* 5\) :Use the same logic (positive logic/negative logic) for the QD75D \(\square \mathrm{N}\) and servo amplifier. The QD75D \(\square \mathrm{N}\) is initially set to negative logic.

\section*{Appendix 4.4 Connection example of QD75D \(\square \mathrm{N}\) and MR-C \(\square\) A (Differential driver)*5}


\section*{REMARK}
(1) It is recommended to make differential driver connection since differential driver connection is more excellent than open collector connection in max. output pulse and max. connection distance between servos. (Refer to Section 3.1 "Performance specifications".)
(2) \(*\) 1:The logic for each I/O terminal can be changed with " Pr. 22 Input signal logic selection" and " Pr. 23 Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
(3) \(* 2\) :The QD75D \(\square \mathrm{N}\) upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
(4) \(* 3\) :These are limit switches for the servo amplifier (for stop).
(5) \(* 4\) :This indicates the distance between the QD75D \(\square \mathrm{N}\) and servo amplifier.
(6) \(* 5\) :Use the same logic (positive logic/negative logic) for the QD75D \(\square \mathrm{N}\) and servo amplifier. The QD75D \(\square \mathrm{N}\) is initially set to negative logic.

Appendix 5 Connection examples with stepping motors manufactured by ORIENTALMOTOR Co., Ltd.

Appendix 5.1 Connection example of QD75P \(\square \mathrm{N}\) and VEXTA UPD (Open collector)*4


\section*{REMARK}
(1) \(* 1\) :The logic for each I/O terminal can be changed with " Pr. 22 Input signal logic selection" and " Pr. 23 Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
(2) *2:The QD75P \(\square \mathrm{N}\) upper limit (FLS) and lower limit (RLS) are used in the OPR retry function.
(3) \(* 3\) :Refer to the manual of the stepping motor drive for information on the stepping motor drive side wiring and various signal wire shields not shown above.
(4) *4:Use the same logic (positive logic/negative logic) for the QD75P \(\square \mathrm{N}\) and stepping motor. The QD75P \(\square \mathrm{N}\) is initially set to negative logic.
(5) \(* 5\) :This indicates the distance between the QD75P \(\square \mathrm{N}\) and VEXTA UPD.

\section*{Appendix 6 Connection examples with servo amplifiers manufactured by Panasonic Corporation}

\section*{Appendix 6.1 Connection example of QD75D \(\square \mathrm{N}\) and MINAS-A series (Differential driver) *4}


\section*{REMARK}
(1) \(* 1\) :The logic for each I/O terminal can be changed with " Pr. 22 Input signal logic selection" and " Pr. 23 Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
(2) \(* 2\) :The QD75D \(\square \mathrm{N}\) upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
(3) \(* 3\) :Refer to the manual of the servo amplifier for information on the servo amplifier side wiring and various signal wire shields not shown above.
(4) \(* 4:\) Use the same logic (positive logic/negative logic) for the QD75D \(\square \mathrm{N}\) and servo amplifier. The QD75D \(\square \mathrm{N}\) is initially set to negative logic.
(5) \(* 5\) :This indicates the distance between the QD75D \(\square \mathrm{N}\) and MINAS-A.

\section*{Appendix 7 Connection examples with servo amplifiers manufactured by SANYO DENKI Co., Ltd.}

\section*{Appendix 7.1 Connection example of QD75D \(\square \mathrm{N}\) and PYO series (Differential driver) *4}


\section*{REMARK}
(1) \(*\) 1:The logic for each I/O terminal can be changed with " Pr. 22 Input signal logic selection" and " Pr. 23 Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
(2) \(* 2\) :The QD75D \(\square N\) upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
(3) \(* 3\) :Refer to the manual of the servo amplifier for information on the servo amplifier side wiring and various signal wire shields not shown above.
(4) \(* 4:\) Use the same logic (positive logic/negative logic) for the QD75D \(\square \mathrm{N}\) and servo amplifier. The QD75D \(\square \mathrm{N}\) is initially set to negative logic.
(5) \(* 5\) :This indicates the distance between the QD75D \(\square \mathrm{N}\) and PYO.

\section*{Appendix 8 Connection examples with servo amplifiers manufactured by YASKAWA Electric Corporation}

Appendix 8.1 Connection example of QD75D \(\square \mathrm{N}\) and \(\sum-\Pi\) series (Differential driver)*4


\section*{REMARK}
(1) \(* 1\) :The logic of each I/O terminal can be changed with " Pr. 22 Input signal logic selection" and " Pr. 23 Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
(2) *2:The QD75D \(\square \mathrm{N}\) upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
(3) \(* 3\) :Refer to the manual of the servo amplifier for information on the servo amplifier side wiring and various signal wire shields not shown above.
(4) *4:Use the same logic (positive logic/negative logic) for the QD75D \(\square \mathrm{N}\) and servo amplifier. The QD75D \(\square \mathrm{N}\) is initially set to negative logic.
(5) \(* 5\) :This indicates the distance between the QD75D \(\square \mathrm{N}\) and \(\sum-\mathrm{II}\).

\section*{Appendix 9 Comparisons with conventional positioning modules}

\section*{Appendix 9.1 Comparisons with A1SD71S2 model}

The following shows comparisons with the conventional positioning module A1SD71S2, centered on the QD75 specifications.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Item} & QD75P1N/QD75P1 QD75D1N/QD75D1 & QD75P2N/QD75P2 QD75D2N/QD75D2 & QD75P4N/QD75P4 QD75D4N/QD75D4 & A1SD71S2 \\
\hline \multicolumn{2}{|l|}{No. of control axes} & 1 & 2 & 4 & 2 \\
\hline \multicolumn{2}{|l|}{No. of positioning data items} & \multicolumn{3}{|c|}{600/axis} & 400/axis \\
\hline \multirow{4}{*}{Interpolation functions} & 2-axis linear interpolation & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & 3-axis linear interpolation & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) \\
\hline & 4-axis linear interpolation & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) \\
\hline & 2-axis circular interpolation & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) \\
\hline \multirow{4}{*}{Positioning systems} & Position control & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\bigcirc\) \\
\hline & Speed control & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\bigcirc\) \\
\hline & Speed-position switching control & \multicolumn{3}{|c|}{O (INC/ABS mode)} & ( Only INC mode) \\
\hline & Position-speed switching control & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\times\) \\
\hline \multicolumn{2}{|l|}{Machine OPR function (OPR method)} & \multicolumn{3}{|c|}{(6 types)} & (3 types) \\
\hline \multicolumn{2}{|l|}{JOG operation} & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\bigcirc\) \\
\hline \multicolumn{2}{|l|}{Inching operation} & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\times\) \\
\hline \multicolumn{2}{|l|}{Manual pulse generator function} & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\times\) \\
\hline \multirow[t]{2}{*}{Acceleration/ deceleration processing} & Trapezoidal acceleration/deceleration & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\bigcirc\) \\
\hline & S-curve acceleration/deceleration & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\times\) \\
\hline \multicolumn{2}{|l|}{Acceleration/deceleration time} & \multicolumn{3}{|l|}{Acceleration time and deceleration time setting possible (4 patterns each)} & Acceleration/deceleration time same \\
\hline \multicolumn{2}{|l|}{Compensation} & \multicolumn{3}{|c|}{Electronic gears, backlash compensation} & Backlash compensation \\
\hline \multicolumn{2}{|l|}{Error display} & \multicolumn{3}{|c|}{Error LED} & Error LED \\
\hline \multicolumn{2}{|l|}{History data storage (Start, error, warning)} & \multicolumn{3}{|c|}{Provided (3 types, 16 items/axis)} & None \\
\hline \multicolumn{2}{|l|}{Data storage destination} & \multicolumn{3}{|c|}{\begin{tabular}{l}
Flash ROM \\
(battery-less backup)
\end{tabular}} & Buffer memory (battery backup) \\
\hline \multicolumn{2}{|l|}{No. of occupied I/O points} & \multicolumn{3}{|c|}{32} & 48 \\
\hline \multicolumn{2}{|l|}{No. of module occupied slots} & \multicolumn{3}{|c|}{1} & 2 \\
\hline \multirow[b]{4}{*}{Peripheral devices (data setting, etc.)} & AD71TU & \multicolumn{3}{|c|}{\(\times\)} & \(\bigcirc\) \\
\hline & AD75TU & \multicolumn{3}{|c|}{\(\times\)} & \(\times\) \\
\hline & A6GPP, A6PHP & \multicolumn{3}{|c|}{\(\times\)} & \(\bigcirc\) \\
\hline & DOS/V personal computer & \multicolumn{3}{|c|}{\(\bigcirc\)} & \(\bigcirc\) \\
\hline
\end{tabular}
\(\bigcirc\) : Possible, \(\times\) : Not possible

\section*{Appendix 9.2 Comparisons with A1SD75P1-S3/ A1SD75P2-S3/ A1SD75P3-S3 models}

The following shows the comparisons between the QD75 and the conventional positioning modules A1SD75P1-S3/A1SD75P2-S3/A1SD75P3-S3.
(1) Comparisons of performance specifications
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Item & & Model & QD75P1N/QD75P1 QD75D1N/QD75D1 & QD75P2N/QD75P2 QD75D2N/QD75D2 & QD75P4N/QD75P4 QD75D4N/QD75D4 & \[
\begin{array}{|c}
\hline \text { A1SD75P1 } \\
-S 3
\end{array}
\] & \[
\begin{gathered}
\text { A1SD75P2 } \\
-\mathrm{S} 3
\end{gathered}
\] & \[
\begin{gathered}
\text { A1SD75P3 } \\
-S 3
\end{gathered}
\] \\
\hline \multicolumn{3}{|l|}{No. of control axes} & 1 & 2 & 4 & 1 & 2 & 3 \\
\hline \multicolumn{3}{|l|}{No. of positioning data items} & \multicolumn{3}{|c|}{600/axis} & \multicolumn{3}{|c|}{600/axis *1} \\
\hline \multirow{4}{*}{Position control interpolation functions} & \multicolumn{2}{|l|}{2-axis linear interpolation} & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & \multicolumn{2}{|l|}{3-axis linear interpolation} & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline & \multicolumn{2}{|l|}{4-axis linear interpolation} & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline & \multicolumn{2}{|l|}{2-axis circular interpolation} & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline \multirow{7}{*}{Positioning systems} & \multicolumn{2}{|l|}{Position control} & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|c|}{\(\bigcirc\)} \\
\hline & \multirow{4}{*}{Speed control} & 1-axis & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & & 2-axis linear interpolation & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline & & 3-axis linear interpolation & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline & & 4-axis linear interpolation & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline & \multicolumn{2}{|l|}{Speed-position switching control} & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|c|}{\(\bigcirc\)} \\
\hline & \multicolumn{2}{|l|}{Position-speed switching control} & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|c|}{\(\times\)} \\
\hline \multicolumn{3}{|l|}{Positioning range *2} & \multicolumn{3}{|l|}{```
<Absolute system>
-214748364.8 to 214748364.7 ( \(\mu \mathrm{m}\) )
-21474.83648 to 21474.83647 (inch)
0 to 359.99999 (degree)
-2147483648 to 2147483647 (pulse)
<Incremental system >
-214748364.8 to 214748364.7 ( \(\mu \mathrm{m}\) )
-21474.83648 to 21474.83647 (inch)
-21474.83648 to 21474.83647 (degree)
-2147483648 to 2147483647 (pulse)
<Speed-position or position-speed switching controls>
0 to 214748364.7 ( \(\mu \mathrm{m}\) )
0 to 21474.83647 (inch)
0 to 21474.83647 (degree)/
0 to 359.99999 (degree) \(* 3\)
0 to 2147483647 (pulse)
```} & \multicolumn{3}{|l|}{```
<Absolute system >
-214748364.8 to 214748364.7 ( }\mu\textrm{m}
    /-13421772.8 to 13421772.7 ( \mu m)
-21474.83648 to 21474.83647 (inch)
    /-1342.17728 to 1342.17727 (inch)
0 to 359.99999 (degree)
    /0 to 359.99999 (degree)
-2147483648 to 2147483647 (pulse)
    /-134217728 to 134217727 (pulse)
<Incremental system >
-214748364.8 to 214748364.7 ( }\mu\textrm{m}
    /-13421772.8 to 13421772.7 ( }\mu\textrm{m}
-21474.83648 to 21474.83647 (inch)
    /-1342.17728 to 1342.17727 (inch)
-21474.83648 to 21474.83647
(degree)
    /-1342.17728 to 1342.17727
(degree)
-2147483648 to 2147483647 (pulse)
    /-134217728 to 134217727 (pulse)
<Speed-position switching control>
O to 214748364.7 ( }\mu\textrm{m}
    /0 to 13421772.7 ( }\mu\textrm{m}
0 to 21474.83647 (inch)
    /0 to 1342.17727 (inch)
0 to 21474.83647 (degree)
    /0 to 1342.17727 (degree)
0 to 2147483647 (pulse)
    /0 to 134217727 (pulse)
```} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Item & Model & QD75P1N/QD75P1
QD75D1N/QD75D1 & QD75P2N/QD75P2
QD75D2N/QD75D2 & QD75P4N/QD75P4
QD75D4N/QD75D4 & \[
\begin{gathered}
\hline \text { A1SD75P1 } \\
-\mathrm{S3} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { A1SD75P2 } \\
- \text {-S3 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { A1SD75P3 } \\
- \text {-S3 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{Speed command range *2} & \multicolumn{3}{|c|}{\begin{tabular}{l}
QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) : \\
0.01 to 20000000.00 ( \(\mathrm{mm} / \mathrm{min}\) ) \\
0.001 to 2000000.000 (inch \(/ \mathrm{min}\) ) \\
0.001 to 2000000.000 (degree \(/ \mathrm{min}\) ) \\
1 to 4000000 (pulse/s) \\
QD75P \(\square /\) QD75D \(\square\) : \\
0.01 to \(20000000.00(\mathrm{~mm} / \mathrm{min})\) \\
0.001 to 2000000.000 (inch/min) \\
0.001 to 2000000.000 (degree \(/ \mathrm{min}\) ) \\
1 to 1000000 (pulse/s)
\end{tabular}} & \multicolumn{3}{|l|}{0.01 to \(6000000.00(\mathrm{~mm} / \mathrm{min})\) /0.01 to 375000.00 ( \(\mathrm{mm} / \mathrm{min}\) ) 0.001 to 600000.000 (inch \(/ \mathrm{min}\) ) 10.001 to 37500.000 (inch \(/ \mathrm{min}\) ) 0.001 to 600000.000 (degree \(/\) min) 10.001 to 37500.000 (degree \(/ \mathrm{min}\) ) 1 to 1000000 (pulse/s) /1 to 62500 (pulse/s)} \\
\hline \multicolumn{2}{|l|}{Machine OPR function (OPR method)} & \multicolumn{3}{|c|}{\(\bigcirc\) (6 types) \(* 4\)} & \multicolumn{3}{|c|}{(6 types)} \\
\hline \multicolumn{2}{|l|}{JOG operation} & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|c|}{\(\bigcirc\)} \\
\hline \multicolumn{2}{|l|}{Inching operation} & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|c|}{\(\times\)} \\
\hline \multicolumn{2}{|l|}{Manual pulse generator function} & \multicolumn{3}{|c|}{1 generator/module *5} & \multicolumn{3}{|c|}{1 generator/axis *6} \\
\hline \multirow[t]{2}{*}{Acceleration /deceleration processing} & \[
\begin{aligned}
& \text { Trapezoidal } \\
& \text { acceleration } \\
& \text { /deceleration } \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|c|}{\(\bigcirc\)} \\
\hline & \[
\begin{array}{|l|}
\hline \text { S-curve } \\
\text { acceleration } \\
\text { /deceleration } \\
\hline
\end{array}
\] & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|c|}{\(\bigcirc\)} \\
\hline \multirow[t]{2}{*}{Acceleration/ deceleration time} & No. of patterns & \multicolumn{3}{|l|}{\begin{tabular}{l}
Acceleration time and deceleration time can be set independently. \\
(4 patterns each)
\end{tabular}} & \multicolumn{3}{|l|}{Acceleration time and deceleration time can be set independently. (4 patterns each)} \\
\hline & Setting range & \multicolumn{3}{|c|}{1 to 8388608ms} & \multicolumn{3}{|l|}{1 to \(65535 \mathrm{~ms} / 1\) to 8388608 ms selectable} \\
\hline \multicolumn{2}{|l|}{Compensation} & \multicolumn{3}{|l|}{Electronic gears, backlash compensation, near pass *6} & \multicolumn{3}{|l|}{Electronic gears, backlash compensation, near pass *6} \\
\hline \multicolumn{2}{|l|}{Error display} & \multicolumn{3}{|c|}{Error LED} & \multicolumn{3}{|c|}{17-segment LED} \\
\hline \multicolumn{2}{|l|}{History data storage (Start, error, warning)} & \multicolumn{3}{|c|}{Provided (3 types, 16 items/axis)} & \multicolumn{3}{|l|}{Provided (4 types, 16 items/axis)} \\
\hline \multicolumn{2}{|l|}{Data storage destination} & \multicolumn{3}{|c|}{Flash ROM (battery-less backup)} & \multicolumn{3}{|l|}{Flash ROM (battery-less backup)} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Connection connector}} & \multicolumn{3}{|c|}{A6CON1 (Soldering type, sold separately)} & \multicolumn{3}{|l|}{10136-3000VE (Soldering type, supplied)} \\
\hline & & \multicolumn{3}{|c|}{A6CON2 (Crimp type, sold separately)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{10136-6000EL (Crimp type, sold separately)}} \\
\hline & & \multicolumn{3}{|l|}{\begin{tabular}{|c|}
\hline A6CON4 (Soldering type, usable for straight out and diagonal out, \\
sold separately)
\end{tabular}} & & & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Applicable wire size}} & \multicolumn{3}{|c|}{A6CON1, A6CON4: \(0.3 \mathrm{~mm}{ }^{2}\) (22AWG)} & \multicolumn{3}{|l|}{10136-3000VE: Approx. 0.05 to \(0.24 \mathrm{~mm}^{2}\) (30 to 24AWG)} \\
\hline & & \multicolumn{3}{|r|}{A6CON2: 0.088 to \(0.24 \mathrm{~mm}^{2}\) (28 to 24AWG)} & \multicolumn{3}{|l|}{10136-6000EL: Approx. \(0.088 \mathrm{~mm}^{2}\) (28AWG)} \\
\hline \multicolumn{2}{|l|}{Command pulse output system} & \multicolumn{3}{|c|}{QD75P \(\square\) N/QD75P \(\square\) : Open collector QD75D \(\square\) N/QD75D \(\square:\) Differential driver} & \multicolumn{3}{|l|}{Both differential driver and open collector available} \\
\hline \multicolumn{2}{|l|}{Max. output pulse} & \multicolumn{3}{|l|}{\begin{tabular}{l}
When connected with open collector: 200kpps \\
When connected with differential driver: 4Mpps (QD75D \(\square \mathrm{N}\) ),
\[
\text { 1Mpps (QD75D } \square \text { ) }
\]
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
When connected with open collector: 200kpps \\
When connected with differential driver: 400kpps
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Max. connection distance between servos} & \multicolumn{3}{|l|}{When connected with open collector: 2 m (6.56ft) When connected with differential driver: 10 m (32.79ft)} & \multicolumn{3}{|l|}{\begin{tabular}{l}
When connected with open collector: 2 m (6.56ft) \\
When connected with differential driver: 10m (32.79ft)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Internal current consumption [5VDC]}} & QD75P1N: 0.29A & QD75P2N: 0.30A & QD75P4N: 0.36A & \multicolumn{3}{|c|}{\multirow{4}{*}{0.7A or less}} \\
\hline & & QD75D1N: 0.43A & QD75D2N: 0.45A & QD75D4N: 0.66A & & & \\
\hline & & QD75P1: 0.40A & QD75P2: 0.46A & QD75P4: 0.58A & & & \\
\hline & & QD75D1: 0.52A & QD75D2: 0.56A & QD75D4: 0.82A & & & \\
\hline \multicolumn{2}{|l|}{Flash ROM write count} & \multicolumn{3}{|c|}{Max. 100000 times} & \multicolumn{3}{|c|}{Max. 100000 times} \\
\hline \multicolumn{2}{|l|}{No. of occupied I/O points} & \multicolumn{3}{|c|}{32} & \multicolumn{3}{|c|}{32} \\
\hline \multicolumn{2}{|l|}{No. of module occupied slots} & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{1} \\
\hline \multicolumn{2}{|l|}{Outline dimensions} & \multicolumn{3}{|l|}{\(98(3.86)(\mathrm{H}) \times 27.4(1.08)(\mathrm{W}) \times 90(3.55)(\mathrm{D}) \mathrm{mm}\) (inch)} & \multicolumn{3}{|l|}{\[
\begin{gathered}
130(5.12)(\mathrm{H}) \times 34.5(1.36)(\mathrm{W}) \times 93.6(3.69)(\mathrm{D}) \\
\mathrm{mm} \text { (inch) } \\
\hline
\end{gathered}
\]} \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Weight}} & \[
\begin{aligned}
& \text { QD75P1N: } 0.14 \mathrm{~kg} \\
& (0.31 \mathrm{lb})
\end{aligned}
\] & \[
\begin{gathered}
\text { QD75P2N: } 0.14 \mathrm{~kg} \\
(0.31 \mathrm{lb})
\end{gathered}
\] & \[
\begin{gathered}
\text { QD75P4N: } 0.16 \mathrm{~kg} \\
(0.35 \mathrm{lb})
\end{gathered}
\] & \multicolumn{3}{|c|}{\multirow{4}{*}{0.35 kg (0.77lb)}} \\
\hline & & \[
\begin{gathered}
\text { QD75D1N: 0.15kg } \\
\text { (0.33lb) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { QD75D2N: } 0.15 \mathrm{~kg} \\
(0.33 \mathrm{lb}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { QD75D4N: } 0.16 \mathrm{~kg} \\
(0.35 \mathrm{lb}) \\
\hline
\end{gathered}
\] & & & \\
\hline & & \[
\begin{gathered}
\hline \text { QD75P1: } 0.15 \mathrm{~kg} \\
(0.331 \mathrm{~b})
\end{gathered}
\] & \[
\begin{gathered}
\text { QD75P2: } 0.15 \mathrm{~kg} \\
(0.33 \mathrm{lb}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { QD75P4: } 0.16 \mathrm{~kg} \\
(0.35 \mathrm{lb}) \\
\hline
\end{gathered}
\] & & & \\
\hline & & \[
\begin{aligned}
& \text { QD75D1:0.15kg } \\
& (0.33 \mathrm{lb})
\end{aligned}
\] & \[
\begin{gathered}
\text { QD75D2: } 0.15 \mathrm{~kg} \\
(0.331 \mathrm{~b})
\end{gathered}
\] & \[
\begin{aligned}
& \text { QD75D4:0.16kg } \\
& (0.351 \mathrm{~b})
\end{aligned}
\] & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Item Model} & QD75P1N/QD75P1
QD75D1N/QD75D1 & QD75P2N/QD75P2 QD75D2N/QD75D2 & QD75P4N/QD75P4 QD75D4N/QD75D4 & A1SD75P1
-S3 & \[
\begin{gathered}
\text { A1SD75P2 } \\
-S 3
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \mathrm{A} 1 \mathrm{SD} 75 \mathrm{P} 3 \\
-\mathrm{S} 3
\end{array}
\] \\
\hline \multirow{4}{*}{I/O signal for external devices} & STRT signal & \multicolumn{3}{|c|}{\(\times\) (integrated into "CHG")} & \multicolumn{3}{|r|}{\(\bigcirc\) (External start signal)} \\
\hline & CHG signal & \multicolumn{3}{|l|}{External command signal (External start or speed-position switching selectable with parameters)} & \multicolumn{3}{|l|}{Speed-position switching signal} \\
\hline & In-position (INP) & \multicolumn{3}{|c|}{\(\times\)} & \multicolumn{3}{|c|}{(for monitor)} \\
\hline & Signal logic switching & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|l|}{Command pulse output signal only} \\
\hline \multirow{5}{*}{Peripheral devices (data setting, etc.)} & Connection with peripheral devices & \multicolumn{3}{|l|}{Connection via CPU module, Q Corresponding Serial Communication Module, Q Corresponding MELSEC/H Remote I/O Module} & \multicolumn{3}{|c|}{Direct connection} \\
\hline & AD71TU & \multicolumn{3}{|c|}{\(\times\)} & \multicolumn{3}{|c|}{\(\times\)} \\
\hline & AD75TU & \multicolumn{3}{|c|}{\(\times\)} & \multicolumn{3}{|c|}{\(\bigcirc\)} \\
\hline & A6GPP, A6PHP & \multicolumn{3}{|c|}{\(\times\)} & \multicolumn{3}{|c|}{\(\bigcirc\)} \\
\hline & DOS/V personal computer & \multicolumn{3}{|c|}{\(\bigcirc\)} & \multicolumn{3}{|c|}{\(\bigcirc\)} \\
\hline
\end{tabular}
\(\bigcirc\) : Possible, \(\times\) : Not possible
* 1: Up to 100 data items/axis of positioning data (No. 1 to 100) can be set using the buffer memory. The positioning data in the buffer memory is not backed up.
* 2: Indicates the standard mode/stepping motor mode about A1SD75P \(\square\)-S3.
* 3: Indicates the INC mode/ABS mode in speed-position switching control.
*4: The deviation counter clear signal output time can be set with parameters.
\(* 5\) : The movement amount against the number of pulses input from manual pulsar is as follows:
- QD75: Movement amount = "Number of pulses" \(\times\) "Unit setting" \(\times\) "Manual pulse generator 1 pulse input magnification" (refer to Section 11.4.1.)
- A1SD75: Movement amount = "Number of pulses" \(\times\) "Manual pulse generator 1 pulse input magnification"
*6: The near pass function is valid only during the continuous path control. (A1SD75: Selected with parameters, QD75: Standard function)

\section*{(2) Function comparisons}

Functions added to those of A1SD75P1-S3/A1SD75P2-S3/A1SD75P3-S3
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Added functions } & \multicolumn{1}{c|}{ Remarks } \\
\hline External I/O signal logic switching function & Refer to Section 13.4. \\
\hline Inching operation & Refer to Section 11.3. \\
\hline Target position change function & Refer to Section 12.5.5. \\
\hline Multiple axes simultaneous start control & \\
\hline & \begin{tabular}{l} 
3-axis linear interpolation control \\
4-axis linear interpolation control \\
3-axis fixed-feed control \\
4-axis fixed-feed control \\
2-axis speed control \\
3-axis speed control \\
4-axis speed control \\
Position-speed switching control \\
NOP instruction \\
LOOP instruction, LEND instruction
\end{tabular} \\
Control systems & \\
\hline Reficated & \begin{tabular}{l} 
Absolute position restoration \\
Positioning start \\
Teaching \\
Flash ROM writing \\
Parameter initialization
\end{tabular} \\
\hline instructions & \\
\hline Automatic refresh of intelligent function modules & \\
\hline Output hold/clear parameter setting during CPU module error stop
\end{tabular}

Functions deleted from those of A1SD75P1-S3/A1SD75P2-S3/A1SD75P3-S3
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Deleted functions } & \\
\hline Stepping motor mode & \multicolumn{1}{c|}{ Remarks } \\
\hline OPR operation error (Error code: 208) & - \\
\hline Fast machine OPR & \\
\hline Special start (stop) & \begin{tabular}{l} 
In the QD75, the start block area on the buffer memory is \\
expanded to five blocks (0 to 4). Each start block can be directly \\
designated with positioning start No. (7000 to 7004).
\end{tabular} \\
\hline Indirect designation & \begin{tabular}{l} 
With the A1SD75, this interface is used to set positioning data \\
Nos. 101 to 600 that do not exist on the buffer memory.
\end{tabular} \\
\hline Block transfer & \begin{tabular}{l} 
Since all positioning data can be set in the buffer memory with the \\
QD75, this function is deleted.
\end{tabular} \\
\hline Positioning data I/F & \begin{tabular}{l} 
The contents are the same as those of the start history. Therefore, \\
the QD75 stores only the start history.
\end{tabular} \\
\hline Start history storage during error & \begin{tabular}{l} 
These data were deleted because they can be displayed in system \\
monitor "Module's detailed information" of GX Developer. \\
Sefer to GX Developer Operating Manual.)
\end{tabular} \\
\hline
\end{tabular}

Functions changed from those of A1SD75P1-S3/A1SD75P2-S3/A1SD75P3-S3
\begin{tabular}{|c|c|}
\hline Changed functions & Descriptions \\
\hline Software stroke limit function & \begin{tabular}{l}
1. The limit check of arc address is carried out only when a sub point is designated. It is not carried out when a center point is designated. \\
2. The software stroke limit check during speed control is carried out in the following cases: \\
- When the software stroke limit is applied to the current feed value with Pr. 14 and the current feed value is updated with Pr. 21. \\
- When the software stroke limit is applied to the machine feed value. \\
3. If an attempt is made to change the current value but the designated address is out of the software stroke limit range, the attempt is considered as an error and the current value is not changed. \\
4. The conventional models feature three types of software stroke limit error codes for upper limit and lower limit respectively. With the QD75, errors for the software stroke upper limit are integrated into error code 507, and errors for the lower limit are integrated into error code 508. Error codes 509 to 512 are deleted.
\end{tabular} \\
\hline Current value changing M code function & \begin{tabular}{l}
1. An error occurs when the designated new current value is out of the software stroke limit range. \\
2. The M code setting value is valid during the positioning data current value changing instruction.
\end{tabular} \\
\hline Acceleration/deceleration control & \begin{tabular}{l}
1. An error occurs when the command frequency value calculated from the speed limit value is out of the maximum command frequency of the positioning module being used. \\
2. Only two-word type ( 1 to 8388608 ms ) can be used as the setting value for the acceleration/deceleration time. (The switch between 1-word type and 2-word type is eliminated.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Changed functions & \multicolumn{3}{|c|}{Descriptions} \\
\hline \begin{tabular}{l}
Stop process and restart after stop \\
Positioning operation stop
\end{tabular} & \multicolumn{3}{|l|}{\begin{tabular}{l}
1. "Peripheral side (emergency) stop" is deleted from the stop causes of Stop group 2 sudden stop selection. "Test mode fault" in the stop causes of Stop group 3 sudden stop selection is changed to be in the stop causes of Stop group 2 sudden stop selection. \\
2. "Stop (QD75 peripheral)" is added to the stop causes of Stop group 3 sudden stop selection. \\
3. Error code 100 (Peripheral device stop during operation) is deleted. \\
4. "CPU module error occurrence" is added to the stop causes of Stop group 2 sudden stop selection.
\end{tabular}} \\
\hline & & A1SD75 & QD75 \\
\hline READY signal (X0) & OFF & \[
\begin{gathered}
\begin{array}{c}
\text { Normal } \\
\text { (READY) }
\end{array} \\
\hline
\end{gathered}
\] & Not READY MDT error \\
\hline & ON & Not READY IWDT error & Normal (READY) \\
\hline Manual pulse generator operation & \multicolumn{3}{|l|}{The No. of connectable manual pulse generator is changed from 1 generator/1 axis to 1 generator/1 module.} \\
\hline Axis operation status & \multicolumn{3}{|l|}{\begin{tabular}{l}
"Step stopped" is changed to "Stopped" and "Step error occurring" is changed to "Error occurring". \\
"In position control for position-speed switching control", "In speed control for position-speed switching control", and "In absolute position restoration" are added.
\end{tabular}} \\
\hline Continuous path control & \multicolumn{3}{|l|}{\begin{tabular}{l}
A1SD75: If the reference axis operates in reverse direction, the control is internally changed into the continuous positioning control (restart after deceleration stop). \\
QD75: Even if the reference axis operates in reverse direction with interpolation, the control remains as the continuous path control. (In single-axis operation, the operation is the same as that of the A1SD75.)
\end{tabular}} \\
\hline Near pass & \multicolumn{3}{|l|}{For the continuous path control, only the near pass function is available.} \\
\hline \begin{tabular}{l}
2-axis interpolation \\
- 2-axis linear interpolation \\
- 2-axis fixed-feed \\
- Circular interpolation \\
- 2-axis speed control
\end{tabular} & \multicolumn{3}{|l|}{The interpolation target axis can be randomly set with a positioning identifier.} \\
\hline Step function & \multicolumn{3}{|l|}{\begin{tabular}{l}
1. "Step stopped" is changed to "Stopped" and "Step error occurring" is changed to "Error occurring" in the axis operation status parameters. \\
2. The restart command for step start information \((02 \mathrm{H})\) is deleted. \\
3. The step operation is restarted with the restart command.
\end{tabular}} \\
\hline Command in-position function & \multicolumn{3}{|l|}{\begin{tabular}{l}
The command in-position width is expanded. \\
- A1SD75 : 1 to 32767000 \\
- QD75 : 1 to 2147483647
\end{tabular}} \\
\hline Control unit "degree" handling & \multicolumn{3}{|l|}{The operating direction can be designated even for the ABS control in the unit of "degree".} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Changed functions & \multicolumn{3}{|c|}{Descriptions} \\
\hline Positioning start No. & \multicolumn{3}{|l|}{No. 9004 (Multiple axes simultaneous start control) is added. Nos. 7004 to 7010 (block start designation) and 8000 to 8049 (indirect designation) are deleted.} \\
\hline Block start data & \multicolumn{3}{|l|}{With the QD75, the number of blocks is changed to 5 (7000 to 7004). (With the A1SD75, this data is called "positioning start information".)} \\
\hline Special start data "Simultaneous start" & \multicolumn{3}{|l|}{The simultaneous start is possible up to 4 axes.} \\
\hline List of errors/warnings & \multicolumn{3}{|l|}{Refer to the following "Error code comparisons" and "Warning code comparisons".} \\
\hline Start history & \multicolumn{3}{|l|}{The configuration of "start information" and "start No." is changed so that the start No. can be directly checked.} \\
\hline Synchronization flag (X1) & \multicolumn{3}{|l|}{When the CPU module starting method is set to asynchronous, interlock is established with the synchronization flag (X1) signal.} \\
\hline Basic parameter 1 " Pr. 5 Pulse output mode" & \multicolumn{3}{|l|}{When the programmable controller is turned ON or the CPU module is reset, the valid value is only the first value after the PLC READY signal (YO) turns from OFF to ON.} \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Detailed parameters \\
" Pr. 15 Software stroke limit valid/invalid setting"
\end{tabular}} & & A1SD75 & QD75 \\
\hline & 0 (Factory setting) & Software stroke limits invalid for manual operation & Software stroke limits valid for manual operation \\
\hline & 1 & Software stroke limits valid for manual operation & Software stroke limits invalid for manual operation \\
\hline
\end{tabular}

Error code comparisons
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Error name }} & \multicolumn{2}{c|}{ Error code } \\
\cline { 2 - 3 } & A1SD75 & QD75 \\
\hline Outside bias speed range & 913 & 906 \\
\hline Illegal sudden stop deceleration time & 962 & 961 \\
\hline Stop group 1 sudden stop selection error & 963 & 962 \\
\hline Stop group 2 sudden stop selection error & 964 & 963 \\
\hline Stop group 3 sudden stop selection error & 965 & 964 \\
\hline OPR torque limit value error & 991 & 995 \\
\hline \begin{tabular}{l} 
Setting for the movement amount after near-point \\
dog ON error
\end{tabular} & 992 & 991 \\
\hline OPR acceleration time selection error & 993 & 992 \\
\hline OPR deceleration time selection error & 994 & 993 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Error type } & Added & Deleted \\
\hline Fatal error & 002 & 51,52 \\
\hline Common & - & 100,108 \\
\hline OPR, Absolute position restoration & 213,214 & 208 \\
\hline JOG/Inching operation & 301 & - \\
\hline Manual pulse generator operation & - & - \\
\hline Positioning operation & \(523,535,545,546\) & 509 to 512 \\
\hline I/F & 800 to 806 & - \\
\hline Parameter & \(920,935,990,996\) & \(931,933,938,971,999\) \\
\hline \begin{tabular}{l} 
Error whose name is changed: Error code 967 \\
A1SD75: External start selection error \\
QD75: \(\quad\) External command function selection error
\end{tabular} \\
\hline
\end{tabular}

Warning code comparisons
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Warning type } & Added & Deleted \\
\hline Fatal warning & - & 51,52 \\
\hline Common & 110 & 101,105 to 108,115 \\
\hline OPR, Absolute position restoration & - & - \\
\hline JOG operation/Inching operation & - & - \\
\hline Manual pulse generator operation & - & 402 \\
\hline Positioning operation & \(516,517,518\) & - \\
\hline I/F & - & - \\
\hline Parameter & - & 900 \\
\hline \begin{tabular}{l} 
Warning whose name is changed: Warning code 512 \\
A1SD75 : Illegal external start function \\
QD75 : Illegal external command function
\end{tabular} & \\
\hline
\end{tabular}
*: Refer to "Section 15.3 List of errors" and "Section 15.4 List of warnings" for details on error codes and warning codes.
(3) Input/output (X/Y) comparisons
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Input (X)} \\
\hline Name & A1SD75 & QD75 \\
\hline (QD75/A1SD75) READY & X00 * & X00 * \\
\hline \multirow{4}{*}{Start complete} & X01 & X10 \\
\hline & X02 & X11 \\
\hline & X03 & X12 \\
\hline & - & X13 \\
\hline \multirow{4}{*}{BUSY} & X04 & XOC \\
\hline & X05 & XOD \\
\hline & X06 & X0E \\
\hline & - & X0F \\
\hline \multirow{4}{*}{Positioning complete} & X07 & X14 \\
\hline & X08 & X15 \\
\hline & X09 & X16 \\
\hline & - & X17 \\
\hline \multirow{4}{*}{Error detection} & XOA & X08 \\
\hline & XOB & X09 \\
\hline & XOC & X0A \\
\hline & - & X0B \\
\hline \multirow{4}{*}{M code ON} & XOD & X04 \\
\hline & X0E & X05 \\
\hline & X0F & X06 \\
\hline & - & X07 \\
\hline Synchronization flag & - & X01 \\
\hline Use prohibited & X10 to X1F & \[
\begin{gathered}
\text { X02, X03 } \\
\text { X18 to X1F }
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Output (Y)} \\
\hline & Name & A1SD75 & QD75 \\
\hline Axis 1 & \multirow{4}{*}{Positioning start} & Y10 & Y10 \\
\hline Axis 2 & & Y11 & Y11 \\
\hline Axis 3 & & Y12 & Y12 \\
\hline Axis 4 & & - & Y13 \\
\hline Axis 1 & \multirow{4}{*}{Axis stop} & Y13 & Y04 \\
\hline Axis 2 & & Y14 & Y05 \\
\hline Axis 3 & & Y1C & Y06 \\
\hline Axis 4 & & - & Y07 \\
\hline Axis 1 & Forward run JOG start & Y16 & Y08 \\
\hline Axis 1 & Reverse run JOG start & Y17 & Y09 \\
\hline Axis 2 & Forward run JOG start & Y18 & YOA \\
\hline Axis 2 & Reverse run JOG start & Y19 & YOB \\
\hline Axis 3 & Forward run JOG start & Y1A & YOC \\
\hline Axis 3 & Reverse run JOG start & Y1B & YOD \\
\hline Axis 4 & Forward run JOG start & - & Y0E \\
\hline Axis 4 & Reverse run JOG start & - & Y0F \\
\hline \multicolumn{2}{|l|}{PLC READY} & Y1D & Y00 \\
\hline Axis 1 & \multirow{4}{*}{Execution prohibition flag} & - & Y14 \\
\hline Axis 2 & & - & Y15 \\
\hline Axis 3 & & - & Y16 \\
\hline Axis 4 & & - & Y17 \\
\hline \multicolumn{2}{|l|}{Use prohibited} & \[
\begin{aligned}
& \text { Y00 to Y0F } \\
& \text { Y1E to Y1F }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Y01 to Y03 } \\
& \text { Y18 to Y1F }
\end{aligned}
\] \\
\hline
\end{tabular}
*: The ON/OFF statuses for READY are different between the QD75 and A1SD75.
\begin{tabular}{|l|c|c|}
\hline & Not READY/WDT error & READY \\
\hline QD75 & OFF & ON \\
\hline A1SD75 & ON & OFF \\
\hline
\end{tabular}
(4) Buffer memory address comparisons

The following table shows the buffer memory addresses of the QD75 (Axis 1 to Axis 3) corresponding to the items of the A1SD75.
The shaded area shows the differences between the A1SD75 and QD75.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Items of A1SD75} & \multicolumn{6}{|c|}{Buffer memory address} \\
\hline & \multicolumn{3}{|c|}{A1SD75} & \multicolumn{3}{|c|}{QD75} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 1 & Axis 2 & Axis 3 \\
\hline Pr. 1 Unit setting & 0 & 150 & 300 & 0 & 150 & 300 \\
\hline Pr. 2 No. of pulses per rotation (Ap) & 1 & 151 & 301 & 1 & 151 & 301 \\
\hline Pr. 3 Movement amount per rotation (Al) & 2 & 152 & 302 & 2 & 152 & 302 \\
\hline Pr. 4 Unit magnification (Am) & 3 & 153 & 303 & 3 & 153 & 303 \\
\hline Pr. 5 Pulse output mode & 4 & 154 & 304 & 4 & 154 & 304 \\
\hline Pr. 6 Rotation direction setting & 5 & 155 & 305 & 5 & 155 & 305 \\
\hline Pr. 7 Speed limit value & \[
\begin{array}{r}
6 \\
7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 156 \\
& 157
\end{aligned}
\] & \[
\begin{aligned}
& 306 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& \hline 160 \\
& 161 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 310 \\
& 311 \\
& \hline
\end{aligned}
\] \\
\hline Pr. 8 Acceleration time 0 & \[
\begin{aligned}
& 8 \\
& 9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
158 \\
159 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 308 \\
& 309 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 162 \\
& 163 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
312 \\
313 \\
\hline
\end{array}
\] \\
\hline Pr. 9 Deceleration time 0 & \[
\begin{array}{r}
10 \\
11 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 160 \\
& 161 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 310 \\
& 311 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 164 \\
& 165 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 314 \\
& 315 \\
& \hline
\end{aligned}
\] \\
\hline Pr. 10 Bias speed at start & \[
\begin{aligned}
& 12 \\
& 13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 162 \\
& 163
\end{aligned}
\] & \[
\begin{aligned}
& 312 \\
& 313
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 156 \\
& 157
\end{aligned}
\] & \[
\begin{aligned}
& 306 \\
& 307
\end{aligned}
\] \\
\hline Pr. 11 Stepping motor mode selection amount & 14 & 164 & 314 & - & - & - \\
\hline Pr. 12 Backlash compensation amount & 15 & 165 & 315 & 17 & 167 & 317 \\
\hline Pr. 13 Software stroke limit upper limit value & \[
\begin{aligned}
& 16 \\
& 17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 166 \\
& 167 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
316 \\
317 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 18 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 168 \\
& 169 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
318 \\
319 \\
\hline
\end{array}
\] \\
\hline Pr. 14 Software stroke limit lower limit value & \[
\begin{aligned}
& 18 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 168 \\
& 169 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 318 \\
& 319
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 21 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 170 \\
& 171 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
320 \\
321 \\
\hline
\end{array}
\] \\
\hline Pr. 15 Software stroke limit selection & 20 & 170 & 320 & 22 & 172 & 322 \\
\hline Pr. 16 Software stroke limit valid/invalid setting & 21 & 171 & 321 & 23 & 173 & 323 \\
\hline Pr. 17 Command in-position width & \[
\begin{aligned}
& 22 \\
& 23 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 172 \\
& 173 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 322 \\
& 323 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 24 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 174 \\
& 175 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
324 \\
325 \\
\hline
\end{array}
\] \\
\hline Pr. 18 Torque limit setting value & 24 & 174 & 324 & 26 & 176 & 326 \\
\hline Pr. 19 M code ON signal output timing & 25 & 175 & 325 & 27 & 177 & 327 \\
\hline Pr.20 Speed switching mode & 26 & 176 & 326 & 28 & 178 & 328 \\
\hline Pr. 21 Interpolation speed designation method & 27 & 177 & 327 & 29 & 179 & 329 \\
\hline Pr.22 Current feed value during speed control & 28 & 178 & 328 & 30 & 180 & 330 \\
\hline Pr. 23 Manual pulse generator selection & 29 & 179 & 329 & - & - & - \\
\hline Pr. 24 Logic selection for pulse output to the drive unit & 30 & 180 & 330 & - & - & - \\
\hline Pr. 25 Size selection for acceleration/deceleration time & 31 & 181 & 331 & - & - & - \\
\hline Pr. 26 Acceleration time 1 & \[
\begin{aligned}
& 36 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& 186 \\
& 187
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& 186 \\
& 187
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 337
\end{aligned}
\] \\
\hline Pr. 27 Acceleration time 2 & \[
\begin{aligned}
& 38 \\
& 39
\end{aligned}
\] & \[
\begin{aligned}
& 188 \\
& 189 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 338 \\
& 339 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 38 \\
& 39
\end{aligned}
\] & \[
\begin{aligned}
& 188 \\
& 189
\end{aligned}
\] & \[
\begin{array}{r}
338 \\
339 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Items of A1SD75} & \multicolumn{6}{|c|}{Buffer memory address} \\
\hline & \multicolumn{3}{|c|}{A1SD75} & \multicolumn{3}{|c|}{QD75} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 1 & Axis 2 & Axis 3 \\
\hline \multirow[b]{2}{*}{Acceleration time 3} & 40 & 190 & 340 & 40 & 190 & 340 \\
\hline & 41 & 191 & 341 & 41 & 191 & 341 \\
\hline \multirow[t]{2}{*}{Deceleration time 1} & 42 & 192 & 342 & 42 & 192 & 342 \\
\hline & 43 & 193 & 343 & 43 & 193 & 343 \\
\hline \multirow[t]{2}{*}{Deceleration time 2} & 44 & 194 & 344 & 44 & 194 & 344 \\
\hline & 45 & 195 & 345 & 45 & 195 & 345 \\
\hline \multirow[t]{2}{*}{Deceleration time 3} & 46 & 196 & 346 & 46 & 196 & 346 \\
\hline & 47 & 197 & 347 & 47 & 197 & 347 \\
\hline \multirow[b]{2}{*}{JOG speed limit value} & 48 & 198 & 348 & 48 & 198 & 348 \\
\hline & 49 & 199 & 349 & 49 & 199 & 349 \\
\hline JOG operation acceleration time selection & 50 & 200 & 350 & 50 & 200 & 350 \\
\hline JOG operation deceleration time selection & 51 & 201 & 351 & 51 & 201 & 351 \\
\hline Acceleration/deceleration process selection & 52 & 202 & 352 & 52 & 202 & 352 \\
\hline S-curve ratio & 53 & 203 & 353 & 53 & 203 & 353 \\
\hline \multirow[t]{2}{*}{Sudden stop deceleration time} & 54 & 204 & 354 & 54 & 204 & 354 \\
\hline & 55 & 205 & 355 & 55 & 205 & 355 \\
\hline Stop group 1 sudden stop selection & 56 & 206 & 356 & 56 & 206 & 356 \\
\hline Stop group 2 sudden stop selection & 57 & 207 & 357 & 57 & 207 & 357 \\
\hline Stop group 3 sudden stop selection & 58 & 208 & 358 & 58 & 208 & 358 \\
\hline Positioning complete signal output time & 59 & 209 & 359 & 59 & 209 & 359 \\
\hline \multirow[t]{2}{*}{Allowable circular interpolation error width} & 60 & 210 & 360 & 60 & 210 & 360 \\
\hline & 61 & 211 & 361 & 61 & 211 & 361 \\
\hline Pr. 43 External start function selection & \multirow[b]{2}{*}{62} & \multirow[b]{2}{*}{212} & \multirow[b]{2}{*}{362} & \multirow[b]{2}{*}{62} & \multirow[b]{2}{*}{212} & \multirow[b]{2}{*}{362} \\
\hline (QD75: Pr. 42 External command function selection) & & & & & & \\
\hline Near pass mode selection for path control & 66 & 216 & 366 & - & - & - \\
\hline OPR method & 70 & 220 & 370 & 70 & 220 & 370 \\
\hline OPR direction & 71 & 221 & 371 & 71 & 221 & 371 \\
\hline \multirow[b]{2}{*}{OP address} & 72 & 222 & 372 & 72 & 222 & 372 \\
\hline & 73 & 223 & 373 & 73 & 223 & 373 \\
\hline \multirow[t]{2}{*}{OPR speed} & 74 & 224 & 374 & 74 & 224 & 374 \\
\hline & 75 & 225 & 375 & 75 & 225 & 375 \\
\hline \multirow{2}{*}{Creep speed} & 76 & 226 & 376 & 76 & 226 & 376 \\
\hline & 77 & 227 & 377 & 77 & 227 & 377 \\
\hline Pr. 50 OPR retry & 78 & 228 & 378 & 78 & 228 & 378 \\
\hline Pr. 51 OPR dwell time & 79 & 229 & 379 & 79 & 229 & 379 \\
\hline \multirow[t]{2}{*}{Setting for the movement amount after nearpoint dog ON} & 80 & 230 & 380 & 80 & 230 & 380 \\
\hline & 81 & 231 & 381 & 81 & 231 & 381 \\
\hline Pr. 53 OPR acceleration time selection & 82 & 232 & 382 & 82 & 232 & 382 \\
\hline Pr. 54 OPR deceleration time selection & 83 & 233 & 383 & 83 & 233 & 383 \\
\hline \multirow{2}{*}{OP shift amount} & 84 & 234 & 384 & 84 & 234 & 384 \\
\hline & 85 & 235 & 385 & 85 & 235 & 385 \\
\hline Pr. 56 OPR torque limit value & 86 & 236 & 386 & 86 & 236 & 386 \\
\hline Pr. 57 Speed designation during OP shift & 88 & 238 & 388 & 88 & 238 & 388 \\
\hline Pr. 58 Dwell time during OPR retry & 89 & 239 & 389 & 89 & 239 & 389 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{Items of A1SD75}} & \multicolumn{2}{|c|}{Buffer memory address} \\
\hline & & A1SD75 & QD75 \\
\hline & & Common for axis 1, 2, 3 & Common for axis 1, 2, 3, 4 \\
\hline (Pointer number) & \multirow{6}{*}{Warning history} & \multicolumn{2}{|c|}{(0) to (15)} \\
\hline Md. 24 Axis in which the warning occurred & & 689 to 749 & 1358 to 1418 \\
\hline Md. 25 Axis warning No. & & 690 to 750 & 1359 to 1419 \\
\hline \begin{tabular}{l}
Md. 26 Axis warning occurrence Hour: minute \\
(QD75: Md. 16 Axis warning occurrence (Day: Hour))
\end{tabular} & & 691 to 751 & 1360 to 1420 \\
\hline \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline Md. 27 & Axis warning occurrence Second: \\
100ms \\
(QD75: & Md. 17 Axis warning occurrence \\
(Minute: second))
\end{tabular} \\
\hline
\end{tabular} & & 692 to 752 & 1361 to 1421 \\
\hline Md. 28 Warning history pointer & & 753 & 1422 \\
\hline
\end{tabular}


MELSEC-Q
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Items of A1SD75} & \multicolumn{6}{|c|}{Buffer memory address} \\
\hline & \multicolumn{3}{|c|}{A1SD75} & \multicolumn{3}{|c|}{QD75} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 1 & Axis 2 & Axis 3 \\
\hline Cd. 1 Clock data setting (hour) & \multicolumn{3}{|c|}{1100} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 2 Clock data setting (minute, second) & \multicolumn{3}{|c|}{1101} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 3 Clock data writing & \multicolumn{3}{|c|}{1102} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 4 Target axis & \multicolumn{3}{|c|}{1103} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 5 Positioning data No. & \multicolumn{3}{|c|}{1104} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 6 Write pattern & \multicolumn{3}{|c|}{1105} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 7 Read/write request & \multicolumn{3}{|c|}{1106} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 8 Read/write positioning data I/F & \multicolumn{3}{|c|}{1108 to 1137} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 9 Flash ROM write request & \multicolumn{3}{|c|}{1138} & \multicolumn{3}{|c|}{-} \\
\hline Cd. 10 Parameter initialization request & \multicolumn{3}{|c|}{1139} & \multicolumn{3}{|c|}{1901} \\
\hline Cd. 11 Positioning start No. & 1150 & 1200 & 1250 & 1500 & 1600 & 1700 \\
\hline Cd. 12 Axis error reset & 1151 & 1201 & 1251 & 1502 & 1602 & 1702 \\
\hline Cd. 13 Restart command & 1152 & 1202 & 1252 & 1503 & 1603 & 1703 \\
\hline Cd. 14 M code OFF request & 1153 & 1203 & 1253 & 1504 & 1604 & 1704 \\
\hline Cd. 15 New current value & \[
\begin{aligned}
& 1154 \\
& 1155 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1204 \\
& 1205 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1254 \\
& 1255 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1506 \\
& 1507 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1606 \\
& 1607 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1706 \\
& 1707 \\
& \hline
\end{aligned}
\] \\
\hline Cd. 16 New speed value & \[
\begin{aligned}
& 1156 \\
& 1157 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1206 \\
& 1207 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1256 \\
& 1257
\end{aligned}
\] & \[
\begin{aligned}
& 1514 \\
& 1515
\end{aligned}
\] & \[
\begin{aligned}
& 1614 \\
& 1615
\end{aligned}
\] & \[
\begin{aligned}
& 1714 \\
& 1715 \\
& \hline
\end{aligned}
\] \\
\hline Cd. 17 Speed change request & 1158 & 1208 & 1258 & 1516 & 1616 & 1716 \\
\hline Cd.18 Positioning operation speed override & 1159 & 1209 & 1259 & 1513 & 1613 & 1713 \\
\hline Cd. 19 JOG speed & \[
\begin{aligned}
& 1160 \\
& 1161 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1210 \\
1211 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1260 \\
& 1261 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1518 \\
& 1519 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1618 \\
& 1619 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1718 \\
& 1719 \\
& \hline
\end{aligned}
\] \\
\hline Cd. 20 Speed-position switching enable flag & 1163 & 1213 & 1263 & 1528 & 1628 & 1728 \\
\hline Cd. 21 Speed-position switching control movement amount change register & \[
\begin{aligned}
& 1164 \\
& 1165 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1214 \\
& 1215 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1264 \\
& 1265 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1526 \\
& 1527 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1626 \\
& 1627
\end{aligned}
\] & \[
\begin{aligned}
& 1726 \\
& 1727 \\
& \hline
\end{aligned}
\] \\
\hline Cd.22 Manual pulse generator enable flag & 1167 & 1217 & 1267 & 1524 & 1624 & 1724 \\
\hline Cd. 23 Manual pulse generator 1 pulse input magnification & \[
\begin{aligned}
& 1168 \\
& 1169 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1218 \\
& 1219 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1268 \\
& 1269 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1522 \\
& 1523 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1622 \\
& 1623 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1722 \\
& 1723 \\
& \hline
\end{aligned}
\] \\
\hline Cd. 24 OPR return request flag OFF request & 1170 & 1220 & 1270 & 1521 & 1621 & 1721 \\
\hline Cd. 25 External start valid
(QD75:
Cd. 8 External command valid) & 1171 & 1221 & 1271 & 1505 & 1605 & 1705 \\
\hline Cd.26 Step valid flag & 1172 & 1222 & 1272 & 1545 & 1645 & 1745 \\
\hline Cd. 27 Step mode & 1173 & 1223 & 1273 & 1544 & 1644 & 1744 \\
\hline Cd. 28 Step start information & 1174 & 1224 & 1274 & 1546 & 1646 & 1746 \\
\hline Cd. 29 Skip command & 1175 & 1225 & 1275 & 1547 & 1647 & 1747 \\
\hline Cd. 30 New torque value & 1176 & 1226 & 1276 & 1525 & 1625 & 1725 \\
\hline Cd. 31 Positioning starting point No. & 1178 & 1228 & 1278 & 1501 & 1601 & 1701 \\
\hline Cd. 32 Interrupt request during continuous operation & 1181 & 1231 & 1281 & 1520 & 1620 & 1720 \\
\hline Cd. 33 New acceleration time value & \[
\begin{aligned}
& 1184 \\
& 1185 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1234 \\
& 1235 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1284 \\
& 1285 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1508 \\
& 1509 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1608 \\
& 1609 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1708 \\
& 1709 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

MELSEC-Q
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow{3}{*}{Items of A1SD75}} & \multicolumn{6}{|c|}{Buffer memory address} \\
\hline & & & \multicolumn{3}{|c|}{A1SD75} & \multicolumn{3}{|c|}{QD75} \\
\hline & & & Axis 1 & Axis 2 & Axis 3 & Axis 1 & Axis 2 & Axis 3 \\
\hline Cd. 34 & \multicolumn{2}{|l|}{New deceleration time value} & \[
\begin{aligned}
& 1186 \\
& 1187
\end{aligned}
\] & \[
\begin{aligned}
& 1236 \\
& 1237
\end{aligned}
\] & \[
\begin{aligned}
& 1286 \\
& 1287
\end{aligned}
\] & \[
\begin{aligned}
& 1510 \\
& 1511
\end{aligned}
\] & \[
\begin{aligned}
& 1610 \\
& 1611
\end{aligned}
\] & \[
\begin{aligned}
& 1710 \\
& 1711
\end{aligned}
\] \\
\hline \[
\text { Cd. } 35
\] & \multicolumn{2}{|l|}{Acceleration/deceleration time change during speed change, enable/disable selection} & 1188 & 1238 & 1288 & 1512 & 1612 & 1712 \\
\hline \multirow{10}{*}{} & \begin{tabular}{|l|l|}
\hline Da. 1 & Operation pattern \\
\hline Da. 2 & Control system \\
\hline Da. 3 & Acceleration time No. \\
\hline Da. & Deceleration time No. \\
\hline
\end{tabular} & \multirow{6}{*}{o. 1} & 1300 & 2300 & 3300 & 2000 & 8000 & 14000 \\
\hline & Da. 9 M code/condition data & & 1301 & 2301 & 3301 & 2001 & 8001 & 14001 \\
\hline & Da. 8 Dwell time/JUMP destination positioning data No. & & 1302 & 2302 & 3302 & 2002 & 8002 & 14002 \\
\hline & Da. 7 Command speed & & \[
\begin{aligned}
& 1304 \\
& 1305
\end{aligned}
\] & \[
\begin{aligned}
& 2304 \\
& 2305
\end{aligned}
\] & \[
\begin{aligned}
& 3304 \\
& 3305
\end{aligned}
\] & \[
\begin{aligned}
& 2004 \\
& 2005
\end{aligned}
\] & \[
\begin{aligned}
& 8004 \\
& 8005
\end{aligned}
\] & \[
\begin{aligned}
& 14004 \\
& 14005
\end{aligned}
\] \\
\hline & Da. 5 Positioning address/movement amount & & \[
\begin{aligned}
& 1306 \\
& 1307
\end{aligned}
\] & \[
\begin{aligned}
& 2306 \\
& 2307
\end{aligned}
\] & \[
\begin{aligned}
& 3306 \\
& 3307
\end{aligned}
\] & \[
\begin{aligned}
& 2006 \\
& 2007
\end{aligned}
\] & \[
\begin{aligned}
& 8006 \\
& 8007
\end{aligned}
\] & \[
\begin{aligned}
& 14006 \\
& 14007
\end{aligned}
\] \\
\hline & Da. 6 Arc address & & \[
\begin{aligned}
& 1308 \\
& 1309
\end{aligned}
\] & \[
\begin{aligned}
& 2308 \\
& 2309
\end{aligned}
\] & \[
\begin{aligned}
& 3308 \\
& 3309
\end{aligned}
\] & \[
\begin{aligned}
& 2008 \\
& 2009
\end{aligned}
\] & \[
\begin{aligned}
& 8008 \\
& 8009
\end{aligned}
\] & \[
\begin{aligned}
& 14008 \\
& 14009
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{No. 2} & \[
\begin{gathered}
1310 \text { to } \\
1319 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 2310 \text { to } \\
2319 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3310 \text { to } \\
3319 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2010 \text { to } \\
2019 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
8010 \text { to } \\
8019 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
14010 \text { to } \\
14019 \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{2}{|l|}{No. 3} & \[
\begin{gathered}
1320 \text { to } \\
1329
\end{gathered}
\] & \[
\begin{gathered}
2320 \text { to } \\
2329
\end{gathered}
\] & \[
\begin{gathered}
3320 \text { to } \\
3329
\end{gathered}
\] & \[
\begin{gathered}
2020 \text { to } \\
2029
\end{gathered}
\] & \[
\begin{gathered}
8020 \text { to } \\
8029
\end{gathered}
\] & \[
\begin{gathered}
14020 \text { to } \\
14029
\end{gathered}
\] \\
\hline & \multicolumn{2}{|l|}{to} & to & to & to & to & to & to \\
\hline & \multicolumn{2}{|l|}{No. 100} & \[
\begin{gathered}
2290 \text { to } \\
2299 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3290 \text { to } \\
3299
\end{gathered}
\] & \[
\begin{gathered}
4290 \text { to } \\
4299
\end{gathered}
\] & \[
\begin{gathered}
2990 \text { to } \\
2999
\end{gathered}
\] & \[
\begin{gathered}
8990 \text { to } \\
8999
\end{gathered}
\] & \[
\begin{gathered}
14990 \text { to } \\
14999
\end{gathered}
\] \\
\hline
\end{tabular}
* 1: With the QD75, the positioning data buffer memory addresses are Nos. 1 to 600.

Refer to Appendix 13 "List of buffer memory addresses" for details.

* 2: With the QD75, it is called "block start data".
*3: With the QD75, the "block start data" and "condition data" in the shaded area are called "start block 0". There are five start blocks: 0 to 4.

Refer to Appendix 13 "List of buffer memory addresses" for details.

\section*{(5) Data indication No. comparisons}

The following table shows the comparisons of numbers for each symbols (Pr., Md., Cd., and Da.) indicating parameters or positioning data items.

The shaded sections indicate the added or changed items with the QD75.
Parameters
\begin{tabular}{|c|c|c|}
\hline Item & A1SD75 & QD75 \\
\hline Unit setting & \multicolumn{2}{|c|}{Pr. 1} \\
\hline No. of pulses per rotation (Ap) & \multicolumn{2}{|c|}{Pr.2} \\
\hline Movement amount per rotation (Al) & \multicolumn{2}{|c|}{Pr. 3} \\
\hline Unit magnification (Am) & \multicolumn{2}{|c|}{Pr. 4} \\
\hline Pulse output mode & \multicolumn{2}{|c|}{Pr. 5} \\
\hline Rotation direction setting & \multicolumn{2}{|c|}{Pr. 6} \\
\hline Speed limit value & Pr. 7 & Pr. 8 \\
\hline Acceleration time 0 & Pr. 8 & Pr. 9 \\
\hline Deceleration time 0 & Pr. 9 & Pr. 10 \\
\hline Bias speed at start & Pr. 10 & Pr. 7 \\
\hline Stepping motor mode selection & Pr. 11 & - \\
\hline Backlash compensation amount & Pr. 12 & Pr. 11 \\
\hline Software stroke limit upper limit value & Pr. 13 & Pr. 12 \\
\hline Software stroke limit lower limit value & Pr. 14 & Pr. 13 \\
\hline Software stroke limit selection & Pr. 15 & Pr. 14 \\
\hline Software stroke limit valid/invalid setting & Pr. 16 & Pr. 15 \\
\hline Command in-position width & Pr. 17 & Pr. 16 \\
\hline Torque limit setting value & Pr. 18 & Pr. 17 \\
\hline M code ON signal output timing & Pr. 19 & Pr. 18 \\
\hline Speed switching mode & Pr. 20 & Pr. 19 \\
\hline Interpolation speed designation method & Pr. 21 & Pr. 20 \\
\hline Current feed value during speed control & Pr. 22 & Pr. 21 \\
\hline Manual pulse generator selection & Pr. 23 & - \\
\hline Logic selection for pulse output to the drive unit & Pr. 24 & - \\
\hline Input signal logic selection & - & Pr. 22 \\
\hline Output signal logic selection & - & Pr. 23 \\
\hline Manual pulse generator input selection & - & Pr. 24 \\
\hline Size selection for acceleration/deceleration time & Pr. 25 & - \\
\hline Acceleration time 1 & Pr. 26 & Pr. 25 \\
\hline Acceleration time 2 & Pr. 27 & Pr. 26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item & A1SD75 & QD75 \\
\hline Acceleration time 3 & Pr. 28 & Pr. 27 \\
\hline Deceleration time 1 & Pr. 29 & Pr. 28 \\
\hline Deceleration time 2 & Pr. 30 & Pr. 29 \\
\hline Deceleration time 3 & Pr. 31 & Pr. 30 \\
\hline JOG speed limit value & Pr. 32 & Pr. 31 \\
\hline JOG operation acceleration time selection & Pr. 33 & Pr. 32 \\
\hline JOG operation deceleration time selection & Pr. 34 & Pr. 33 \\
\hline Acceleration/deceleration process selection & Pr. 35 & Pr. 34 \\
\hline S-curve ratio & Pr. 36 & Pr. 35 \\
\hline Sudden stop deceleration time & Pr. 37 & Pr. 36 \\
\hline Stop group 1 sudden stop selection & Pr. 38 & Pr. 37 \\
\hline Stop group 2 sudden stop selection & Pr. 39 & Pr. 38 \\
\hline Stop group 3 sudden stop selection & Pr. 40 & Pr. 39 \\
\hline Positioning complete signal output time & Pr. 41 & Pr. 40 \\
\hline Allowable circular interpolation error width & Pr. 42 & Pr. 41 \\
\hline External start function selection (QD75: Pr.42 External command function selection) & Pr. 43 & Pr. 42 \\
\hline Near pass mode selection for path control & Pr. 44 & - \\
\hline OPR method & Pr. 45 & Pr. 43 \\
\hline OPR direction & Pr. 46 & Pr. 44 \\
\hline OP address & Pr. 47 & Pr. 45 \\
\hline OPR speed & Pr. 48 & Pr. 46 \\
\hline Creep speed & Pr. 49 & Pr. 47 \\
\hline OPR retry & Pr. 50 & Pr. 48 \\
\hline OPR dwell time & Pr. 51 & Pr. 49 \\
\hline Setting for the movement amount after near-point dog ON & Pr. 52 & Pr. 50 \\
\hline OPR acceleration time selection & Pr. 53 & Pr. 51 \\
\hline OPR deceleration time selection & Pr. 54 & Pr. 52 \\
\hline OP shift amount & Pr. 55 & Pr. 53 \\
\hline OPR torque limit value & Pr. 56 & Pr. 54 \\
\hline Deviation counter clear signal output time & - & Pr. 55 \\
\hline Speed designation during OP shift & Pr. 57 & Pr. 56 \\
\hline Dwell time during OPR retry & Pr. 58 & Pr. 57 \\
\hline Speed-position function selection & - & Pr. 150 \\
\hline
\end{tabular}

\section*{Monitor data}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Item} & A1SD75 & QD75 \\
\hline In test mode flag & & \multicolumn{2}{|c|}{Md. 1} \\
\hline Module name & & Md. 2 & - \\
\hline OS type & & Md. 3 & - \\
\hline OS version & & Md. 4 & - \\
\hline Clock data (hour: minute) & & Md. 5 & - \\
\hline Clock data (second: 100 ms ) & & Md. 6 & - \\
\hline Start axis (QD75: Md.3 Start information) & \multirow{6}{*}{Start history} & Md. 7 & Md. 3 \\
\hline Operation type (QD75: Md. 4 Start No.) & & Md. 8 & Md. 4 \\
\hline Start Hour: minute (QD75: Md. 5 Start Hour) & & Md. 9 & Md. 5 \\
\hline Start Second: 100ms (QD75: Md.6 Start Minute: second) & & Md. 10 & Md.6 \\
\hline Error judgment & & Md. 11 & Md. 7 \\
\hline Start history pointer & & Md. 12 & Md. 8 \\
\hline Start axis & \multirow{6}{*}{Start history during errors} & Md. 13 & - \\
\hline Operation type & & Md. 14 & - \\
\hline Start Hour: minute & & Md. 15 & - \\
\hline Start Second: 100 ms & & Md. 16 & - \\
\hline Error judgment & & Md. 17 & - \\
\hline Start history storage during error & & Md. 18 & - \\
\hline Axis in which the error occurred & \multirow{5}{*}{Error history} & Md. 19 & Md. 9 \\
\hline Axis error No. & & Md. 20 & Md. 10 \\
\hline Axis error occurrence Hour: minute (QD75: Md. 11 Axis error occurrence (Hour)) & & Md. 21 & Md. 11 \\
\hline \begin{tabular}{l}
Axis error occurrence Second: 100ms \\
(QD75: Md. 12 Axis error occurrence (Minute: second))
\end{tabular} & & Md. 22 & Md. 12 \\
\hline Pointer & & Md. 23 & Md. 13 \\
\hline Axis in which the warning occurred & \multirow{5}{*}{Warning history} & Md. 24 & Md. 14 \\
\hline Axis warning No. & & Md. 25 & Md. 15 \\
\hline Axis warning occurrence Hour: minute (QD75: Md. 16 Axis warning occurrence (Hour)) & & Md. 26 & Md. 16 \\
\hline Axis warning occurrence Second: 100 ms (QD75: Md.17 Axis warning occurrence (Minute: second)) & & Md. 27 & Md. 17 \\
\hline Pointer & & Md. 28 & Md. 18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item & A1SD75 & QD75 \\
\hline No. of write accesses to flash ROM & - & Md. 19 \\
\hline Current feed value & Md. 29 & Md. 20 \\
\hline Machine feed value & Md. 30 & Md. 21 \\
\hline Feedrate & Md. 31 & Md.22 \\
\hline Valid M code & Md. 32 & Md.25 \\
\hline Axis error No. & Md. 33 & Md. 23 \\
\hline Axis warning No. & Md. 34 & Md. 24 \\
\hline Axis operation status & Md. 35 & Md.26 \\
\hline Current speed & Md. 36 & Md. 27 \\
\hline Axis feedrate & Md. 37 & Md. 28 \\
\hline Speed-position switching control positioning amount & Md. 38 & Md. 29 \\
\hline External input/output signal & Md. 39 & Md. 30 \\
\hline Status & Md. 40 & Md. 31 \\
\hline Target value & Md. 41 & Md. 32 \\
\hline Target speed & Md. 42 & Md. 33 \\
\hline OP absolute position & Md. 43 & - \\
\hline Movement amount after near-point dog ON & Md. 44 & Md. 34 \\
\hline Torque limit stored value & Md. 45 & Md. 35 \\
\hline Special start data instruction code setting value & Md. 46 & Md. 36 \\
\hline Special start data instruction parameter setting value & Md. 47 & Md. 37 \\
\hline Start positioning data No. setting value & Md. 48 & Md. 38 \\
\hline In speed control flag & Md. 49 & Md. 39 \\
\hline In speed change processing flag & Md. 50 & Md. 40 \\
\hline Start data pointer being executed & Md. 51 & Md. 43 \\
\hline Last executed positioning data No. & Md. 52 & Md. 46 \\
\hline Repetition counter (QD75: Md.41 Special start repetition counter) & Md. 53 & Md. 41 \\
\hline Control system repetition counter & - & Md. 42 \\
\hline Positioning data No. being executed & Md. 54 & Md. 44 \\
\hline Block No. being executed & Md. 55 & Md. 45 \\
\hline Positioning data being executed & Md. 56 & Md.47 \\
\hline Deceleration start flag & - & Md. 48 \\
\hline
\end{tabular}

Control data
\begin{tabular}{|c|c|c|}
\hline Item & A1SD75 & QD75 \\
\hline Clock data setting (hour) & Cd. 1 & - \\
\hline Clock data setting (minute, second) & Cd. 2 & - \\
\hline Clock data writing & Cd. 3 & - \\
\hline Target axis & Cd. 4 & - \\
\hline Positioning data No. & Cd. 5 & - \\
\hline Write pattern & Cd. 6 & - \\
\hline Read/write request & Cd. 7 & - \\
\hline Read/write positioning data I/F & Cd. 8 & - \\
\hline Flash ROM write request & Cd. 9 & Cd. 1 \\
\hline Parameter initialization request & Cd. 10 & Cd. 2 \\
\hline Positioning start No. & Cd. 11 & Cd. 3 \\
\hline Axis error reset & Cd. 12 & Cd. 5 \\
\hline Restart command & Cd. 13 & Cd. 6 \\
\hline M code OFF request & Cd. 14 & Cd. 7 \\
\hline New current value & Cd. 15 & Cd. 9 \\
\hline New speed value & Cd. 16 & Cd. 14 \\
\hline Speed change request & Cd. 17 & Cd. 15 \\
\hline Positioning operation speed override & Cd. 18 & Cd. 13 \\
\hline JOG speed & Cd. 19 & Cd. 17 \\
\hline Inching movement amount & - & Cd. 16 \\
\hline Speed-position switching enable flag & Cd. 20 & Cd. 24 \\
\hline Speed-position switching control movement amount change register & Cd. 21 & Cd. 23 \\
\hline Position-speed switching enable flag & - & Cd. 26 \\
\hline Position-speed switching control speed change register & - & Cd. 25 \\
\hline Target position change request flag & - & Cd. 29 \\
\hline Target position change value (new address) & - & Cd. 27 \\
\hline Target position change value (new speed) & - & Cd. 28 \\
\hline ABS direction in degrees & - & Cd. 40 \\
\hline Manual pulse generator enable flag & Cd. 22 & Cd. 21 \\
\hline Manual pulse generator 1 pulse input magnification & Cd. 23 & Cd. 20 \\
\hline OPR request flag OFF request & Cd. 24 & Cd. 19 \\
\hline External start valid (QD75: Cd.8 External command valid) & Cd. 25 & Cd. 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item & A1SD75 & QD75 \\
\hline Step valid flag & Cd. 26 & Cd. 35 \\
\hline Step mode & Cd. 27 & Cd. 34 \\
\hline Step start information & Cd. 28 & Cd. 36 \\
\hline Skip command & Cd. 29 & Cd. 37 \\
\hline New torque value & Cd. 30 & Cd. 22 \\
\hline Positioning starting point No. & Cd. 31 & Cd. 4 \\
\hline Interrupt request during continuous operation & Cd. 32 & Cd. 18 \\
\hline Simultaneous starting axis start data No. (Axis 1 start data No.) & - & Cd. 30 \\
\hline Simultaneous starting axis start data No. (Axis 2 start data No.) & - & Cd. 31 \\
\hline Simultaneous starting axis start data No. (Axis 3 start data No.) & - & Cd. 32 \\
\hline Simultaneous starting axis start data No. (Axis 4 start data No.) & - & Cd. 33 \\
\hline Teaching data selection & - & Cd. 38 \\
\hline Teaching positioning data No. & - & Cd. 39 \\
\hline New acceleration time value & Cd. 33 & Cd. 10 \\
\hline New deceleration time value & Cd. 34 & Cd. 11 \\
\hline Acceleration/deceleration time change during speed change, enable/disable selection & Cd. 35 & Cd. 12 \\
\hline Stop command processing for deceleration stop selection & - & Cd. 42 \\
\hline Deceleration start flag valid & - & Cd. 41 \\
\hline
\end{tabular}

Positioning data, block start data, condition data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Item} & A1SD75 & QD75 \\
\hline \multirow{10}{*}{Positioning data} & \multicolumn{2}{|l|}{Operation pattern} & \multicolumn{2}{|c|}{Da. 1} \\
\hline & \multicolumn{2}{|l|}{Control system} & \multicolumn{2}{|c|}{Da. 2} \\
\hline & \multicolumn{2}{|l|}{Acceleration time No.} & \multicolumn{2}{|c|}{Da. 3} \\
\hline & \multicolumn{2}{|l|}{Deceleration time No.} & \multicolumn{2}{|c|}{Da. 4} \\
\hline & \multicolumn{2}{|l|}{Axis to be interpolated} & - & Da. 5 \\
\hline & \multicolumn{2}{|l|}{Positioning address/movement amount} & Da. 5 & Da. 6 \\
\hline & \multicolumn{2}{|l|}{Arc address} & Da. 6 & Da. 7 \\
\hline & \multicolumn{2}{|l|}{Command speed} & Da. 7 & Da. 8 \\
\hline & \multicolumn{2}{|l|}{Dwell time/JUMP destination positioning data No.} & Da. 8 & Da. 9 \\
\hline & \multicolumn{2}{|l|}{M code/condition data} & Da. 9 & Da. 10 \\
\hline \multirow{9}{*}{Positioning start information *} & \multirow{4}{*}{Start block data *} & Shape & Da. 10 & Da. 11 \\
\hline & & Start data No. & Da. 11 & Da. 12 \\
\hline & & Special start instruction & Da. 12 & Da. 13 \\
\hline & & Parameter & Da. 13 & Da. 14 \\
\hline & \multirow{5}{*}{Condition data} & Condition target & Da. 14 & Da. 15 \\
\hline & & Condition operator & Da. 15 & Da. 16 \\
\hline & & Address & Da. 16 & Da. 17 \\
\hline & & Parameter 1 & Da. 17 & Da. 18 \\
\hline & & Parameter 2 & Da. 18 & Da. 19 \\
\hline
\end{tabular}
*: Called "block start data" with the QD75.

\section*{(6) Input/output signal comparisons}

Input signal comparisons
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Name }} & \multicolumn{2}{|c|}{ A1SD75 } & \multicolumn{2}{c|}{ QD75 } \\
\cline { 2 - 5 } & Logic (initial status) & \begin{tabular}{c} 
Logic switch with \\
parameters
\end{tabular} & Logic (initial status) & \begin{tabular}{c} 
Logic switch with \\
parameters
\end{tabular} \\
\hline Drive unit READY & Negative logic & Not possible & Negative logic & Possible \\
\hline In-position signal & Negative logic & Not possible & - & - \\
\hline Zero signal & Negative logic & Not possible & Negative logic & Possible \\
\hline \begin{tabular}{l} 
Manual pulse generator A phase \\
Manual pulse generator B phase \(* 1\)
\end{tabular} & \begin{tabular}{c} 
Negative logic \\
(multiple of 4)
\end{tabular} & Not possible & \begin{tabular}{c} 
Negative logic \\
(multiple of 4)
\end{tabular} & Possible \\
\hline Near-point dog signal & Negative logic & Not possible & Negative logic & Possible \\
\hline Stop signal & Negative logic & Not possible & Negative logic & Possible \\
\hline Upper limit & Negative logic & Not possible & Negative logic & Possible \\
\hline Lower limit & Negative logic & Not possible & Negative logic & Possible \\
\hline External start *2 & Negative logic & Not possible & Negative logic & Possible \\
\hline Speed-position switching signal \(* 2\) & Negative logic & Not possible & Negative logic & Possible \\
\hline
\end{tabular}

Output signal comparisons
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{ Name } & \multicolumn{2}{|c|}{ A1SD75 } & \multicolumn{2}{c|}{ QD75 } \\
\cline { 2 - 6 } & Logic (initial status) & \begin{tabular}{c} 
Logic switch with \\
parameters
\end{tabular} & Logic (initial status) & \begin{tabular}{c} 
Logic switch with \\
parameters
\end{tabular} \\
\hline Command pulse *3 & \begin{tabular}{c} 
Positive logic \\
CW/CCW mode
\end{tabular} & Possible & \begin{tabular}{c} 
Negative logic \\
CW/CCW mode
\end{tabular} & Possible \\
\hline Deviation counter clear & Negative logic & Not possible & Negative logic & Possible \\
\hline
\end{tabular}
* 1: Comparisons about manual pulse generator A phase/B phase
\begin{tabular}{|l|c|c|}
\hline & A1SD75 & QD75 \\
\hline \begin{tabular}{l} 
No. of connectable manual pulse \\
generators
\end{tabular} & 1 generator/1 axis & 1 generator/1 module \\
\hline & Not possible & Possible \\
Mode selection (with parameter) & & \begin{tabular}{c} 
Multiple of 1 mode, multiple of 4 mode, \\
PULSE/SIGN mode
\end{tabular} \\
\hline
\end{tabular}
*2: With the QD75, the "external start signal" and "speed-position switching signal" are combined into the "external command signal".
*3: Comparisons about command pulse
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{c|}{ A1SD75 } & \multicolumn{1}{c|}{ QD75 } \\
\hline Mode selection (with parameter) & \multicolumn{1}{c|}{ Possible } \\
Max. command frequency & \multicolumn{1}{|c|}{\begin{tabular}{l} 
PULSE/SIGN mode, A phase/B phase (multiple of 4) mode, \\
A phase/B phase (multiple of 1) mode, CW/CCW mode
\end{tabular}} \\
\hline & \begin{tabular}{l} 
Open collector: 200kpps \\
Differential driver: 400kpps
\end{tabular} & \begin{tabular}{l} 
Open collector: 200kpps \\
Differential driver: 4Mpps(QD75D \(\square N)\) \\
1Mpps (QD75D \(\square\) )
\end{tabular} \\
\hline
\end{tabular}

\section*{Appendix 10 When using GX Works2}

The following shows the procedure for positioning operation when GX Works2 is used.


For details on the operation method of GX Works2, refer to the following. GX Works2 Version 1 Operating Manual (Common)
For details on operation in GX Works2 for the QD75, refer to the following. GX Works2 Version 1 Operating Manual (Intelligent Function Module)

\section*{Appendix 10.1 Adding a module}

Add the model name of the positioning module to be used in the project.

\section*{(1) Operating procedure}
1. Open the "New Module..." dialog box.

Project window \(\rightarrow\) Right-click [Intelligent Function Module] \(\rightarrow\) "New
Module..."

2. Configure settings

Set the following items.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Item } & \multicolumn{1}{c|}{ Contents } \\
\hline \multirow{4}{*}{ Module Selection } & Module Type & Select "QD75 Type Positioning Module". \\
\cline { 2 - 3 } & Module Name & \begin{tabular}{l} 
Select the model name of the module to be \\
connected.
\end{tabular} \\
\hline \multirow{3}{*}{ Mount Position } & Mounted Slot No. & \begin{tabular}{l} 
Select the number of the slot where the module is \\
mounted.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Specify start X/Y \\
address
\end{tabular} & \begin{tabular}{l} 
The start I/O number (hexadecimal) of the module \\
to be mounted on the slot set in "Mounted Slot No." \\
is displayed. The value can be changed.
\end{tabular} \\
\hline Title Setting & Title & Enter a title. \\
\hline
\end{tabular}

\section*{Appendix 10.2 Setting parameters}

Set parameters for the positioning module.
By setting parameters, the parameter setting by sequence program is not needed.

\section*{- Parameter setting}

\section*{(1) Operating procedure}
1. Open the "Parameter" window.

Project window \(\rightarrow\) [Intelligent Function Module] \(\rightarrow\) Module name \(\rightarrow\)
"Parameter"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\$0000:QD75P4N[]-Parameter} \\
\hline \multicolumn{6}{|l|}{Display Filter Display All} \\
\hline Item & Axis \#1 & Axis \#2 & Axis \#3 & Axis \#4 & ヘ \\
\hline \multicolumn{6}{|l|}{- Basic parameters \(1 \quad\)\begin{tabular}{l} 
Set according to the machine and applicable motor when system is started up. \\
(This parameter become valid when the PLC READY signal [YO] turns from OFF to ON)
\end{tabular}} \\
\hline - Unit setting & 3:pulse & 3:pulse & 3:pulse & 3:pulse & \\
\hline No. of pulses per rotation & 20000 pulse & 20000 pulse & 20000 pulse & 20000 pulse & \\
\hline Movement amount per rotation & 20000 pulse & 20000 pulse & 20000 pulse & 20000 pulse & \\
\hline Unit magnification & 1: \(\times 1\) Times & 1:X1 Times & 1:x1 Times & 1:×1 Times & \\
\hline Pulse output mode & 1:CW/CCW Mode & 1:CW/CCW Mode & 1:CW/CCW Mode & 1:CW/CCW Mode & \\
\hline Rotation direction setting & \begin{tabular}{l}
0:Increase Present Value \\
by Forward Pulse Output
\end{tabular} & \(0:\) Increase Present Yalue by Forward Pulse Output & \(0: I n c r e a s e ~ P r e s e n t ~ V a l u e ~\) by Forward Pulse Output & \(0:\) Increase Present Value by Forward Pulse Output & \\
\hline Bias speed at start & 0 pulse/s & 0 pulse/s & 0 pulse/s & 0 pulse/s & \\
\hline - Basic parameters 2 & Set according to the m & machine and applicable m & notor when system is st & tarted up. & \\
\hline Speed limit value & 200000 pulse/s & 200000 pulse/s & 200000 pulse/s & 200000 pulse/s & \\
\hline Acceleration time 0 & 1000 ms & 1000 ms & 1000 ms & 1000 ms & \\
\hline Deceleration time 0 & 1000 ms & 1000 ms & 1000 ms & 1000 ms & \\
\hline - Detailed parameters 1 & Set according to the sy (This parameter beco & ystem configuration wh me valid when the PLC R & en the system is starte READY signal [Y0] turns & \begin{tabular}{l}
d up. \\
from OFF to ON)
\end{tabular} & \\
\hline Backlash compensation amount & 0 pulse & 0 pulse & 0 pulse & 0 pulse & \\
\hline Software stroke limit upper limit value & 2147483647 pulse & 2147483647 pulse & 2147483647 pulse & 2147483647 pulse & \\
\hline - Software stroke limit lower limit value & -2147483648 pulse & -2147483648 pulse & -2147483648 pulse & -2147483648 pulse & \(\checkmark\) \\
\hline & & & & & \(=\) \\
\hline
\end{tabular}
2. Configure settings

Double-click the setting-target item and select or enter a value.
- Items with a pull-down list

Double-click the item and select an item in the displayed pull-down list.
- Items without a pull-down list

Double-click the item and enter a value.

For details on the setting items, refer to the following.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & Reference \\
\hline Basic parameters 1 & Section 5.2.1 \\
\hline Basic parameters 2 & Section 5.2.2 \\
\hline Detailed parameters 1 & Section 5.2.3 \\
\hline Detailed parameters 2 & Section 5.2.4 \\
\hline OPR basic parameters & Section 5.2.5 \\
\hline OPR detailed parameters & Section 5.2.6 \\
\hline
\end{tabular}

\section*{Setting positioning data}

\section*{(1) Operating procedure}
1. Open the "Parameter" window.

Project window \(\rightarrow\) [Intelligent Function Module] \(\rightarrow\) Module name \(\rightarrow\) "Positioning_Axis_\# \(\square\) _Data"

2. Configure settings.

Double-click the setting-target item and select or enter a value.
- Items with a pull-down list Double-click the item and select an item in the displayed pull-down list.
- Items without a pull-down list

Double-click the item and enter a value.

\section*{POINT}

In the default status, the data displayed on "Positioning_Axis_\# \(\qquad\) Data" are only No. 1 to No. 100 of positioning data. To display the data No. 101 and later, change the display range under "Display Specification of Positioning data".
[Tool] \(\rightarrow\) [Options...] \(\rightarrow\) [Intelligent Function Module] \(\rightarrow\) "QD75/LD75 Type Positioning"
(Example) To display No. 1 to No. 120 of positioning data
Display Specification of Positioning Data
CData No. 1 to 100
© Specified Range Start No. \(11 \rightarrow\) End No. 120 -

\section*{(2) Sub-function}
- Offline Simulation

The locus and waveform of configured positioning data can be checked.


\section*{- Automatic Command Speed Calculation}

Constant speed is automatically calculated by setting the time for positioning from the starting position to the target position.

- Automatic Sub Arc Calculation

The circular interpolation control data for two positioning data interpolation is automatically created, by selecting two positioning data and setting the radius.

- M Code Comment Edit

Set and display M code comments of the positioning module.


For details on each function, refer to the GX Works2 Version1 Operating Manual (Intelligent Function Module).

\section*{Setting block start data}

\section*{(1) Operating procedure}
1. Open the "Parameter" window.

Project window \(\rightarrow\) [Intelligent Function Module] \(\rightarrow\) Module name \(\rightarrow\) "Starting_Axis_\# \(\square\) Block_Data"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\$0000:QD75P4N[]-Starting_Axis_H1_Block_Data} & - \(\square\) \\
\hline Display Filter & Block No. 0 & \(\checkmark\) & & & & - \\
\hline Point No. & Shape & Positioning start data No. & Special start instruction & Parameter & Condition data & A \\
\hline 1 & 0:Exit & 200 & 00h:Normal Start & 0 & & \\
\hline \(z\) & 0:Exit & 201 & 01h:Condition Start & 1 & O(Buffer Memory) \(=\) & \\
\hline 3 & 0:Exit & 202 & 02h:Wait Start & 6 & & \\
\hline 4 & 1:Continue & 203 & 03h:Simultaneous Start & 1 & 0 (Buffer Memory) \(=\) & \\
\hline 5 & 1:Continue & 204 & 04h:FOR Loop & 0 & Repetition Count & \\
\hline 6 & & & & & & \\
\hline 7 & & & & & & \\
\hline 8 & & & & & & \(-\) \\
\hline
\end{tabular}
2. Configure settings.

Double-click the setting-target item and select or enter a value.
- Items with a pull-down list

Double-click the item and select an item in the displayed pull-down list.
- Items without a pull-down list

Double-click the item and enter a value.

For details on the setting items, refer to Section 5.4 "List of block start data".

\section*{Appendix 10.3 Setting auto refresh}

Transfer data in the buffer memory of the positioning module to specified devices in the CPU module.
By setting auto refresh, reading by sequence program is not needed.
(1) Operating procedure
1. Open the "Auto_Refresh" window.

Project window \(\rightarrow\) [Intelligent Function Module] \(\rightarrow\) Module name \(\rightarrow\)
"Auto_Refresh"
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{58 0000:QD75P4N[]-Auto_Refresh} & & & - 0 \\
\hline \multirow[t]{2}{*}{Display Filter \({ }_{\text {display All }}^{\text {D }}\)} & \multicolumn{2}{|l|}{\(\checkmark\)} & & - \\
\hline & Axis \#1 & Axis \#2 & Axis \#3 & Axis \#4 \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l} 
- Transfer to CPD \\
Current feed value \\
- Machine feed value \\
Feedrate \\
Axis error number \\
Axis warning No. \\
- ValidM code \\
Axis operation status \\
\hline
\end{tabular}} & \multicolumn{4}{|l|}{The data of the buffer memory is transmitted to the specified device.} \\
\hline & & & & - \\
\hline & & & & \multirow[t]{2}{*}{\(\cdots\)} \\
\hline 1 & & & & \\
\hline
\end{tabular}
2. Enter devices.

Click the text box of the item to be set, and enter the auto refresh target device.

\footnotetext{
POINT
To validate the auto refresh data after writing them into the CPU module, power off and then on or reset the CPU module.
}

\section*{Appendix 10.4 Positioning monitor}

With the positioning monitor function, the QD75 operating status can be confirmed, and debugging can be performed.

The following five types of monitors are available in this function:
- Axis Monitor
- Starting History
: The actual status of each axis can be monitored.
: 16 starting history logs of operations such as positioning operation, JOG operation, and manual pulse generator operation can be monitored.
- Error History : 16 error history logs can be monitored.
- Warning History : 16 warning history logs can be monitored.
- Module Information List : Signals and flag ON/OFF status of each axis can be monitored.

\section*{Axis Monitor}
(1) Operating procedure
1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning
Module] \(\rightarrow\) [Positioning Monitor...]


By default, the "Axis Monitor" window is displayed. When displaying the "Axis Monitor" window from the status which another window is selected, proceed according to the 2 . below.
2. Switching to the "Axis Monitor" window Click the "Axis Monitor" button (国区) on the toolbar.
The display switches to the "Axis Monitor" window.


\section*{3. Selecting the monitor type}

Select the monitor type from the pull-down menu of "Monitor type".
- "Operation monitor"
- "Operation monitor (Axis control)"
- "Operation monitor (Speed-position switching control)"
- "Operation monitor (Position-speed switching control)"
- "Operation monitor (OPR monitor)"
- "Operation monitor (JOG/manual pulse)"

4. Selecting the monitor axis and monitor item
1) Click the Monitor Item Selection button.

The "Monitor Item Selection" window is displayed.

2) Select the \(\square\) of the axes and items to be monitored.

The following shows the selectable monitor items for each monitor type.
- For "Operation monitor":
\begin{tabular}{|c|c|c|}
\hline Monitor item & Symbol of reference buffer memory & Reference \\
\hline Current feed value & Md. 20 & \multirow{12}{*}{Section 5.6.2} \\
\hline Axis feed speed & Md. 28 & \\
\hline Axis operation status & Md. 26 & \\
\hline Positioning data No. being executed & Md. 44 & \\
\hline Positioning data being executed running pattern & \multirow{5}{*}{Md. 47} & \\
\hline Positioning data being executed control method & & \\
\hline Positioning data being executed axis to be interpolated & & \\
\hline Positioning data being executed acceleration time No. & & \\
\hline Positioning data being executed deceleration time No. & & \\
\hline Axis error No. ... & Md. 23 & \\
\hline Axis warning No. ... & Md. 24 & \\
\hline Valid M code & Md. 25 & \\
\hline
\end{tabular}
- For "Operation monitor (Axis control)":
\begin{tabular}{|c|c|c|}
\hline Monitor item & Symbol of reference buffer memory & Reference \\
\hline Current feed value & Md. 20 & \multirow{5}{*}{Section 5.6.2} \\
\hline Axis feed speed & Md. 28 & \\
\hline Axis operation status & Md. 26 & \\
\hline Target value & Md. 32 & \\
\hline Machine feed value & Md. 21 & \\
\hline New current value & Cd. 9 & \multirow{6}{*}{Section 5.7.2} \\
\hline New speed value & Cd. 14 & \\
\hline Positioning operation speed override & Cd. 13 & \\
\hline Step mode & Cd. 34 & \\
\hline Step valid flag & Cd. 35 & \\
\hline Speed change being processed flag & Md. 40 & \\
\hline Status speed change 0 flag & Md. 31 & Section 5.6.2 \\
\hline External command valid & Cd. 8 & \multirow[t]{2}{*}{Section 5.7.2} \\
\hline Skip command & Cd. 37 & \\
\hline
\end{tabular}
- For "Operation monitor (Speed-position switching control)":
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Monitor item } & Symbol of reference buffer memory & Reference \\
\hline Current feed value & Md.20 & \\
\hline Axis feed speed & Md.28 & \\
\hline Axis operation status & Md.26 & \multirow{2}{*}{ Section 5.6.2 } \\
\hline Target speed & Md.33 & \\
\hline Feedrate & Md.22 & \\
\hline Current speed & Md.27 & \\
\hline \begin{tabular}{l} 
Positioning amount of speed and position \\
switch control
\end{tabular} & Cd.23 & \multirow{2}{*}{ Section 5.7.2 } \\
\hline \begin{tabular}{l} 
Speed-position switching control movement \\
amount change register
\end{tabular} & Md.31 & Section 5.6.2 \\
\hline Status speed and position change latch flag & Cd.24 & Section 5.7.2 \\
\hline Speed-position switching enable flag & Md.31 & Section 5.6.2 \\
\hline Status speed controlling flag & & \\
\hline
\end{tabular}
- For "Operation monitor (Position-speed switching control)":
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Monitor item } & Symbol of reference buffer memory & Reference \\
\hline Current feed value & Md.20 & \\
\hline Axis feed speed & Md.28 & \multirow{3}{*}{ Section 5.6.2 } \\
\hline Axis operation status & Md.26 & \\
\hline Target speed & Md.33 & \\
\hline Feedrate & Md.22 & \multirow{2}{*}{ Section 5.7.2 } \\
\hline Current speed & Md.27 & Sd.25
\end{tabular}
- For "Operation monitor (OPR monitor)":
\begin{tabular}{|c|c|c|}
\hline Monitor item & Symbol of reference buffer memory & Reference \\
\hline Current feed value & Md. 20 & \multirow{13}{*}{Section 5.6.2} \\
\hline Axis feed speed & Md. 28 & \\
\hline Axis operation status & Md. 26 & \\
\hline Movement amount after near-point dog ON & Md. 34 & \\
\hline Torque limitation stored value & Md. 35 & \\
\hline Status command in-position flag & & \\
\hline Status OPR request flag & Md. 31 & \\
\hline Status OPR complete flag & & \\
\hline External I/O signal lower limit & \multirow{5}{*}{Md. 30} & \\
\hline External I/O signal upper limit & & \\
\hline External I/O signal zero signal & & \\
\hline External I/O signal near-point dog signal & & \\
\hline External I/O signal deviation counter clear & & \\
\hline
\end{tabular}
- For "Operation monitor (JOG/manual pulse)":
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Monitor item} & \multicolumn{4}{|l|}{Symbol of reference buffer memory or device No. of the output signal} & \multirow[t]{2}{*}{Reference} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 4 & \\
\hline Current feed value & \multicolumn{4}{|c|}{Md. 20} & \multirow{3}{*}{Section 5.6.2} \\
\hline Axis feed speed & \multicolumn{4}{|c|}{Md. 28} & \\
\hline Axis operation status & \multicolumn{4}{|c|}{Md. 26} & \\
\hline Forward JOG start & Y8 & YA & YC & YE & \multirow[b]{2}{*}{Section 3.3.3} \\
\hline Reverse JOG start & Y9 & YB & YD & YF & \\
\hline JOG speed & \multicolumn{4}{|c|}{Cd. 17} & Section 5.7.2 \\
\hline JOG speed limit value & \multicolumn{4}{|c|}{Pr. 31} & \multirow{3}{*}{Section 5.2.4} \\
\hline JOG acceleration time & \multicolumn{4}{|c|}{Pr. 32} & \\
\hline JOG deceleration time & \multicolumn{4}{|c|}{Pr. 33} & \\
\hline Manual pulse generator enable flag & \multicolumn{4}{|c|}{Cd. 21} & Section 5.7.2 \\
\hline Manual pulse generator input selection & \multicolumn{4}{|c|}{Pr. 24} & Section 5.2.3 \\
\hline Manual pulse generator 1 pulse input magnification & \multicolumn{4}{|c|}{Cd. 20} & Section 5.7.2 \\
\hline
\end{tabular}
3) Click the OK button to close the "Monitor Item Selection" window.

The selected items are reflected to the "Axis Monitor" window.


\section*{Starting History}
(1) Operating procedure
1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Positioning Monitor...]

2. Switching to the "Starting History" window

Click the "Starting History" button ( \(\mathbb{V}_{\mathrm{Q}}\) ) on the toolbar.
The display switches to the "Starting History" window.


When the number of logs exceeds 16, the latest log overwrites the oldest log so that the latest 16 starting histories can be monitored all the time.
Also, the error details can be confirmed by clicking the error number.

For details on the starting history, refer to Section 5.6.1.

\section*{Error History}
(1) Operating procedure
1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Positioning Monitor...]

2. Switching to the "Error History" window

Click the "Error History" button (
The display switches to the "Error History" window.


When the number of logs exceeds 16 , the latest log overwrites the oldest log so that the latest 16 error histories can be monitored all the time.
Also, the error details can be confirmed by clicking the axis error No.

\section*{Warning History}
(1) Operating procedure
1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Positioning Monitor...]

2. Switching to the "Warning History" window

Click the "Warning History" button ( \(\mathrm{mi}^{\text {) }}\) ) on the toolbar.
The display switches to the "Warning History" window.


When the number of logs exceeds 16, the latest log overwrites the oldest log so that the latest 16 warning histories can be monitored all the time. Also, the warning details can be confirmed by clicking the axis warning No.

\section*{Module Information List}
(1) Operating procedure
1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Positioning Monitor...]


The status by each axis of the following items is displayed in the "Module Information List" window.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Monitor item} & \multicolumn{4}{|l|}{Device No. of the I/O signal device or symbol of the buffer memory to be referred} & \multirow[t]{2}{*}{Reference} \\
\hline & Axis 1 & Axis 2 & Axis 3 & Axis 4 & \\
\hline QD75 READY (X0) & \multicolumn{4}{|c|}{X0} & \multirow{7}{*}{Section 3.3.2} \\
\hline Synchronization flag (X1) & \multicolumn{4}{|c|}{X1} & \\
\hline M code ON & X4 & X5 & X6 & X7 & \\
\hline Error detection & X8 & X9 & XA & XB & \\
\hline BUSY & XC & XD & XE & XF & \\
\hline Start complete & X10 & X11 & X12 & X13 & \\
\hline Positioning complete & X14 & X15 & X16 & X17 & \\
\hline PLC READY (YO) & \multicolumn{4}{|c|}{Yo} & \multirow{6}{*}{Section 3.3.3} \\
\hline Axis stop & Y4 & Y5 & Y6 & Y7 & \\
\hline Forward JOG start & Y8 & YA & YC & YE & \\
\hline Reverse JOG start & Y9 & YB & YD & YF & \\
\hline Positioning start & Y10 & Y11 & Y12 & Y13 & \\
\hline Execution prohibition flag & Y14 & Y15 & Y16 & Y17 & \\
\hline External I/O signal lower limit & \multicolumn{4}{|c|}{\multirow{8}{*}{Md. 30}} & \multirow{8}{*}{Section 5.6.2} \\
\hline External I/O signal upper limit & & & & & \\
\hline External I/O signal drive unit ready & & & & & \\
\hline External I/O signal stop signal & & & & & \\
\hline External I/O signal external command & & & & & \\
\hline External I/O signal zero signal & & & & & \\
\hline External I/O signal near-point dog signal & & & & & \\
\hline External I/O signal deviation counter clear & & & & & \\
\hline External command valid & \multicolumn{4}{|c|}{Cd. 8} & Section 5.7.2 \\
\hline Status speed controlling flag & \multicolumn{4}{|c|}{\multirow{8}{*}{Md. 31}} & \multirow{8}{*}{Section 5.6.2} \\
\hline Status speed and position change latch flag & & & & & \\
\hline Status command in-position flag & & & & & \\
\hline Status OPR request flag & & & & & \\
\hline Status OPR complete flag & & & & & \\
\hline Status position and speed change latch flag & & & & & \\
\hline Status axis warning detection & & & & & \\
\hline Status speed change 0 flag & & & & & \\
\hline
\end{tabular}

Statuses turned ON are displayed in green by each axis.

Turns green when the signal is turned ON.


Also, at error occurrence, the axis in which the error occurred ("Error detection") is displayed in red.
At occurrence of warning, the axis in which the warning occurred ("Status axis warning detection") is displayed in orange.

\section*{Appendix 10.5 Positioning test}

This function allows users to perform the following tests while monitoring the current status of the QD75.
- Positioning start test
- JOG/manual pulse generator/OPR test
- Speed change test
- Current value change test

\section*{- Positioning start test}

Test operation is performed by specifying the positioning data No. or point No. of the block start data.
(1) Operating procedure
1. Open the "Positioning Test" dialog box.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Positioning Test...]

2. Select the test target axis.

Select the test target axis from the pull-down menu of "Target Axis".
3. Select the function.

Select "Positioning start signal" from the pull-down menu of "Select Function".

4. Perform positioning start test.
1) Select "Positioning Start Signal", "Block Start", or "Multiple Axes Simultaneous Start" for "Start Type".
2) Set positioning start data according to the setting for "Start Type".
- Positioning Start Signal: Set the positioning data No.
- Block Start: Set the block No. and point No.
- Multiple Axes Simultaneous Start: Set the multiple axes simultaneous start data No.
Set "Step" and "External Command" as needed.
- Step

To perform test operation by step start, check the "Start step" checkbox, select a step mode from the pull-down list, and click the Continue button.
- External Command

To enable external commands or control switch, select the corresponding item and click the Set button.
3) Click the Starting button to perform test operation.

\section*{JOG/manual pulse generator/OPR test}

The following test can be performed when positioning control is debugged by the JOG operation test or manual pulse operation test.
- Direction check (forward run or reverse run)
- On/off status check of external input signals, such as upper/lower limit switches, zero signal, or near-point dog signal
- Operation test of speed and acceleration/deceleration
- Measurement of backlash compensation amount for forward/reverse rotation
- Accurate address check and movement amount measurement

In addition, the OP is established and the OPR basic and detailed parameters are corrected by the OPR test.
(1) Operating procedure
1. Open the "Positioning Test" dialog box.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Positioning Test]

2. Select the test target axis.

Select the test target axis from the pull-down menu of "Target Axis".
3. Select the function.

Select "JOG/Manual Pulse Generator/OPR" from the pull-down menu of "Select Function".

1) Perform each operation.
- JOG operation

Set "JOG speed" to "1" or more, "Inching Movement Amount" to "0" and click the Forward RUN or Reverse RUN button.
- Manual Pulse Generator operation

Set "Manual pulse generator 1 pulse input magnification", select "Manual pulse generator enable flag" and use the manual pulse generator.
- OPR operation

Select the OPR method from "Machine OPR" and "Fast OPR", and click the OPR button.

\section*{Speed change test}

The appropriate speed and acceleration/deceleration time can be checked by changing speed or acceleration/deceleration time or by performing override to the axis where the positioning start test, OPR test, or JOG operation test is performed.
(1) Operating procedure
1. Open the "Positioning Test" dialog box.

Display the "Positioning Test" window.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Positioning Test]

2. Select the test target axis.

Select the test target axis from the pull-down menu of "Target Axis".
3. Select the function.

Select "New Speed" from the pull-down menu of "Select Function ".

4. Execute the speed change test.
1) Execute the speed change function.
- New Speed

Enter the new speed value during the startup of positioning start test or OPR test, and click the New Speed button.
- Override

Enter the speed override value and click the Speed Override Change button.
- Acceleration/Deceleration Time Change

Check the "Acceleration/deceleration time change enable" checkbox, set the acceleration time and deceleration time values, and click the New Speed button.

\section*{Current value change test}

The current feed value of the QD75 can be changed to the specified address.
(1) Operating procedure
1. Open the "Positioning Test" dialog box.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Positioning Test]

2. Select the test target axis.

Select the test target axis from the pull-down menu of "Target Axis".
3. Select the function.

Select "Current Value Changing" from the pull-down menu of "Select Function".

1) Enter the new current value and click the Current Value Changing button.

\section*{Appendix 10.6 Wave trace}

This function displays the speed command (axis speed) in positioning operation in waveform data.
(1) Operating procedure
1. Open the "Wave Trace" dialog box.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning
Module] \(\rightarrow\) [Wave Trace]

2. Select the module.


Click the Module Selection button.
Select the positioning module to trace waves and click the OK button.
3. Set conditions.


Click the Condition Setting button.
Read the displayed description, set each condition, and click the OK button.
4. Start trace and display trace results.

Click the Start Trace button to start trace.
The trace result at that point can be displayed by clicking the Display Current Trace Result button during trace, even if the trace completion conditions are not met.
When the completion conditions are met and the trace is completed, the trace result is displayed.


\section*{Appendix 10.7 Location trace}

This function displays 2-axis interpolation control and simultaneous start (2-axes) in locus data.
(1) Operating procedure
1. Open the "Location Trace" dialog box.
[Tool] \(\rightarrow\) [Intelligent Function Module Tool] \(\rightarrow\) [QD75/LD75 Positioning Module] \(\rightarrow\) [Location Trace]

2. Select the module.


Click the Module Selection button. Select the positioning module to trace locations and click the OK button.
3. Set conditions.


Click the Condition Setting button.
Read the displayed description, set each condition, and click the OK button.
4. Start trace and display trace results.

Click the Start Trace button to start trace.
The trace result at that point can be displayed by clicking the Display Current Trace Result button during trace, even if the trace completion conditions are not met.
When the completion conditions are met and the trace is completed, the trace result is displayed.


\section*{Appendix 10.8 Parameter initialization function}

The "parameter initialization function" is used to return the setting data set in the QD75 buffer memory and flash ROM to their factory-set initial values.

The details shown below explain about the "parameter initialization function".
[1] Parameter initialization means
[2] Control details
[3] Control Precautions
[4] Parameter initialization method
[1] Parameter initialization means
- Initialization is executed with a program.
- Initialization is executed by GX Works2.

Refer to GX Works2 Version1 Operating Manual (Intelligent Function Module) for the execution method by GX Works2.
[2] Control details
The following table shows the setting data initialized by the "parameter initialization function".
(The data initialized are "buffer memory" and " flash ROM " setting data.)
\begin{tabular}{|c|}
\hline Setting data \\
\hline Basic parameters (Pr. 1 to Pr.10) \\
\hline Detailed parameters (Pr.11 to Pr.42, Pr. 150 ) \\
\hline OPR basic parameters (Pr. 43 to Pr. 48 ) \\
\hline OPR detailed parameters (Pr.49 to Pr.57) \\
\hline Positioning data (No. 1 to No.600) \\
\hline Block start data (No. 7000 to No.7004) \\
\hline
\end{tabular}

\section*{[3] Control Precautions}
(1) Parameter initialization is only executed when the positioning control is not carried out (when the PLC READY signal (Y0) is OFF).
The warning "In PLC READY" (warning code: 111) will occur if executed when the PLC READY [Y0] is ON.
(2) Writing to the flash ROM can be executed up to 100,000 times.

If writing to the flash ROM exceeds 100,000 times, the writing may become impossible, and an error "Flash ROM write error" (error code: 801) will occur.
(3) A "CPU module reset" or "CPU module power restart" must be carried out after the parameters are initialized.
(4) If an error occurs on the parameter set in the QD75 when the PLC READY signal [Y0] is turned ON, the QD75 READY signal [X0] will not be turned ON and the control cannot be carried out.

\footnotetext{
Important
Parameter initialization takes about 10 seconds. (Up to 30 seconds are sometimes required.) Do not turn the power ON/OFF; reset the CPU module, etc., during parameter initialization. If the power is turned OFF or the CPU module is reset to forcibly end the process, the data backed up in the flash ROM will be lost.
}
[4] Parameter initialization method
(1) Parameter initialization is carried out using the dedicated instruction "ZP.PINIT".
(Refer to CHAPTER 14 "DEDICATED INSTRUCTIONS" for details.)
(2) Parameter initialization can also be carried out by the writing of the data shown in the table below to the buffer memory using the TO instruction /intelligent function device.
The initialization of the parameter is executed at the time point the data is written to the QD75 buffer memory.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Setting item} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis & Axis
2 & Axis
3 & Axis \\
\hline Cd. 2 & Parameter initialization request & 1 & Set "1" (parameter initialization request). & \multicolumn{4}{|c|}{1901} \\
\hline
\end{tabular}

Refer to Section 5.7 "List of control data" for details on the setting details.

When the initialization is complete, " 0 " will be set in " Cd. 2 Parameter initialization request" by the QD75 automatically.

\section*{Appendix 10.9 Execution data backup function}

When the QD75 buffer memory data is rewritten from the CPU module, "the data backed up in the QD75 flash ROM" may differ from "the data (buffer memory data) for which control is being executed". In cases like these, the data being executed will be lost when the programmable controller power is turned OFF.
(Refer to CHAPTER 7.)
In cases like these, the "execution data backup function" backs up the data being executed by writing it to the flash ROM. The data that was backed up is then written to the buffer memory when the power is turned ON next.

The details shown below explain about the "execution data backup function".
[1] Execution data backup means
[2] Control details
[3] Control Precautions
[4] Execution data backup method
[1] Execution data backup (written to flash ROM) means
- The backup is executed with a program.
- The backup is executed by GX Works2.

Refer to GX Works2 Version1 Operating Manual (Common) for execution data backup method by GX Works2.
[2] Control details
The following shows the data that can be written to the flash ROM using the "execution data backup function".
\begin{tabular}{|c|c|c|}
\hline Buffer memory & \multirow{4}{*}{\(\rightarrow\)} & Flash ROM \\
\hline Parameters ( Pr. 1 to Pr.57, Pr.150) & & Parameters ( Pr. 1 to Pr.57, Pr.150) \\
\hline Positioning data (No. 1 to No. 600) & & Positioning data (No. 1 to No. 600) \\
\hline Block start data (No. 7000 to 7004) & & Block start data (No. 7000 to 7004) \\
\hline
\end{tabular}

\section*{[3] Control Precautions}
(1) Parameter initialization is only executed when the positioning control is not carried out (when the PLC READY signal (Y0) is OFF). The warning "In PLC READY" (warning code: 111) will occur if executed when the PLC READY [YO] is ON .
(2) Writing to the flash ROM can be executed up to 100,000 times. If writing to the flash ROM exceeds 100,000 times, the writing may become impossible, and an error "Flash ROM write error" (error code: 801) will occur.
(3) After one power ON/CPU module reset operation, writing to the flash ROM using a program is limited to up to 25 times.
If the 26th writing is executed, an error "Flash ROM write number error" (error code: 801) will occur. If this error occurs, carry out the power OFF ON/CPU module reset operation again.
Refer to Md. 19 of Section 5.1.7 "Types and roles of monitor data" for details.

\section*{Important}

Do not turn the power ON/OFF, reset the CPU module, during writing to the flash ROM. If the power is turned OFF or the CPU module is reset to forcibly end the process, the data backed up in the flash ROM will be lost.

\section*{[4] Execution data backup method}
(1) Execution data backup (writing to the flash ROM) is carried out using the dedicated instruction "ZP.PFWRT". (Refer to CHAPTER 14 "DEDICATED INSTRUCTIONS" for details.)
(2) Refer to Section 7.2 "Data transmission process" for the data transmission processing at the backup of the execution data.
(3) Execution data backup can also be carried out by the writing of the data shown in the table below to the QD75 buffer memory using the TO instruction /intelligent function device.
The writing to the flash ROM is executed at the time point the data is written to the QD75 buffer memory.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Setting item}} & \multirow[b]{2}{*}{Setting value} & \multirow[b]{2}{*}{Setting details} & \multicolumn{4}{|l|}{Buffer memory address} \\
\hline & & & & Axis & \[
\begin{gathered}
\text { Axis } \\
2
\end{gathered}
\] & Axis
3 & \[
\begin{gathered}
\text { Axis } \\
4
\end{gathered}
\] \\
\hline Cd. 1 & Flash ROM write request & 1 & Set "1" (flash ROM write request). & \multicolumn{4}{|c|}{1900} \\
\hline
\end{tabular}

Refer to Section 5.7 "List of control data" for details on the setting details.

When the writing to the flash ROM is complete, " 0 " will be set in
" Cd. 1 Flash ROM write request" by the QD75 automatically.

\section*{Appendix 10.10 External I/O signal logic switching function}

This function switches the signal logic according to the external equipment connected to the QD75.
For the system in which drive unit READY with b-contact, upper limit switch, and lower limit switch are not used, the parameter logic setting can be controlled without wiring if it is changed to a "positive logic".
When the drive unit READY, upper limit switch, and lower limit switch are used, ensure to use them with b-contact.

The details shown below explain about the "external I/O signal logic switching function".
[1] Parameter setting details
[2] Precautions on parameter setting
[1] Parameter setting details
To use the "external I/O signal logic switching function", set the parameters shown in the following table.

* Refer to Section 5.2 "List of parameters" for the information on detail settings.
[2] Precautions on parameter setting
(1) The external I/O signal logic switching parameters are validated when the PLC READY signal [Y0] is turned OFF to ON. (The logic is negative right after power-on.)
(2) If each signal logic is set erroneously, the operation may not be carried out correctly.
Before setting, check the specifications of the equipment to be used.

\section*{Appendix 10.11 External I/O signal monitor function}

The "external I/O signal monitor function" monitors the module's information and external I/O signal statuses in the module's detailed information which can be displayed on the system monitor of GX Works2.

The information that can be monitored are the module's information (same as the QD75 front "RUN", "ERR" LED indicators) and the following external I/O signals.
Set the logic of the external I/O signals in " Pr. 22 Input signal logic selection" and
" Pr. 23 Output signal logic selection".


Refer to the following manual for the system monitor of GX Works2. GX Works2 Version1 Operating Manual (Common)

\section*{Appendix 10.12 History monitor function}

This function monitors starting history, error history, and warning history stored in the buffer memory of the QD75 during operation.

\section*{[1] Starting history}

Sixteen starting history logs of operations such as positioning operation, JOG operation, and manual pulse generator operation can be monitored. When the number of logs exceeds 16 , the latest log overwrites the oldest log so that the latest 16 logs can be monitored all the time. This function allows users to check the operation sequence (whether the operations have been started in a predetermined sequence) at system start-up.


To monitor the starting history, register the QD75 to the "Intelligent Function Module Monitor Window".
For details on the registration method and monitoring method, refer to the following. GX Works2 Version1 Operating Manual (Intelligent Function Module)

\section*{[2] Error history, warning history}

Sixteen error history logs and sixteen warning history logs can be monitored. When the number of logs exceeds 16, the latest log overwrites the oldest log so that the latest 16 logs can be monitored all the time.

Intelligent Function Module Monitor 1 (0000:QD75P4N) - Det... \(x\)


Intelligent Function Module Monitor 1 (0000:QD75P4N) - Det... \(X\)


To monitor the error history and warning history, register the QD75 to the "Intelligent Function Module Monitor Window".
For details on the registration method and monitoring method, refer to the following. GX Works2 Version1 Operating Manual (Intelligent Function Module)

\section*{Appendix 10.13 Checking errors}

Error codes corresponding to the errors occurred in the QD75 can be checked on the following screen of GX Works2.
Select the screen according to the purpose and usage.
- "Module's Detailed Information" screen
- "Error History" screen (for the QD75P \(\square\) N/QD75D \(\square\) N only)
(1) Checking errors on the "Module's Detailed Information" screen

Select [Diagnostics] \(\rightarrow\) [System Monitor...] on GX Works2.
Select QD75 for "Main Base" and click the Detailed Information button.
The "Module's Detailed Information" screen for the QD75 appears and the error code, error details, and corrective actions can be checked.

(2) Checking errors on the "Error History" screen. (for the QD75P \(\square\) N/QD75D \(\square \mathrm{N}\) only)
On the "Error History" screen, the error logs of the QD75 are displayed in a list together with the error logs of other modules. The logs can be output to a CSV format file. The error codes and the time of error occurrence can be checked even after the CPU module is powered off and then on or reset.

Select [Diagnostics] \(\rightarrow\) [System Monitor...] \(\rightarrow\) System Error History button on GX Works2.

(a) Error History List

Module error logs are displayed in a list.
(b) Error and Solution, Intelligent Module Information
- Error and Solution

Details of the selected in the "Error History List" and its corrective action are displayed.
- Intelligent Module Information

The QD75P \(\square\) N/QD75D \(\square\) N status when the error selected in the "Error History List" occurred is displayed.
For the QD75P \(\square \mathrm{N} / \mathrm{QD75D} \square \mathrm{~N}\), the following contents are displayed.
\begin{tabular}{|c|c|}
\hline Item & Description \\
\hline Start axis & The axis No. requested to start is stored. \\
\hline Positioning start No. & The positioning start No. is stored. \\
\hline Axis in which the error occurred & The axis No. in which the error occurred is stored. \\
\hline Axis error occurrence (Data No.) & The data No. in which the error occurred is stored. \\
\hline Current feed value & The current feed value (at the time of error) of the error axis is stored. \\
\hline Input signals with PLC CPU(XO -XF) & The status of input signals (X0 to XF) (at the time of error) is stored (in hexadecimal). \\
\hline Input signals with PLC CPU(X10 -X1F) & The status of input signals (X10 to X1F) (at the time of error) is stored (in hexadecimal). \\
\hline Output signals with PLC CPU(YO -YF) & The status of output signals (Y0 to YF) (at the time of error) is stored (in hexadecimal). \\
\hline Output signals with PLC CPU(Y10 -- Y1F) & The status of output signals (Y10 to Y1F) (at the time of error) is stored (in hexadecimal). \\
\hline \begin{tabular}{l}
- Axis 1 drive unit READY signal \\
- Axis 1 upper limit signal \\
- Axis 1 lower limit signal \\
- Axis 1 stop signal \\
- Axis 1 external command signal \\
- Axis 1 near-point dog signal \\
- Axis 1 zero signal
\end{tabular} & The status of axis 1 external input signals (at the time of error) is stored. \\
\hline \begin{tabular}{l}
- Axis 2 drive unit READY signal \\
- Axis 2 upper limit signal \\
- Axis 2 lower limit signal \\
- Axis 2 stop signal \\
- Axis 2 external command signal \\
- Axis 2 near-point dog signal \\
- Axis 2 zero signal
\end{tabular} & The status of axis 2 external input signals (at the time of error) is stored. \\
\hline \begin{tabular}{l}
- Axis 3 drive unit READY signal \\
- Axis 3 upper limit signal \\
- Axis 3 lower limit signal \\
- Axis 3 stop signal \\
- Axis 3 external command signal \\
- Axis 3 near-point dog signal \\
- Axis 3 zero signal
\end{tabular} & The status of axis 3 external input signals (at the time of error) is stored. \\
\hline \begin{tabular}{l}
- Axis 4 drive unit READY signal \\
- Axis 4 upper limit signal \\
- Axis 4 lower limit signal \\
- Axis 4 stop signal \\
- Axis 4 external command signal \\
- Axis 4 near-point dog signal \\
- Axis 4 zero signal
\end{tabular} & The status of axis 4 external input signals (at the time of error) is stored. \\
\hline
\end{tabular}
(c) Create CSV File button

The module error logs are output to a CSV format file.

\section*{POINT}
(1) If errors frequently occur in the QD75P \(\square\) N/QD75D \(\square \mathrm{N}\), "*HST.LOSS*" (instead of an actual error code) may be displayed in the Error Code column.
(Display example)
\begin{tabular}{|c|c|c|c|c|}
\hline No. 7 & Error Code & Date and Time & Model Name & Start I/O \\
\hline 00200 & 00CF & \(2011 / 06 / 2802: 52 ; 50\) & QD75P4N & 0000 \\
\hline 00199 & 020 C & \(2011 / 06 / 2802: 51: 24\) & QD75P4N & 0000 \\
\hline 00198 & \({ }^{*}\) HST_LOSS* & \(2011 / 06 / 2802: 50 ; 09\) & QD75P4N & 0000 \\
\hline 00197 & \(020 C\) & \(2011 / 06 / 2802: 49: 28\) & QD75P4N & 0000 \\
\hline 00196 & \(020 C\) & \(2011 / 06 / 2802: 47: 58\) & QD75P4N & 0000 \\
\hline
\end{tabular}

If "*HST.LOSS*" is frequently displayed, set a larger value for the number of errors collected per scan in the PLC RAS tab of the PLC Parameter dialog box. For the setting, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals).
(2) If the error occurred at the simultaneous start, the axis No. in which the error is detected is stored in the "Starting axis" in Error History.

\section*{Appendix 11 MELSEC Explanation of positioning terms}

\section*{1-2 PHASE EXCITATION SYSTEM}

This is one system for exciting each stepping motor coil in a determined order. In this system, one phase and two phases are alternately excited.


\section*{2-PHASE EXCITATION SYSTEM}

This is one system for exciting each stepping motor coil in a determined order. In this system, a current constantly flows to 2 phases to carry out step feed.


\section*{2-PHASE PULSE}

An A phase and B phase double pulse. There is a phase difference between the two phases, so that difference can be automatically added and subtracted in the pulse count. The standard phase difference is a \(90 \varnothing\) electrical angle.
If the \(B\) phase were to lag behind the A phase in a forward run ( \(B\) phase turns ON after the \(A\) phase), the A phase would lag behind the \(B\) phase in a reverse run (A phase turns ON after the B phase). In this way the forward and reverse run (addition and subtraction) can be automatically carried out.


\section*{2-SPEED TRAPEZOIDAL CONTROL}

In this positioning control method, the positioning pattern, positioning addresses (P1, P2), and positioning speeds (V1, V2) are set in the sequence program. Positioning is carried out to positioning address P 1 by issuing the 1st positioning start command. When P1 is reached, the positioning then automatically changes to positioning at the V2 speed.


\section*{ABSOLUTE ENCODER}

This is a detector that enables the angle data within 1 motor rotation to be output to an external destination. Absolute encoders are generally able to output \(360^{\circ}\) in 8 to 12 bits. Incremental encoders have a disadvantage in that the axis position is lost when a power failure occurs. However, with absolute encoders, the axis position is not lost even when a power failure occurs.
Various codes such as a binary code and BCD code can be output.
Absolute encoders are more expensive, more accurate, and larger than incremental encoders. Refer to "ENCODER".


\section*{ABSOLUTE POSITION DETECTION SYSTEM}

In the absolute position detection system, once an OPR is carried out at the system startup, the system stores the machine position in the memory and retains the current position even when the power is turned OFF. Mechanical deviation will be compensated, so that the OPR is not required after the power is turned ON next time. Configuring this system requires a motor with an absolute position detector and a servo amplifier and positioning module compatible with an absolute position detection system.

\section*{ABSOLUTE SYSTEM}

This is one system for expressing a positioning address.
Absolute address system.
This system uses 0 as a reference, and expresses the address as the distance from 0 . The direction is automatically determined, even when it is not designated. The other address system is the increment system.


\section*{ACCELERATION TIME}

The parameter acceleration time refers to the time from a stopped state to the time the speed limit value is reached, so it becomes proportionally shorter as the setting speed decreases. The acceleration time is determined by factors such as machine inertia, motor torque, and load resistance torque.


\section*{ADDRESS}
1) This is a numerical value to express the positioning position, designated in mm , inch, angle, or No. of pulse units.
2) The memory address. Many addresses are stored in the memory. An address is read or written after it is designated.

\section*{AFTER mode}

This is the mode that outputs the \(M\) code after positioning is complete (after stopping). Clamping can be commanded, drilling dimensions can be selected, etc., with this mode.


\section*{AUTO TUNING (Automatic Tuning)}

Properties such as responsiveness and stability of machines driven with a servomotor are affected by changes in the inertia moment and rigidity due to changes in the machine load, etc.
This function automatically adjusts the speed loop gain and position loop gain to match the machine state, so the machine's performance can be maintained at its optimum state. A real time automatic tuning function should be used for machines having large load fluctuations.

\section*{BACKLASH COMPENSATION}

When a forward run operation changes to a reverse run operation, there is sometimes play (backlash) in the mesh of the toothed gears. This also occurs when using a worm gear. Because of this backlash, a left feed of 1 m (3.28feet) carried out after a right feed of 1 m ( 3.28 feet) will not be sufficient to return the machine to its original position. The machine cannot be positioned to its original position without an extra feed equivalent to the backlash amount. This function compensates for that backlash amount.


\section*{BACKUP FUNCTION}

Backup functions consist of the following.
1) Functions for storing the sequence program and device statuses stored in the RAM memory of the CPU module, so that they are not lost during power failures, etc.
2) Functions for storing the current value in absolute position compatible systems so that it is not lost during power failures, etc.
3) Functions for reading the CPU module data (programmable controller programs, parameters, positioning data, etc.) by a peripheral device when the old CPU module is replaced, and then write it to the new CPU module after the replacement is completed.

\section*{BALL SCREW}

This is a type of screw, with balls lined up in the threads like ball bearings. This reduces backlash, and enables rotation with little force.


\section*{BIAS SPEED AT START}

A large amount of torque is required when the machine starts moving, but the torque may be unstable at speed 0 with stepping motors. Therefore, movement can be smoothly carried out by starting the movement at a given speed from the beginning. The bias speed at start is the speed set at that start.


\section*{BIPOLAR DRIVE CONSTANT-CURRENT SYSTEM}

This is one system for driving a stepping motor. In this method, the orientation of the excitation current flowing to the stator coil is reversed, and the excitation current direction is in both the positive and negative direction. This enables the motor coil to be used effectively, and a large output torque can be obtained at low speeds.


Bipolar drive basic circuit (bridge method)

\section*{BUFFER MEMORY}

Memory used to temporarily store data. Before writing external data to the CPU module data memory, it is first temporarily stored in the buffer memory to be used for operation by the program. The buffer memory is used by the positioning module because the latest data can be read and written.


\section*{BUSY}

The device is doing some other work. It is in a positioning operation or in dwell time.

\section*{CCW (Counterclockwise)}

Rotation in the counterclockwise direction. In the motor, this is determined looking from the shaft end side. Also refer to "CW".

\section*{CHANGE signal}

The CHANGE signal is an external signal used to switch the speed-position control from the speed control being executed to position control.

\section*{CIRCULAR INTERPOLATION}

Automatic operation in which the machine path makes a circle when positioning is carried out by simultaneously operating both the longitudinal feed and latitudinal feed motors. The normal unit is \(90 ø\). Round shapes can be created with this type of interpolation, and obstacles in the machine path can also be avoided. Refer to the terms "INTERPOLATION OPERATION" and "LINEAR INTERPOLATION"


\section*{COMMAND PULSE}

Refer to term "FEEDBACK PULSE".

\section*{COMPOSITE SPEED}

The movement speed for the target control during interpolation operations.


\section*{CONTROL UNIT}

This is one type of positioning reference data. The unit to be used is designated as mm , inch, degree, or pulse.

\section*{CP CONTROL (Continuous Path Control)}

Continuous path is a control method in which a path is followed without interrupting such as in uniform speed control.

\section*{CREEP SPEED}

A speed at which the machine moves very slowly.
It is difficult for the machine to stop accurately when running at high speed, so the movement must first be changed to the creep speed before stopping.
Refer to the term "NEAR-POINT DOG".

\section*{CURRENT FEED VALUE}

The OP address at the completion of the machine OPR is stored.
The position currently being executed is stored. This value changes when the current value is changed.

\section*{CURRENT LOOP MODE}

One of the servo control modes in positioning. Mode which uses current for torque control.
Also called the torque loop mode.
Refer to the section of "position loop mode".

\section*{CURRENT VALUE}

This is the current address (position) when stopped or during positioning.

\section*{CW (Clockwise)}

Rotation in the clockwise direction. Rotation in the clockwise direction looking from the motor shaft end side.

\section*{D/A CONVERTER (Digital-to-Analog converter)}

A device having a function to convert the digital value expressing the No. of pulses to an analog value expressing the voltage (or current).


\section*{DATA NO.}

To carry out positioning to 2 or more addresses, each position is assigned a sequence No. such as No. 1, No. 2, No. 3, etc. The positioning is then carried out following this sequence. The QD75 is capable of positioning up to No. 600.


\section*{DECELERATION RATIO}

A ratio used when the machine is decelerated using a toothed gear. This ratio is a numeral larger than 1.
\[
\begin{aligned}
& \text { Deceleration }=\frac{\text { Input gear speed }}{\text { Output gear speed }} \\
& \text { ratio }
\end{aligned}
\]

\section*{DECELERATION TIME}

The parameter deceleration time is the same value as the acceleration time. Deceleration time refers to the time from the speed limit value to a stopped state, so it becomes proportionally shorter as the setting speed decreases.


\section*{DEVIATION COUNTER}

Deviation counters have the following two functions.
1) To count the command pulses issued from the QD75, and transmit the count value to the D/A converter.
2) To subtract the feedback pulses from the command pulses, and run the motor by the deviation value (droop pulse) of the command pulses and feedback pulses until the command pulses reaches 0 .


\section*{DIFFERENTIAL OUTPUT TYPE}

This is one type of encoder feedback pulse output. When one signal is output with this method, a companion signal having the reverse polarity is simultaneously output. This method enables high-frequency transfer, and is resistant to noise, etc., so it is also used in high-speed signal transfer such as inputting and outputting of pulse trains. In general, the transmission side is called the driver, the reception side is called the receiver, and a dedicated IC is used.


\section*{DIGITAL BUS CONNECTION}

Commands are generally output from the positioning module to the servo amplifier as a pulse train. Recently, however, devices are being digitalized. Accompanying that, a connection method has appeared in which the bus lines of both the positioning module and the servo amplifier CPUs are connected. This has enabled the construction of higheraccuracy, higher-speed systems. The MELSEC A70D, AD774M, A171SCPU, A273UCPU etc., models employ this digital bus connection.

\section*{DOG SIGNAL}

The near-point dog of the OPR.

\section*{DRIVE UNIT}

The commands output from the positioning module are low-voltage, low-current commands with insufficient energy to run the motor.
The drive unit increases the width of these commands so the motor can be run. It is an accessory on servomotors and stepping motors. Also called a servo amplifier.


\section*{DRIVE UNIT READY}

This signal is output when the drive unit for the motor is in a READY state.
This signal remains OFF when the drive unit power is OFF, or during faults, etc.

\section*{DROOP PULSE}

Because of inertia \(\left(\mathrm{GD}^{2}\right)\) in the machine, it will lag behind and not be able to track if the positioning module speed commands are issued in their normal state.
Thus, for a servomotor, a method is used in which the speed command pulses are delayed by accumulation in a deviation counter. These accumulated pulses are called the droop pulse. The deviation counter emits all pulses and returns to 0 when the machine stops.


\section*{DWELL TIME}

This is the time taken immediately after the positioning is completed to adjust for the droop pulses in the deviation counter. The positioning will not be accurate if this time is too short.

\section*{DYNAMIC BRAKE}

When protection circuits operate due to power failures, emergency stops (EMG signal) etc., this function is used to short-circuit between servomotor terminals via a resistor, thermally consume the rotation energy, and cause a sudden stop without allowing coasting of the motor.
Braking power is generated by electromagnetic brakes only when running motors with which a large brake torque can be obtained. Because electromagnetic brakes have no holding power, they are used in combination with mechanical brakes to prevent dropping of the vertical axis.

\section*{ELECTROMAGNETIC BRAKE}

This function is supplied on motors with electromagnetic brakes. Electromagnetic brakes are used to prevent slipping during power failures and faults when driving a vertical axis, or as a protective function when the machine is stopped.
These brakes are activated when not excited.

\section*{ELECTRONIC GEAR}

This function electrically increases/decreases the command pulses from the pulse command module by \(1 / 50\) to 50 -fold. Thus, the positioning speed and movement amount can be controlled by the electronic gear ratio magnification.

\section*{EMERGENCY STOP}

Emergency stops cannot be carried out by the QD75, so a method of shutting OFF the servo side power supply from outside the programmable controller, etc., must be considered.

\section*{ENCODER}

This device turns the input data into a binary code of 1 (ON) and 0 (OFF). A type of pulse generator.


Rotary encoder


\section*{ERROR CORRECTION}

If a dimension error occurs in the machine, and that error is actually smaller or larger than 1 m (3.28feet) in spite of a 1 m (3.28feet) command being issued from the QD75, that error amount will be compensated. For example, when the error is actually smaller than 1 m (3.28feet), the remaining distance to 1 m (3.28feet) is fed, and the correct 1 m (3.28feet) of positioning is carried out.

\section*{ERROR RESET}

This resets error of axis. Note that if the cause of the error is not eliminated at that time, the error will occur again.

\section*{EXTERNAL REGENERATIVE BRAKE RESISTOR}

This is also called the regenerative brake. When a machine is moved with a motor, power is normally supplied to the motor from an amplifier. However, the rotation energy in the motor and machine counterflows (regenerates) to the amplifier when the motor is decelerating or when driving a descending load.
The external regenerative resistor consumes this regeneration energy with resistance, obtains the regenerative brake torque, and enables the full capacity of the regeneration system during stopping.
It is used when carrying out highly repetitive acceleration/deceleration.

\section*{F}

In the QD75, F is a status where the module itself has a fault.
[HOLD]

\section*{FAST OPR}

The axis returns to the machine OP at the OPR speed without detecting the near-point dog.
(This is not validated unless a machine OPR has been carried out first.)


\section*{FEED PULSE}

This is a pulse issued from the positioning module to a servomotor or stepping motor. Also called a command pulse.

\section*{FEED SCREW}

This is the basic screw in mechanisms that position using screw rotation. Ball screws are often used to reduce backlash and dimension error.


\section*{FEEDBACK PULSE}

This is a method of using a returning pulse train to confirm whether the machine faithfully operated according to the commands issued in automatic control. If the machine did not faithfully operate according to the commands, a correction command is issued. For example, if a command is issued for 10,000 pulses, and a feedback pulse of 10,000 pulses is returned, then the balance becomes 0 and it can be judged that the command was faithfully followed.
Refer to the term "DEVIATION COUNTER".

\section*{FIXED-FEED}

This is the feeding of a set dimension for cutting sheet and bar workpieces into the designated dimensions. Incremental system positioning is often used. The current value is not incremented, even when the feed operation is repeated.

\section*{FLASH MEMORY}

This battery-less memory can be used to store parameters and positioning data for backup. Because it is battery-less, battery maintenance is not required

\section*{FLAT TYPE MOTOR (PANCAKE MOTOR)}

About 100mm shorter in axial dimension than the standard motor. Used when the servomotor is installed in a small space.

\section*{FLS SIGNAL (forward limit signal)}

This is the input signal that notifies the user that the limit switch (b contact configuration, normally ON) installed at the upper limit of the positioning control enabled range has been activated.
The positioning operation stops when the FLS signal turns OFF (non-continuity).

\section*{G CODE}

These are standardized (coded) 2-digit numerical values ( 00 to 99 ) designating various control functions of the NC module. Also called G functions.
Example :
G01 Linear interpolation
G02 Circular interpolation CW (clockwise)
G04 Dwell
G28 OPR
G50 Max. spindle speed setting

\section*{GAIN}

The changing of the ratio between two values having a proportional relation. Seen on a graph, the changing of the incline of the characteristics.


For example, when 10 is output for an input of 10 , the output can be changed to 12,5 , etc., by changing the gain.

\section*{\(G D^{2}\)}

The inertia moment. The sum total of the mass (dm) of each small area configuring an object multiplied by the square of the distance ( \(r\) ) of each of those areas from a given straight line. The relation with \(\mathrm{I}=\int \mathrm{r}^{2} \mathrm{dmGD}^{2}\) is given by 4 gl , with " \(g\) " being gravitational acceleration.

\section*{INCREMENTAL ENCODER}

A device that simply outputs ON/OFF pulses by the rotation of the axis. 1-phase types output only A pulses, and do not indicate the axis rotation direction. 2-phase types output both A and B pulse trains, and can judge the rotation direction. The direction is judged to be forward if the \(B\) pulse train turns ON when \(A\) is ON, and judged to be reverse if \(A\) turns ON when \(B\) is ON. There is also another type of incremental encoder with a zero signal. The most commonly used incremental encoders output between 100 and 10,000 pulses per axis rotation. Refer to "ENCODER".


\section*{INCREMENTAL SYSTEM}

The current value is 0 in this system. Positions are expressed by the designated direction and distance of travel. Also called the relative address system. This system is used in fixedfeed, etc. Compare ABSOLUTE SYSTEM.

to the right of No. 1.

\section*{INERTIA}

The property of an object, when not being affected by external forces, where it tries to maintain its current condition. The inertia moment.

\section*{INPUT TERMINAL}

This is a pin connector wired by the user for inputting data to the QD75 from an external source. It is connected to the motor drive unit or machine side.
This terminal is used to output the following.
- DRIVE UNIT READY signal
- START signal
- STOP signal
, etc.
The input No. Xn is not directly related to the program, so it is not used.

\section*{INTERLOCK}

In this condition, the machine is blocked from moving to the next operation until the operation in progress is complete. This function is used to prevent damage to devices and malfunctioning.


\section*{INTERPOLATION OPERATION}

The simultaneous operation of multiple motors to carry out a composite operation. Each motor can be freely set with the positioning distance, acceleration/deceleration time, speed, and other factors, which are combined to move a target in a straight line, circle, etc. Linear interpolation and circular interpolation are available. (The circular interpolation uses two motors.)

\section*{INVERTER}

This refers to a device to change a direct current (DC) to an alternating current (AC). The device actually changes the motor speed by changing 50 Hz or 60 Hz of commercial frequency to direct current once, then changing it again to a 5 to 120 Hz alternating current and controlling the motor speed.

\section*{JOG}

Jog. This refers to moving the tool little by little. Inching.
Parameter setting is required to carry out JOG operation.

\section*{kPPS}

This is the abbreviation for "kilopulses per second". 80kPPS equals 80,000 pulses per second.

\section*{LIMIT SWITCH}

This is a switch set to stop a moving object at both ends, etc., of a movement device for safety reasons.
A circuit is created in which the moving body itself presses against the switch to activate the contact and forcibly shut the power OFF. For example, pressing on the actuator in the drawing below activates the internal microswitch. There are various other types.


\section*{LINEAR INTERPOLATION}

This automatic operation simultaneously operates two motors for the latitudinal \((X)\) feed and longitudinal \((\mathrm{Y})\) feed to move a target in a diagonal line for positioning. Three or four motors can also be operated simultaneously. The QD75 combines the operation of axis 1 through 4 for the linear interpolation. The same positioning data No. must be used for the setting. Refer to the term "INTERPOLATION OPERATION".


LOAD INERTIA RATIO
\(\mathrm{GDL}^{2} / \mathrm{GDM}^{2}\)
Refer to " \(\mathrm{GD}^{2}\) ".

\section*{LOW-INERTIA MOTOR}

This is a motor used when frequent acceleration/deceleration is repeated. Lowinertia motors are longitudinally longer, to decrease the rotor diameter and cover the torque. This enables their inertia moment to be reduced up to \(1 / 3\) that of standard motors. The ideal load inertia ratio is 1 or less.

\section*{M CODE (Machine Code)}

These are sub functions that interlock with the positioning operation to replace drills, tighten and loosen clamps, raise and lower welding electrodes, display various data, etc. Either of two modes can be entered when the machine code turns ON: AFTER or WITH. The machine does not move to the next positioning when the machine code is ON. M codes are turned OFF by the programmable controller program.
Code Nos. from 1 to 65535 assigned by the user and used (1: Clamp, 2: Loosen, etc.). Comments can be written after 50 of the M codes, and they can be monitored using a peripheral device or displayed on an external display. Refer to "AFTER MODE" and "WITH MODE".

\section*{MACHINE FEED VALUE}

The OP address at the completion of the machine OPR is stored.
The current position of the machine coordinates determined by a machine having the OP address as a reference.
Even if the current value is changed, this value will not change.

\section*{MANUAL PULSE GENERATOR}

The handle of this device is manually rotated to generate pulses. This device is used when manually carrying out accurate positioning.


Made by Mitsubishi Electric Corp. (model: MR-HDP01)

\section*{MASTER AXIS}

When carrying out interpolation operations, this is the side on which the positioning data is executed in priority. For example, when positioning with the \(X\) axis and \(Y\) axis, the side with the largest movement distance will become the master axis, and the speed will follow that axis. The slave axis speed will be ignored.

\section*{MOVEMENT AMOUNT PER PULSE}

When using mm, inch, or degree units, the movement amount is calculated and output from the machine side showing how much the motor shaft moves per pulse. Positioning accuracy in smaller units is not possible. On the motor side, the movement amount per axis rotation is normally designed as a reference, so it is calculated as follows.
Movement amount per pulse \(=\)


\section*{MULTI-PHASE PULSE}

A combination of pulses in which 2 or more phases differ.
2-phase pulses, etc.


\section*{MULTIPLYING RATE SETTING}

The \(P\) rate. Refer to the term "P RATE".

\section*{NC LANGUAGE (Numerical Control Language)}

This is the language punched into the paper tape that instructs the machining to the NC module.
The NC language consists of EIA codes (EIA language), ISO codes (ISO standards), and JIS codes (JIS standards).

\section*{NEAR-POINT DOG}

This is a switch placed before the OP. When this switch turns ON, the feedrate is changed to the creep speed. Because of that, the time that this switch is ON must be long enough to allow for the time required for deceleration from the feedrate to the creep speed.


\section*{NEW CURRENT VALUE (CURRENT VALUE CHANGING)}

The QD75 has no way of knowing the current value when the machine is assembled and the positioning module is connected, so this function is used to teach it a temporary approximate value as the current value. This function can also be used to write a temporary current value when the current value has been lost due to accidents, etc. If an OPR is carried out after that, the positioning module will recognize the zero point.
To prevent the accumulated value from exceeding the stroke limit in fixed-feed, etc., rewrite the current value to 0 after the fixedfeed. The current value can be changed during a positioning stop.

\section*{OP}

This is the reference position for positioning. Positioning cannot start without a reference point.
The OP is normally set to the upper or lower stroke limit.


\section*{OP SHIFT FUNCTION}

The OP position can be shifted in the positive or negative direction by executing a machine OPR and determining the shift amount from the machine OPR complete position.
An OP can be set at a position besides the OP position, or outside the dog switch.

OPERATION PATTERN
The kind of operation to be carried out after executing the positioning data is determined.
1) If "POSITIONING COMPLETE" is selected, the operation will stop after the positioning is complete.
2) If "CONTINUOUS POSITIONING CONTROL" is selected, the next data No. will be automatically executed after the positioning is complete.
3) If "CONTINUOUS PATH CONTROL" is selected, the positioning will not be completed. Only the speed will be automatically changed, and the next data No. will be executed.

\section*{OPR METHOD}

The OPR methods are shown below. The method used depends on the machine structure, stopping accuracy, etc. OPR can be carried out when the OPR parameters are written.
1) Near-point dog method
2) Stopper method
3) Count method

\section*{OPR PARAMETER}

This parameter is required when returning to the OP. It is determined by the machine side design, so subsequent changes of this parameter must be accompanied by changes in the machine design.
The OP is the reference for positioning operations, so if the OP is lost due to a power failure during positioning, or because the power is turned OFF and the machine is moved manually, etc., it can be restored by carrying out an OPR. When a machine OPR command is issued, the machine will move in search of the near-point dog regardless of the current value, and will stop at the OP. At this time, the current value will be rewritten to the OP address. Data cannot be written during positioning. With the QD75, data is always written for all axes (from 1 to 4 axes). Refer to the term "NEAR-POINT DOG".

\section*{OPR REQUEST}

This signal turns ON when there is an error with the QD75. It will turn ON in the following situations.
1) When the power is turned \(O N\).
2) When the PLC READY signal turns from OFF to ON.
3) When the machine OPR starts.
4) When the drive unit READY signal turns from ON to OFF.
The user judges whether to carry out a machine OPR in the above situations.

\section*{OUTPUT TERMINAL}

This is a pin connector for outputting data from the QD75 to an external source. It is connected to the motor drive unit.
This terminal is used to output the following.
- Feedback pulses for both forward run and reverse run
- Start
- Deviation counter clear

The terminal Nos. are determined for each axis.
The output No. Yn is not directly related to the program, so it is not used.

\section*{OVERRIDE FUNCTION}

With this function, the speed during positioning operations (current speed) can be varied between 1 and 300\%.
The speed can also be changed by the same variable rate for continuous positioning with differing designated speeds.

\section*{P RATE (Pulse Rate)}

A coefficient that magnifies the feedback pulses per motor shaft rotation by 2 -fold, 3-fold, \(1 / 2\) or \(1 / 3\).
It is the ratio of the feed pulses and feedback pulses.
For example, when the No. of pulses per motor shaft rotation is set to 2400 pulses, and the \(P\) rate is set to 2 , the result will be equivalent to 1200 pulses.
The rotation per pulse is \(0.15^{\circ}\) when 2400 pulses per rotation are set, but this becomes \(0.3^{\circ}\) when 1200 pulses. The positioning accuracy drops as the P rate is increased.

\section*{PARAMETER}

This is the basic data used in positioning. Parameters are determined by the machine side design, so subsequent changes of parameters must be accompanied by changes in the machine design.
Data cannot be written during positioning. The initial parameter values are written by the maker.

\section*{PG0 (Pulse Generator Zero)}

Pronounced "pee-jee-zero". Refer to the term "ZERO SIGNAL".


\section*{POSITION CONTROL}

This is mainly the control of position and dimension, such as in fixed-feed, positioning, numerical control, etc. This is always controlled with feed pulses. There is also speed control.
Drive units may differ, even when the same motor is used.

\section*{POSITION DETECTION MODULE}

This is an abridged version of positioning. There are two types on MELSEC, the A1S62LS. This module has positioning and limit switch functions, and can use a total of 16 channels. The following drawing shows an example for 5 channels. A resolver is used in the positioning detection.


\section*{POSITION LOOP GAIN}

This is the ratio of the deviation counter droop pulses to the command pulse frequency.
\[
\begin{aligned}
& \text { Position } \\
& \text { loop gain }
\end{aligned}=\frac{\text { Command pulse frequency }}{\text { Droop pulses }}(1 / \mathrm{s})
\]

The position loop gain can be set with the drive unit. Raise the gain to improve the stopping accuracy. However, overshooting will occur if the position loop gain is raised too far, and the operation will become unstable. If the position loop gain is lowered too far, the machine will stop more smoothly but the stopping error will increase.

\section*{POSITION LOOP MODE}

This is one servo control mode used in positioning. It is a mode for carrying out position control. The other servo control modes are the speed loop mode for carrying out speed control, and the torque loop mode for carrying out torque control (current control).


\section*{POSITIONING}

Accurately moving the machine from a point to a determined point. The distance, direction, speed, etc., for that movement are designated by the user. Positioning is used in operations such as cutting sheets, drilling holes in plates, mounting parts on a PCB, and welding. Positioning is also used with robots.

\section*{POSITIONING COMPLETE}

Refer to the term "OPERATION PATTERN".

\section*{POSITIONING COMPLETE SIGNAL}

This is a signal that occurs when the positioning is complete. A timer set beforehand starts when this signal is output, and the machine movement stops for that time. When this signal turns ON, the positioning start signal turns OFF.


\section*{POSITIONING CONTINUED}

Refer to the section of term "operation pattern".

\section*{POSITIONING DATA}

This is data for the user to carry out positioning. The No. of points to which positioning is carried out (the No. of addresses) is designated by the user. In the QD75, these are 600 points.
As a principle, positioning is executed in the order of the data Nos.

\section*{POSITIONING PARAMETER}

This is basic data for carrying out positioning control. Types of data include control unit, movement amount per pulse, speed limit value, upper and lower stroke limit values, acceleration/deceleration time, positioning system, etc.
Parameters have an initial value, so that value is changed to match the control conditions.

\section*{POSITIONING START}

This refers the act of designating a target data No. and starting the positioning.
The operation after the positioning is complete for that data No. is determined by the data No.'s positioning pattern.

\section*{PTP Control (Point To Point Control)}

This is a type of positioning control. With this control method, the points to be passed are designated at random locations on the path. Movement only to a given target positioning is requested. Path control is not required during movement from a given point to the next value.

\section*{PULSE}

The turning ON and OFF of the current (voltage) for short periods. A pulse train is a series of pulses. The QD75 is the module that generates the pulses.


\section*{PULSE GENERATOR}

This is a device that generates pulses. Examples include devices installed on the motor shaft that create pulses when the shaft rotates, and digital devices.
1-phase types output one pulse train. 2-phase types output two pulse trains with a phase difference. From 600 to \(1,000,000\) pulses can be output per shaft rotation. Generators with a ZERO signal function to output 1 or 2 pulses per shaft rotation. Abbreviated as PLG.
Refer to the term "ENCODER".

\section*{PULSE OUTPUT MODE}

There are two methods used to issue forward run and reverse run commands to the servomotor. The type used differs according to the machine maker. In type A, the forward run pulses and reverse run pulses are output from separate terminals.
In type B, the forward run pulses and reverse run pulses are output from the same terminal, and a forward/reverse run identification signal is output from another terminal.


\section*{READY}

This means that preparation is complete.

\section*{REAL-TIME AUTO TUNING (Real-time Automatic Tuning)}

Refer to "AUTO TUNING".

\section*{REFERENCE AXIS SPEED}

This is the speed of the reference axis during interpolation operations.


\section*{REGENERATIVE BRAKE OPTION}

This function is an option. It is used when carrying out highly repetitive acceleration/deceleration.
Refer to "EXTERNAL REGENERATIVE RESISTOR".

\section*{RESOLVER}

This device detects the angle by resolving the two voltages of the analog input. Also called a 2-phase synchro. For a 1-phase voltage input, the axis rotation angle is converted into a perpendicular 2-phase voltage (analog voltage) and output.


RLS SIGNAL (reverse limit signal)
This is the input signal that notifies the user that the limit switch (b contact configuration, normally ON) installed at the lower limit of the positioning control enabled range is activated. The positioning operation stops when the RLS signal turns OFF (non-continuity).

\section*{ROTARY TABLE}

A round table on which the workpiece is placed. Positioning control is carried out while rotating the workpiece in a \(360^{\circ}\) range.

\section*{S-CURVE}

ACCELERATION/DECELERATION
In this pattern, the acceleration and deceleration follow a sine curve, and the movement is smooth. The S-curve ratio can be set from 1 to 100\%.


\section*{SERVO AMPLIFIER}

Refer to the term "DRIVE UNIT".

\section*{SERVO LOCK}

In positioning using a servomotor, stepping motor, etc., working power is required to hold the machine at the stop position.
(The position will be lost if the machine is moved by external power.)
This kind of state is called servo lock or servo lock torque.


\section*{SERVO ON}

The servo amplifier will not operate if the servo amplifier is in a normal state and this servo ON signal is OFF.


\section*{SERVOMOTOR}

A motor that rotates true to the command. Servomotors are highly responsive, and can carry out frequent high-speed and highaccuracy starts and stops.
DC and AC types are available, as well as large-capacity motors. A pulse generator accessory for speed detection is common, and feedback control is often carried out.

\section*{SETTING UNIT}

This is one setting item of the positioning reference parameters. The unit to be used is designated as mm , inch, degree, or pulse.

\section*{SFC (Sequential Function Chart)}

A sequential function chart is a programming method optimally structured for running a machine's automatic control in sequence with the programmable controller.


\section*{SKIP FUNCTION}

When a SKIP signal is input, the positioning being executed is interrupted, the motor is deceleration stopped, and the next positioning is automatically carried out.

\section*{SLAVE AXIS}

During interpolation operation, the positioning data is partially ignored on this side. This axis is moved by the master axis data.

\section*{SPEED CONTROL}

Speed control is mainly carried out with the servomotor. It is an application for grindstone rotation, welding speed, feedrate, etc. Speed control differs from position control in that the current position (address) is not controlled. Drive units may differ, even when the same motor is used.

\section*{SPEED INTEGRAL COMPENSATION}

This is one item in the parameters of the servo amplifier, and is used to raise the frequency response during speed control to improve transient characteristics.
When adjusting the speed loop gain, raising this value is effective if the overshooting during acceleration/deceleration remains large. This compensation is set in ms units.

\section*{SPEED LIMIT VALUE}

This is the max. speed for positioning. Even if other data is mistakenly set to a higher speed than this, the positioning will be carried out at this speed limit value when it is set in the parameters. The acceleration time becomes the time to accelerate from a stopped state to the speed limit value, and the deceleration time becomes the time to decelerate from the speed limit value to a stopped state.

\section*{SPEED LOOP GAIN}

This is one item in the parameters of the servo amplifier, and expresses the speed of the control response during speed control. When the load inertia moment ratio increases, the control system speed response decreases and the operation may become unstable. If this happens, the operation can be improved by raising this setting value.
The overshoot will become larger if the speed loop gain is raised too far, and motor vibration noise will occur during operation and when stopped.

\section*{SPEED LOOP MODE}

This is one servo control mode used in positioning. It is a mode for carrying out speed control. Refer to "POSITION LOOP MODE".

\section*{SPEED-POSITION SWITCHING CONTROL}

With this control, positioning is carried out to the end point of the movement amount while changing the speed at the speed switching point during positioning control.

\section*{SPEED-POSITION SWITCHING CONTROL MODE}

This is one method used for positioning. It is an application for operations such as highspeed movement to a point unrelated to positioning, then set dimension movement from the switching signal activation point.


\section*{START COMPLETE}

This signal gives an immediate response notifying the user that the QD75 that was started is now in a normal state and can start positioning.

\section*{STARTING AXIS}

One of the QD75 axis system axes (axis 1, axis 2 , axis 3 , or axis 4 ) or the reference axis for the interpolation operation is designated as the starting axis.

\section*{STATUS}

Data showing the state of the machine. Collectively refers to signals that turn ON when the battery voltage drops, during OPR requests, during dwell time, etc.

\section*{STEP FUNCTION}

When the operation is designed so that several positioning data Nos. are consecutively run, this function can be used to carry out a test operation for 1 data item at a time.

\section*{STEP OUT}

Stepping motors rotate in proportion to the No. of pulses (frequency), but the motor's rotation will deviate if the load is too large for the motor. This is called step out. If step out occurs, the motor must be replaced by one with a larger torque. Step out causes the positioning error to increase.


\section*{STEPPING MOTOR}

A motor that rotates a given angle (example:
\(0.15 \varnothing\) ) when 1 pulse is generated.
For that reason, a rotation proportional to the No. of pulses can be obtained. 2-phase to 5phase stepping motors are available. In the 3phase type, the rotor rotates in order from A to C when a voltage is applied. Often found in compact motors, stepping motors rotate accurately without feedback. Be careful of step out when overloaded.

1) First, the A phase is excited by a pulse.

2) When the B phase is then excited, the force works in the direction shown by the arrows.

3) The nearest tooth to the B phase is attracted, and the rotation stops.

4) As the excitation phase is continuously changed, the rotor rotates in a clockwise direction.

\section*{STOP SETTLING TIME}

Refer to the term "DWELL TIME".

\section*{STOP SIGNAL}

In positioning control, this is the input signal that directly stops the operation from an external source.
The operation stops when the external stop signal (a-contact) turns ON (continuity).

\section*{STOP WITH STOPPER}

This is one machine OPR method. With this method, a stopper is established at the OP, and the operation is stopped when the machine presses against it. Motor burning would occur or the stopper would be damaged if the machine were left in that state. There are two methods to prevent this; a timer can be used to shut OFF the motor after a fixed time, or the motor can be stopped by limiting sudden increase in the motor torque when the machine presses against the stopper.


\section*{STROKE}

The stroke is the variation in the operation by the distance from a stopped state to the next stopped state after a movement.

\section*{STROKE LIMIT}

This is the range in which a positioning operation is possible, or the range in which the machine can be moved without damage occurring.
(Movement outside this range is possible in the manual operation.) For operations using a worm gear, the stroke limit is determined by the length of the screw. For operations using a fixed-feed, it is determined by the max. dimension to be cut.
The upper and lower limits are set in the parameters, but a separate limit switch should be established and an emergency stop circuit outside the programmable controller should be created. Refer to the term "LIMIT SWITCH".


\section*{SUDDEN STOP}

A stop carried out in a shorter time than the deceleration time designated in the parameters.


\section*{TEACHING}

When the positioning address is uncertain, or gauging is required, this function is used by the user to search for and teach the position to the machine.
For example, complex addresses such as drawings can be taught by tracing a model, and the positioning operation can be reproduced.

\section*{TORQUE CONTROL}

In this function, a limit is established for the resistance torque applied to the motor used for positioning. The power is turned OFF if torque exceeding that value is applied to the motor. When excessive torque is applied to a motor, it causes the current to suddenly increase. Motor burning and other stress on the motor occurs, and the life of the motor is shortened.
This function utilizes the sudden increase in the torque when the machine OPR to issue a command to stop the motor.

\section*{TORQUE LOOP MODE}

Also called the current loop mode.
Refer to "POSITIONING LOOP MODE".

\section*{TORQUE RIPPLE}

Torque width variations, deviations in the torque.

\section*{TRACKING FUNCTION}

In this function, positioning is carried out at a speed relative to a moving target object by inputting the movement amount from an external encoder and adding it to the servo command value.

\section*{TRAPEZOIDAL}

\section*{ACCELERATION/DECELERATION}

An operation in which a graph of the time and speed takes a trapezoidal shape.


\section*{TURNTABLE}

A rotating table, which is turned using power. The table is used divided from one \(360^{\circ}\) rotation into the required locations for work. The positioning control unit is "degree".


\section*{UNIT SETTING}

This is the setting of the unit for the actual address to which positioning is required, or for the movement amount.
The following units can be set: mm, inch, degree and pulse. The initial value in the parameters is a pulse unit.

\section*{WARNING}

A warning is output as a warning code in when an abnormality is detected that is not serious enough to require cancellation or stoppage of the positioning operation. Warnings are handled differently than errors.

\section*{WINDOW}

These are the selection menus that appear on the screen when the QD75 is started.
- Menu selection window
- Mode function selection window
- Sub-function selection window
- Execution/setting selection window

\section*{WITH MODE}

This is the mode that outputs the M code before the start of the positioning. This mode turns ON at the positioning start, enabling voltage to be applied to the welding electrodes, display of positioning speeds, etc.
Refer to the term "AFTER MODE".

\section*{XY TABLE}

This is a device that moves a table in the \(X\) (latitudinal) and \(Y\) (longitudinal) directions so that positioning can be carried out easily. There are also commercially available products.


\section*{Z PHASE}

Also called "PG zero". Refer to "ZERO SIGNAL".

\section*{ZERO SIGNAL}

This refers to PG0 of the pulse generator (encoder) (one detection per shaft rotation). It also called "Z phase". Refer to the term "PULSE GENERATOR".

\section*{Appendix 12 Positioning control troubleshooting}
\begin{tabular}{|c|c|c|c|}
\hline Trouble type & Questions/Trouble & Remedy & No. \\
\hline \multirow[t]{3}{*}{Parameter} & Display reads "FFFFF" when a parameter is read with GX Configurator-QP. & \begin{tabular}{l}
The CPU module power was turned OFF or the CPU module was reset, etc., during flash ROM writing, which deleted the data in the flash ROM. \\
Initialize the parameters, and reset the required parameters. \\
(Refer to Section 13.2 "Parameter initialization function" for details.)
\end{tabular} & 1 \\
\hline & How can the parameters be returned to their initial values (default values)? & Set the " Cd. 2 Parameter initialization request" to "1". (Refer to Section 13.2 "Parameter initialization function" for details.) & 2 \\
\hline & A parameter error occurred although the parameter was set correctly by GX Configurator-QP. & \begin{tabular}{l}
The parameter may have been overwritten in the sequence program. \\
Review the sequence program.
\end{tabular} & 3 \\
\hline \multirow[b]{2}{*}{Hardware stroke limit} & The machine overruns if operating at high speeds when the hardware stroke limit range is exceeded. & In the QD75, deceleration stops are executed after the machine exceeds hardware stroke limit range. Because of this, more time is required for the deceleration stop as the speed increases, and the overrun becomes larger. (The deceleration time becomes shorter at lower speeds, so the overrun becomes smaller.) & 4 \\
\hline & When the machine exceeded the hardware stroke limit range, positioning toward inside the range was started, but the machine did not start. & \begin{tabular}{l}
Use a "JOG operation", " Inching operation" or "Manual pulse generator operation" to return the machine to inside the hardware stroke limit range. \\
(When the hardware stroke limit range is exceeded, positioning will not start toward inside the range even when so commanded. Once the range is exceeded, a return to inside the range can only be executed using a "JOG operation", "Inching operation" or "Manual pulse generator operation".)
\end{tabular} & 5 \\
\hline Degree & Exactly one rotation is required, but the setting range for a "degree" unit setting is " 0 to \(359.999 \ldots\)..." Won't the rotation deviate by "0.00...1"? & Designate " 360.000 " in the INC control. The motor will make exactly one rotation. & 6 \\
\hline Movement amount per pulse & If the "movement amount per pulse" is calculated as written in the manual, settings smaller than the basic parameter setting range cannot be carried out. & \begin{tabular}{l}
Set "movement amount per pulse" in the QD75 using the three parameter values of Pr. 2 to Pr. 4. \\
Try setting the values following the explanations for each parameter.
\end{tabular} & 7 \\
\hline \multirow{3}{*}{Override} & Will an override setting value written before starting be valid? & It will be valid. & 8 \\
\hline & During path control, will the override still be valid after the point is passed? & It will still be valid. & 9 \\
\hline & How can the override be canceled? & \[
\begin{aligned}
& \text { Set the " Cd. } 13 \text { Positioning operation speed override" } \\
& \text { to "100". }
\end{aligned}
\] & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Trouble type & Questions/Trouble & Remedy & No. \\
\hline \multirow{4}{*}{Acceleration/ deceleration time} & How can the deceleration stop time during stopping be shortened using the hardware stroke limit? & Set "1: Sudden stop" in the " Pr. 37 Stop group 1 sudden stop selection", and reduce the setting value of " Pr. 36 Sudden stop deceleration time". & 11 \\
\hline & The motor does not operate at " 60000 ms " although the acceleration/deceleration time is set to " 60000 ms ". & \begin{tabular}{l}
The value set for the acceleration/deceleration time is the time required for the machine to accelerate from speed " 0 " to the value set in " Pr. 8 Speed limit value". \\
Because of that, the acceleration/deceleration time will also be shorter than " 60000 ms " if the command speed value is smaller than the " Pr. 8 Speed limit value". (Refer to the explanation for Pr. 9 and Pr. 10 for details.)
\end{tabular} & 12 \\
\hline & Can each acceleration/ deceleration time be individually set to trapezoidal or S-curve acceleration/deceleration? & \begin{tabular}{l}
The trapezoidal and S-curve acceleration/deceleration processing is a common setting for all acceleration/deceleration times, so individual setting is not possible. \\
(Refer to Section 12.7.6 "Acceleration/deceleration process function".)
\end{tabular} & 13 \\
\hline & \begin{tabular}{l}
The machine starts and stops suddenly when carrying out JOG operations and positioning operations. \\
(Using an MR-J2S servo amplifier.)
\end{tabular} & Review the parameter settings for acceleration/ deceleration time, speed limit value, JOG speed limit value, JOG acceleration/deceleration time, etc. & 14 \\
\hline Simplified absolute position detection system & Are simplified absolute position detection system possible in the QD75 Positional deviation models? & \begin{tabular}{l}
They are possible if the models are used in combination with a Mitsubishi "AC Servo". \\
(Refer to "AC servo User's Manual" for details.)
\end{tabular} & 15 \\
\hline Positional deviation & The physical position position detection system from the commanded position, although the positioning is complete (and the monitored current position is correct). & If the deviation counter value is not " 0 ", the servo side is still moving. Increase the torque. & 16 \\
\hline Electronic gear & \begin{tabular}{l}
A setting of " \(1 \mu \mathrm{~m}=1\) pulse" is required in the following system. \\
- Ball screw pitch \(=10 \mathrm{~mm}\) \\
- No. of feedback pulses = 8192pulse
\end{tabular} & \begin{tabular}{l}
In this case, the following values will result. \\
- No. of pulses per rotation = 8192 \\
- Movement amount per rotation \(=10000\) \\
- Unit magnification = 10 \\
Therefore, the "Movement amount per pulse" will become " \(1.2207 \mu \mathrm{~m} "\). \\
This value is fixed by the machine system, so it cannot be changed. \\
Thus, the setting " \(1 \mu \mathrm{~m}=1\) pulse" cannot be achieved.
\end{tabular} & 17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Trouble type & Questions/Trouble & Remedy & No. \\
\hline Error compensation & \begin{tabular}{l}
The machine only moves to "10081230", although positioning with a command value of "10081234" carried out. \\
How can the error be compensated? \\
The following values are currently set. \\
- Pr. 2 No. of pulses per rotation = 8192 \\
- Pr. 3 Movement amount per rotation \(=8000\)
\end{tabular} & \begin{tabular}{l}
Reset Pr. 3 and Pr. 2 in the following order. \\
1) Calculate " \(8192 / 8000 \times 10081230 / 10081234\) ". \\
2) Obtain the reduced value. \\
3) Set the numerator in " Pr. 3 Movement amount per rotation", and the denominator in " Pr. 2 No. of pulses per rotation".
\end{tabular} & 18 \\
\hline \multirow{6}{*}{OPR} & When carrying out a count method machine OPR, the message "Leave Sufficient Distance From The OP Position To The NearPoint Dog OFF." appears. Is there a problem if the distance is short? & \begin{tabular}{l}
The near-point dog must be set to turn OFF at a position after the OP is passed. \\
(When the machine OPR is started on the near-point dog on in a count-method machine OPR, the machine enters a normal machine OPR operation after returning to the near-point dog OFF region.) \\
(If the near-point dog is turned OFF before the OP, and the machine OPR is started between the near-point dog OFF position and the OP, the machine will mistakenly interpret that its current position is before the near-point dog ON position, and it will pass over the OP and continue moving.)
\end{tabular} & 19 \\
\hline & In the near-point dog method machine OPR, the stop positions are not uniform. & \begin{tabular}{l}
Carry out the following measures. \\
1) Separate the near-point dog signal and zero signal detection positions. \\
2) Lower the values in " Pr. 46 OPR speed" and " Pr. 47 Creep speed". \\
3) Confirm whether the zero signal and near-point dog signal turn ON normally. \\
4) Check that there is no play (backlash) in the machine system.
\end{tabular} & 20 \\
\hline & Can the machine OPR be carried out with the OPR retry function when it is started with the nearpoint dog ON and the upper/lower limit OFF? & \begin{tabular}{l}
A "Hardware stroke limit error" will occur and the operation will not be carried out. \\
(The machine will interpret any position where the nearpoint dog is ON as being within the working range, and that the upper/lower limit is ON.)
\end{tabular} & 21 \\
\hline & Are ABS and INC positioning possible without carrying out an OPR? & \begin{tabular}{l}
They are possible. \\
In this case, the position where the power is turned ON is handled as the current feed value " 0 ".
\end{tabular} & 22 \\
\hline & After an OPR, the OPR request flag sometimes turns ON for no apparent reason. & \begin{tabular}{l}
The OPR request flag turns ON in the following cases. \\
1) When the power is turned \(O N\). \\
2) When the PLC READY signal [YO] turns from OFF to ON . \\
3) When an OPR is carried out. \\
4) When the servo amplifier power is turned OFF. If no problem is found when the above are checked, then it is possible that the communication is being interrupted by "a fault in the bus cable", "noise influence", etc.
\end{tabular} & 23 \\
\hline & The OPR complete flag (Md.31 Status: b4) sometimes turns ON when it shouldn't be ON. & Check whether the drive unit READY signal is weak or the power supply is unstable. & 24 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Trouble type & Questions/Trouble & Remedy & No. \\
\hline \multirow[t]{2}{*}{Start} & The positioning start signal [Y10] is kept ON until the BUSY signal is OFF, but is there any problem with turning it OFF before the BUSY signal turns OFF? & After the BUSY signal turns ON, there is no problem with turning [Y10] OFF before the BUSY signal turns OFF. (The QD75 detects the rising edge (OFF \(\rightarrow\) ON) of the positioning start signal [Y10].) & 25 \\
\hline & The operation will not start even when the start signal is turned ON. & Check the " Md. 26 Axis operation status" and " Md. 23 Axis error No.". & 26 \\
\hline \multirow[b]{3}{*}{Stop} & How many milliseconds should the axis stop signal [Y4] be turned ON for? & The signal should be turned ON at 4 ms or more. (If possible, set the signal so it does not turn ON only momentarily, but instead stays ON until the BUSY signal turns OFF. This will keep the stop signal from skipping.) & 27 \\
\hline & How can a sudden stop be selected? & Set "1: Sudden stop" in the parameter from Pr. 37 to Pr. 39 corresponding to the stop group, and reduce the setting value of " Pr. 36 Sudden stop deceleration time". & 28 \\
\hline & "Normal deceleration stop" was selected in " Pr. 39 Stop group 3 sudden stop", and Y stop was turned ON. If the Pr. 39 setting is changed to "sudden stop" during a deceleration stop, and the Y stop signal turns from OFF to ON, will the operation change to a sudden stop from that point? & \begin{tabular}{l}
The operation will not change. \\
Even if the same stop factor is input again during the deceleration stop, it will be ignored. The same deceleration stop process used when the stop signal was first input will be continued. \\
(This also applies for Pr. 37 and Pr. 38 .)
\end{tabular} & 29 \\
\hline Circular interpolation & ABS system circular interpolation operates normally, but a vertically oblong circle results when INC system circular interpolation is carried out. & The address designation may be incorrect. When carrying out INC system circular interpolation, designate the relative addresses from the starting point of both the center point and end point. & 30 \\
\hline Speed-position switching control & Can the speed be changed during speed control and position control by speed-position switching control? & No. The speed for the speed control and position control cannot be set differently. & 31 \\
\hline \multirow[t]{2}{*}{JOG operation} & Even if the JOG start signal is turned ON, the response until it turns ON is sometimes slow. & \begin{tabular}{l}
Either of the following is possible. \\
1) The sequence program may be incorrect. Check by creating a test program in which the JOG start signal is turned ON only. \\
2) If the machine is hitting something when the torque setting is low, it may be trying to move by JOG operation in the opposite direction. In this case, the machine will start moving only after the internal droop pulses have been reached 0 in the counter, even if the JOG start signal has been turned ON. This makes it seem that the response is slow.
\end{tabular} & 32 \\
\hline & The operation is not carried out at the set JOG speed, although the speed limit value has not been reached. & \begin{tabular}{l}
Either of the following is possible. \\
1) The JOG start signal may be chattering. Monitor the JOG start signal to confirm whether it is chattering. (When using the "BUSY signal" in the JOG operation start circuit, check the position of the BUSY signal.) \\
2) The " Pr. 31 JOG speed limit value" may not be appropriate. Review the setting value and carry out the JOG operation again.
\end{tabular} & 33 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Trouble type & Questions/Trouble & Remedy & No. \\
\hline \multirow[b]{2}{*}{JOG operation} & When a JOG operation is attempted, an error results and the machine does not move. & \begin{tabular}{l}
The " Pr. 31 JOG speed limit value" may be larger than the " Pr. 8 Speed limit value". \\
Review the parameters and carry out the JOG operation again.
\end{tabular} & 34 \\
\hline & Why does the positioning complete signal turns ON during the JOG operation? & If a value other than " 0 " is set for " Cd. 16 Inching movement amount", the inching operation is carried out and the positioning complete signal turns ON . Confirm that the " Cd. 16 Inching movement amount" is set to "0". & 35 \\
\hline \multirow{3}{*}{Manual pulse generator operation} & Is it possible to count the pulses when the B phase is set to " 1 ", and only A phase pulses are input? & \begin{tabular}{l}
Not possible. \\
(The QD75 counts 1, 0, 1, 0.)
\end{tabular} & 36 \\
\hline & Can a manual pulse generator other than the Mitsubishi MRHDP01 be used? & Other manual pulse generators can be used if they conform to Section 3.4 "Specifications for input/output interfaces with external devices." & 37 \\
\hline & Can one manual pulse generator be operated connected to several QD75 modules? & This is possible if the system conforms to the electrical specifications. & 38 \\
\hline Current value changing & The BUSY signal is not canceled by the current value changing. How can it be canceled? & The BUSY signal may remain if the scan time is long. Use a complete signal to check whether the current value changing has been executed. & 39 \\
\hline QD75 READY signal & The QD75 READY signal does not turn ON even when the PLC READY signal [Y0] is turned ON. & "A parameter error" has occurred. Confirm the error No. in the error history, and correct the parameter. & 40 \\
\hline M code ON signal & Is there any problem with setting an M code ON signal OFF request in the next scan after the \(M\) code ON signal ON? & The QD75 checks the M code ON signal OFF request every " 0.9 ms " (QD75P \(\square \mathrm{N} /\) QD75D \(\square \mathrm{N}\) ) or " 1.8 ms " (QD75P \(\square / Q D 75 D \square\) ), so there is a possibility that the \(M\) code ON signal OFF may be delayed by a maximum of " 0.9 ms " (QD75P \(\square \mathrm{N} / \mathrm{QD} 75 \mathrm{D} \square \mathrm{N}\) ) or " 1.8 ms " (QD75P \(\square /\) QD75D \(\square\) ) after the M code ON signal ON, even if an M code ON signal OFF request is set. & 41 \\
\hline \multirow{3}{*}{Deviation counter clear} & How long is the output time for the deviation counter clear signal? & The time set in " Pr. 55 Deviation counter clear signal output time". (Initial value: 11ms) & 42 \\
\hline & Is a deviation counter clear signal output when the positioning is complete? & \begin{tabular}{l}
A signal is not output. \\
The only time the QD75 outputs a deviation counter clear signal is for a machine OPR.
\end{tabular} & 43 \\
\hline & How can a deviation counter clear signal be output? & The QD75 does not output a deviation counter clear signal except for machine OPR. & 44 \\
\hline Module & An error "PLC READY OFF start" (error code: 537) occurs after the QD75 is replaced. (The sequence program is the same.) & The internal parameters of the QD75 may be different. Check if the QD75 READY signal [X0] turns ON when the PLC READY signal [YO] turns ON. When the PLC READY signal is ON but the QD75 READY signal is OFF, the parameter error has occurred. Check the error code and modify the parameter with the error. & 45 \\
\hline \multirow[b]{2}{*}{Motor} & The motor only rotates in one direction. & \begin{tabular}{l}
The parameter settings on the QD75 side may not match those on the servo side. \\
Check the parameter settings.
\end{tabular} & 46 \\
\hline & Can the current motor speed be monitored? & \begin{tabular}{l}
The speed shown on the QD75 monitor is calculated from the number of pulses output from the module. Thus, the actual motor speed cannot be monitored. \\
(" Md. 22 Feedrate" monitors the commanded speed. It does not show the actual motor speed.)
\end{tabular} & 47 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Trouble type & Questions/Trouble & Remedy & No. \\
\hline \multirow{5}{*}{Error/warning} & An error "Backlash compensation amount error" (error code: 920) occurs even when the backlash compensation value is set to "1". & \begin{tabular}{l}
\[
0 \leq \frac{\text { Backlash compensation value }}{\text { Movement amount per pulse }} \leq 255
\] \\
Setting is not possible if the above equation is not satisfied. \\
Adjust by setting " Pr. 4 Unit magnification" to 10-fold (or 100-fold, or 1000-fold), and setting " Pr. 2 Movement amount per rotation" to \(1 / 10\) (or \(1 / 100\), or \(1 / 1000\) ).
\end{tabular} & 48 \\
\hline & When a JOG operation is attempted, errors such as "Hardware stroke limit (+)" or "Hardware stroke limit (-)" (error code: 104 or 105) occur and the machine does not move. & \begin{tabular}{l}
The hardware stroke limit wiring has probably not been carried out. \\
Refer to Section 12.4.4 "Hardware stroke limit function" for details, and wire accordingly.
\end{tabular} & 49 \\
\hline & An error "Speed designation during OP shift error" (error code: 997) appears when the PLC READY signal [YO] turns from OFF to ON. & \begin{tabular}{l}
A value besides " 0 " or "1" may be set in the \\
" Pr. 56 Speed designation during OP shift". \\
Review the set sequence program, and reset the correct parameters.
\end{tabular} & 50 \\
\hline & When the start signal was turned ON immediately after the stop signal ON, a warning "Start during operation" (warning code: 100) was detected, and the start was ignored. & The QD75 starts the deceleration stop process when the stop signal ON is detected. Thus, the machine interprets that "positioning is still being executed" immediately after the stop signal ON. Even if the start signal is turned ON at that time, the start request will be ignored and a warning "Start during operation" (warning code: 100) will occur. & 51 \\
\hline & Does a warning "Deceleration/stop speed change" (warning code: 500) occur only during "stop deceleration" and "automatically deceleration"? Is there any problem if the operation is continued in that state without resetting the error? & The warning occurs only at those times mentioned at the left. Because this is a warning, there is no problem if the operation can be continued without resetting the error. (When the speed is changed using the override, the new value will not be reflected on the data being executed, but will be reflected from the next start.) & 52 \\
\hline \multirow[t]{2}{*}{Positioning complete signal} & \multirow[t]{2}{*}{Position control was executed but the positioning complete signal does not turn ON.} & \begin{tabular}{l}
Depending on the stop occurrence factor, positioning may have not been completed normally. \\
Check the axis monitor " Md.26 Axis operation status" after the BUSY signal has turned OFF. \\
Stop : The stop signal has turned ON during positioning. Check the condition under which the stop signal ( Y stop, external stop) turns ON. \\
Error : An error has occurred during positioning. Check the error occurrence factor from \\
" Md. 23 Axis error No.".
\end{tabular} & 53 \\
\hline & & \begin{tabular}{l}
The setting value of the detailed parameter 2 "Positioning complete signal output time" is 0 or shorter than the scan time. \\
Using the sequence program, set the time when the signal can be detected securely.
\end{tabular} & 54 \\
\hline
\end{tabular}

\section*{Appendix 13 List of buffer memory addresses}

The following shows the relation between the buffer memory addresses and the various items.
(Do not use any address other than listed below. If used, the system may not operate correctly.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Buffer memory address} & \multirow{2}{*}{Item} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Memory area}} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & \\
\hline 0 & 150 & 300 & 450 & Pr. 1 Unit setting & \multirow{7}{*}{\(\stackrel{-}{0}\)
\(\stackrel{0}{\omega}\)
\(\stackrel{0}{0}\)
\(\stackrel{0}{0}\)
\(\frac{0}{0}\)
\(\stackrel{0}{0}\)
\(\stackrel{0}{0}\)
0} & \multirow{29}{*}{} \\
\hline 1 & 151 & 301 & 451 & Pr.2 No. of pulses per rotation (Ap) & & \\
\hline 2 & 152 & 302 & 452 & Pr. 3 Movement amount per rotation (AI) & & \\
\hline 3 & 153 & 303 & 453 & Pr. 4 Unit magnification (Am) & & \\
\hline 4 & 154 & 304 & 454 & Pr. 5 Pulse output mode & & \\
\hline 5 & 155 & 305 & 455 & Pr. 6 Rotation direction setting & & \\
\hline \[
\begin{aligned}
& \hline 6 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& \hline 156 \\
& 157
\end{aligned}
\] & \[
\begin{aligned}
& \hline 306 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& 456 \\
& 457
\end{aligned}
\] & Pr. 7 Bias speed at start & & \\
\hline \[
\begin{aligned}
& \hline 8 \\
& 9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 158 \\
& 159
\end{aligned}
\] & \[
\begin{aligned}
& \hline 308 \\
& 309
\end{aligned}
\] & \[
\begin{aligned}
& 458 \\
& 459
\end{aligned}
\] & Not used & \(\stackrel{\varrho}{0}\) & \\
\hline \[
\begin{aligned}
& \hline 10 \\
& 11
\end{aligned}
\] & 160
161 & \[
\begin{aligned}
& 310 \\
& 311
\end{aligned}
\] & \[
\begin{aligned}
& 460 \\
& 461
\end{aligned}
\] & Pr. 8 Speed limit value & \(\stackrel{\rightharpoonup}{\square}\) & \\
\hline \[
\begin{aligned}
& \hline 12 \\
& 13
\end{aligned}
\] & 162
163 & \[
\begin{aligned}
& 312 \\
& 313 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 462 \\
& 463 \\
& \hline
\end{aligned}
\] & Pr. 9 Acceleration time 0 &  & \\
\hline \[
\begin{aligned}
& 14 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \hline 164 \\
& 165
\end{aligned}
\] & \[
\begin{aligned}
& 314 \\
& 315
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& 465
\end{aligned}
\] & Pr. 10 Deceleration time 0 & & \\
\hline 17 & 167 & 317 & 467 & Pr. 11 Backlash compensation amount & \multirow{15}{*}{} & \\
\hline \[
\begin{aligned}
& \hline 18 \\
& 19 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 168 \\
& 169 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 318 \\
& 319 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 468 \\
& 469 \\
& \hline
\end{aligned}
\] & Pr. 12 Software stroke limit upper limit value & & \\
\hline \[
\begin{aligned}
& 20 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& 170 \\
& 171
\end{aligned}
\] & \[
\begin{aligned}
& 320 \\
& 321
\end{aligned}
\] & \[
\begin{aligned}
& 470 \\
& 471
\end{aligned}
\] & Pr. 13 Software stroke limit lower limit value & & \\
\hline 22 & 172 & 322 & 472 & Pr. 14 Software stroke limit selection & & \\
\hline 23 & 173 & 323 & 473 & Pr. 15 Software stroke limit valid/invalid setting & & \\
\hline \[
\begin{aligned}
& 24 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 174 \\
& 175 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
324 \\
325 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 474 \\
& 475
\end{aligned}
\] & Pr. 16 Command in-position width & & \\
\hline 26 & 176 & 326 & 476 & Pr. 17 Torque limit setting value & & \\
\hline 27 & 177 & 327 & 477 & Pr. 18 M code ON signal output timing & & \\
\hline 28 & 178 & 328 & 478 & Pr. 19 Speed switching mode & & \\
\hline 29 & 179 & 329 & 479 & Pr. 20 Interpolation speed designation method & & \\
\hline 30 & 180 & 330 & 480 & Pr. 21 Current feed value during speed control & & \\
\hline 31 & 181 & 331 & 481 & Pr. 22 Input signal logic selection & & \\
\hline 32 & 182 & 332 & 482 & Pr. 23 Output signal logic selection & & \\
\hline 33 & - & - & - & Pr.24 Manual pulse generator input selection & & \\
\hline 34 & 184 & 334 & 484 & Pr. 150 Speed-position function selection & & \\
\hline 35 & 185 & 335 & 485 & Not used & \multirow[t]{3}{*}{} & \\
\hline \[
\begin{aligned}
& 36 \\
& 37
\end{aligned}
\] & 186 & \[
\begin{aligned}
& 336 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& \hline 486 \\
& 487
\end{aligned}
\] & Pr. 25 Acceleration time 1 & & \\
\hline 38
39 & 188
189 & 338
339 & \[
\begin{aligned}
& 488 \\
& 489
\end{aligned}
\] & Pr. 26 Acceleration time 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Buffer memory address} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Item}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Memory area}} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & & \\
\hline \[
\begin{aligned}
& 40 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 190 \\
& 191
\end{aligned}
\] & \[
\begin{aligned}
& 340 \\
& 341
\end{aligned}
\] & \[
\begin{aligned}
& 490 \\
& 491
\end{aligned}
\] & Pr. 27 & Acceleration time 3 & \multirow{19}{*}{} & \multirow{19}{*}{} \\
\hline 42 & 192 & 342
343 & \[
\begin{aligned}
& \hline 492 \\
& 493
\end{aligned}
\] & Pr. 28 & Deceleration time 1 & & \\
\hline 44 & 194 & 344 & 494 & Pr. 29 & Deceleration time 2 & & \\
\hline 45 & 195 & 345 & 495 & Pr. 29 & & & \\
\hline 46 & 196 & 346 & 496 & Pr. 30 & Deceleration time 3 & & \\
\hline 47 & 197 & 347 & 497 & Pr.30 & & & \\
\hline 48 & 198 & 348 & 498 & Pr. 31 & JOG speed limit value & & \\
\hline 49 & 199 & 349 & 499 & Pr. 31 & JOG speed limit value & & \\
\hline 50 & 200 & 350 & 500 & Pr. 32 & JOG operation acceleration time selection & & \\
\hline 51 & 201 & 351 & 501 & Pr. 33 & JOG operation deceleration time selection & & \\
\hline 52 & 202 & 352 & 502 & Pr. 34 & Acceleration/deceleration process selection & & \\
\hline 53 & 203 & 353 & 503 & Pr. 35 & S-curve ratio & & \\
\hline \[
\begin{aligned}
& 54 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 204 \\
& 205
\end{aligned}
\] & \[
\begin{aligned}
& 354 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& 504 \\
& 505
\end{aligned}
\] & Pr. 36 & Sudden stop deceleration time & & \\
\hline 56 & 206 & 356 & 506 & Pr. 37 & Stop group 1 sudden stop selection & & \\
\hline 57 & 207 & 357 & 507 & Pr. 38 & Stop group 2 sudden stop selection & & \\
\hline 58 & 208 & 358 & 508 & Pr. 39 & Stop group 3 sudden stop selection & & \\
\hline 59 & 209 & 359 & 509 & Pr. 40 P & Positioning complete signal output time & & \\
\hline \[
\begin{aligned}
& \hline 60 \\
& 61
\end{aligned}
\] & \[
\begin{aligned}
& 210 \\
& 211 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 360 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& \hline 510 \\
& 511 \\
& \hline
\end{aligned}
\] & Pr. 41 & Allowable circular interpolation error width & & \\
\hline 62 & 212 & 362 & 512 & Pr. 42 & External command function selection & & \\
\hline 70 & 220 & 370 & 520 & Pr. 43 & OPR method & \multirow{7}{*}{} & \multirow{16}{*}{} \\
\hline 71 & 221 & 371 & 521 & Pr. 44 & OPR direction & & \\
\hline \[
72
\] & \[
\begin{aligned}
& \hline 222 \\
& 223
\end{aligned}
\] & \[
372
\] & \[
\begin{aligned}
& \hline 522 \\
& 523
\end{aligned}
\] & Pr. 45 & OP address & & \\
\hline 74
75 & 224
225 & 374
375 & \[
524
\] & Pr. 46 & OPR speed & & \\
\hline 76 & 226 & 376 & 526 & & & & \\
\hline 77 & 227 & 377 & 527 & Pr. 47 & Creep speed & & \\
\hline 78 & 228 & 378 & 528 & Pr. 48 & OPR retry & & \\
\hline 79 & 229 & 379 & 529 & Pr. 49 & OPR dwell time & \multirow{9}{*}{} & \\
\hline \[
\begin{aligned}
& 80 \\
& 81
\end{aligned}
\] & \[
\begin{aligned}
& 230 \\
& 231
\end{aligned}
\] & \[
\begin{aligned}
& 380 \\
& 381
\end{aligned}
\] & \[
\begin{aligned}
& 530 \\
& 531
\end{aligned}
\] & Pr. 50 & Setting for the movement amount after near-point dog ON & & \\
\hline 82 & 232 & 382 & 532 & Pr. 51 & OPR acceleration time selection & & \\
\hline 83 & 233 & 383 & 533 & Pr. 52 & OPR deceleration time selection & & \\
\hline \[
\begin{aligned}
& \hline 84 \\
& 85
\end{aligned}
\] & \[
\begin{aligned}
& \hline 234 \\
& 235
\end{aligned}
\] & \[
\begin{aligned}
& 384 \\
& 385
\end{aligned}
\] & \[
\begin{aligned}
& 534 \\
& 535
\end{aligned}
\] & Pr. 53 & OP shift amount & & \\
\hline 86 & 236 & 386 & 536 & Pr. 54 & OPR torque limit value & & \\
\hline 87 & 237 & 387 & 537 & Pr. 55 & Deviation counter clear signal output time & & \\
\hline 88 & 238 & 388 & 538 & Pr. 56 & Speed designation during OP shift & & \\
\hline 89 & 239 & 389 & 539 & Pr. 57 & Dwell time during OPR retry & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Buffer memory address} & \multicolumn{2}{|r|}{\multirow{2}{*}{Item}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Memory area}} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & & \\
\hline \[
\begin{aligned}
& 800 \\
& 801
\end{aligned}
\] & 900 & \[
\begin{aligned}
& 1000 \\
& 1001
\end{aligned}
\] & \[
\begin{aligned}
& 1100 \\
& 1101
\end{aligned}
\] & Md. 20 & Current feed value & \multirow{30}{*}{} & \multirow{30}{*}{} \\
\hline 802 & 902 & 1002 & \[
1102
\] & Md. 21 & Machine feed value & & \\
\hline \[
\begin{aligned}
& \hline 804 \\
& 805
\end{aligned}
\] & 904
905 & \[
\begin{aligned}
& 1004 \\
& 1005
\end{aligned}
\] & \[
\begin{aligned}
& 1104 \\
& 1105
\end{aligned}
\] & Md. 22 & Feedrate & & \\
\hline 806 & 906 & 1006 & 1106 & Md. 23 & Axis error No. & & \\
\hline 807 & 907 & 1007 & 1107 & Md. 24 & Axis warning No. & & \\
\hline 808 & 908 & 1008 & 1108 & Md. 25 & Valid M code & & \\
\hline 809 & 909 & 1009 & 1109 & Md. 26 & Axis operation status & & \\
\hline \[
\begin{aligned}
& \hline 810 \\
& 811 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 910 \\
& 911 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1010 \\
& 1011
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1110 \\
& 1111
\end{aligned}
\] & Md. 27 & Current speed & & \\
\hline 812 & 912 & 1012 & 1112 & Md. 28 & Axis feedrate & & \\
\hline 813 & 913 & 1013 & 1113 & Ma. 28 & Axis feedrate & & \\
\hline \[
\begin{aligned}
& 814 \\
& 815
\end{aligned}
\] & \[
\begin{aligned}
& 914 \\
& 915
\end{aligned}
\] & \[
\begin{aligned}
& 1014 \\
& 1015
\end{aligned}
\] & \[
\begin{aligned}
& 1114 \\
& 1115
\end{aligned}
\] & Md. 29 & Speed-position switching control positioning amount & & \\
\hline 816 & 916 & 1016 & 1116 & Md. 30 & External input/output signal & & \\
\hline 817 & 917 & 1017 & 1117 & Md. 31 & Status & & \\
\hline \[
\begin{aligned}
& 818 \\
& 819
\end{aligned}
\] & \[
\begin{aligned}
& 918 \\
& 919
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1018 \\
& 1019
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1118 \\
& 1119
\end{aligned}
\] & Md. 32 & Target value & & \\
\hline \[
\begin{aligned}
& \hline 820 \\
& 821 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 920 \\
& 921
\end{aligned}
\] & \[
\begin{aligned}
& 1020 \\
& 1021
\end{aligned}
\] & \[
\begin{aligned}
& 1120 \\
& 1121
\end{aligned}
\] & Md. 33 & Target speed & & \\
\hline \[
\begin{aligned}
& \hline 824 \\
& 825 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 924 \\
& 925 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1024 \\
& 1025
\end{aligned}
\] & \[
\begin{aligned}
& 1124 \\
& 1125
\end{aligned}
\] & Md. 34 & Movement amount after near-point dog ON & & \\
\hline 826 & 926 & 1026 & 1126 & Md. 35 & Torque limit stored value & & \\
\hline 827 & 927 & 1027 & 1127 & \[
\text { Md. } 3
\] & Special start data instruction parameter setting value & & \\
\hline 828 & 928 & 1028 & 1128 & \[
\text { Md. } 37
\] & Special start data instruction parameter setting value & & \\
\hline 829 & 929 & 1029 & 1129 & Md. 38 & Start positioning data No. setting value. & & \\
\hline 830 & 930 & 1030 & 1130 & Md. 39 & In speed control flag & & \\
\hline 831 & 931 & 1031 & 1131 & Md. 40 & In speed change processing flag & & \\
\hline 832 & 932 & 1032 & 1132 & Md. 4 & Special start repetition counter & & \\
\hline 833 & 933 & 1033 & 1133 & Md. 42 & Control system repetition counter & & \\
\hline 834 & 934 & 1034 & 1134 & Md. 43 & Start data pointer being executed & & \\
\hline 835 & 935 & 1035 & 1135 & Md. 44 & Positioning data No. being executed & & \\
\hline 836 & 936 & 1036 & 1136 & Md. 45 & Block No. being executed & & \\
\hline 837 & 937 & 1037 & 1137 & Md.46 & Last executed positioning data No. & & \\
\hline 838 to 847 & 938 to 947 & \[
\begin{gathered}
\hline 1038 \text { to } \\
1047
\end{gathered}
\] & \[
\begin{gathered}
\hline 1138 \text { to } \\
1147 \\
\hline
\end{gathered}
\] & Md. 47 & Positioning data being executed & & \\
\hline 899 & 999 & 1099 & 1199 & Md. 48 & Deceleration start flag & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Buffer memory address} & \multirow[b]{2}{*}{Item} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Memory area}} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & \\
\hline 1500 & 1600 & 1700 & 1800 & Cd. 3 Positioning start No. & \multirow{32}{*}{} & \multirow{32}{*}{\[
\begin{aligned}
& \frac{\pi}{5} \\
& \text { त्र } \\
& \text { 휴 } \\
& 0
\end{aligned}
\]} \\
\hline 1501 & 1601 & 1701 & 1801 & Cd. 4 Positioning starting point No. & & \\
\hline 1502 & 1602 & 1702 & 1802 & Cd. 5 Axis error reset & & \\
\hline 1503 & 1603 & 1703 & 1803 & Cd. 6 Restart command & & \\
\hline 1504 & 1604 & 1704 & 1804 & Cd. 7 M code OFF request & & \\
\hline 1505 & 1605 & 1705 & 1805 & Cd. 8 External command valid & & \\
\hline \[
\begin{aligned}
& 1506 \\
& 1507
\end{aligned}
\] & \[
\begin{aligned}
& 1606 \\
& 1607
\end{aligned}
\] & \[
\begin{aligned}
& 1706 \\
& 1707
\end{aligned}
\] & \[
\begin{aligned}
& 1806 \\
& 1807
\end{aligned}
\] & Cd. 9 New current value & & \\
\hline \[
\begin{aligned}
& \hline 1508 \\
& 1509
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1608 \\
& 1609
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1708 \\
& 1709
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1808 \\
& 1809
\end{aligned}
\] & Cd. 10 New acceleration time value & & \\
\hline 1510 & 1610 & 1710 & 1810 & & & \\
\hline 1511 & 1611 & 1711 & 1811 & Cd. 11 New deceleration time value & & \\
\hline 1512 & 1612 & 1712 & 1812 & Cd. 12 Acceleration/deceleration time change during speed change, enable/disable selection & & \\
\hline 1513 & 1613 & 1713 & 1813 & Cd. 13 Positioning operation speed override & & \\
\hline \[
\begin{aligned}
& 1514 \\
& 1515
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1614 \\
& 1615
\end{aligned}
\] & \[
\begin{aligned}
& 1714 \\
& 1715
\end{aligned}
\] & \[
\begin{aligned}
& 1814 \\
& 1815 \\
& \hline
\end{aligned}
\] & Cd. 14 New speed value & & \\
\hline 1516 & 1616 & 1716 & 1816 & Cd. 15 Speed change request & & \\
\hline 1517 & 1617 & 1717 & 1817 & Cd. 16 Inching movement amount & & \\
\hline \[
\begin{aligned}
& \hline 1518 \\
& 1519
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1618 \\
& 1619
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1718 \\
& 1719
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1818 \\
& 1819
\end{aligned}
\] & Cd. 17 JOG speed & & \\
\hline 1520 & 1620 & 1720 & 1820 & Cd. 18 Continuous operation interrupt request & & \\
\hline 1521 & 1621 & 1721 & 1821 & Cd. 19 OPR request flag OFF request & & \\
\hline \[
\begin{aligned}
& 1522 \\
& 1523
\end{aligned}
\] & \[
\begin{aligned}
& 1622 \\
& 1623
\end{aligned}
\] & \[
\begin{aligned}
& 1722 \\
& 1723
\end{aligned}
\] & \[
\begin{aligned}
& 1822 \\
& 1823
\end{aligned}
\] & Cd. 20 Manual pulse generator 1 pulse input magnification & & \\
\hline 1524 & 1624 & 1724 & 1824 & Cd. 21 Manual pulse generator enable flag & & \\
\hline 1525 & 1625 & 1725 & 1825 & Cd. 22 New torque value & & \\
\hline \[
\begin{aligned}
& 1526 \\
& 1527
\end{aligned}
\] & \[
\begin{aligned}
& 1626 \\
& 1627
\end{aligned}
\] & \[
\begin{aligned}
& 1726 \\
& 1727
\end{aligned}
\] & \[
\begin{aligned}
& 1826 \\
& 1827
\end{aligned}
\] & Cd. 23 Speed-position switching control movement amount change register & & \\
\hline 1528 & 1628 & 1728 & 1828 & Cd. 24 Speed-position switching enable flag & & \\
\hline 1529 & 1629 & 1729 & 1829 & Not used & & \\
\hline \[
\begin{aligned}
& 1530 \\
& 1531
\end{aligned}
\] & \[
\begin{aligned}
& 1630 \\
& 1631
\end{aligned}
\] & \[
\begin{aligned}
& 1730 \\
& 1731
\end{aligned}
\] & \[
\begin{aligned}
& 1830 \\
& 1831
\end{aligned}
\] & Cd. 25 Position-speed switching control speed change register & & \\
\hline 1532 & 1632 & 1732 & 1832 & Cd. 26 Position-speed switching enable flag & & \\
\hline 1533 & 1633 & 1733 & 1833 & Not used & & \\
\hline \[
\begin{aligned}
& 1534 \\
& 1535
\end{aligned}
\] & \[
\begin{aligned}
& 1634 \\
& 1635
\end{aligned}
\] & \[
\begin{aligned}
& 1734 \\
& 1735
\end{aligned}
\] & \[
\begin{aligned}
& 1834 \\
& 1835
\end{aligned}
\] & Cd. 27 Target position change value (new address) & & \\
\hline \[
\begin{aligned}
& \hline 1536 \\
& 1537 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1636 \\
& 1637
\end{aligned}
\] & \[
\begin{aligned}
& 1736 \\
& 1737
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1836 \\
& 1837 \\
& \hline
\end{aligned}
\] & Cd. 28 Target position change value (new speed) & & \\
\hline 1538 & 1638 & 1738 & 1838 & Cd. 29 Target position change request flag & & \\
\hline 1539 & 1639 & 1739 & 1839 & \multirow[t]{2}{*}{\begin{tabular}{|l|l} 
Not used \\
Cd. 30 Simultaneous starting axis start data No. \\
(axis 1 start data No.)
\end{tabular}} & & \\
\hline 1540 & 1640 & 1740 & 1840 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Buffer memory address} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Item}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Memory area}} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & & \\
\hline 1541 & 1641 & 1741 & 1841 & \[
\begin{array}{|c|}
\hline \text { Cd. } 31 \\
\hline
\end{array}
\] & Simultaneous starting axis start data No. (axis 2 start data No.) & \multirow{10}{*}{} & \multirow{15}{*}{} \\
\hline 1542 & 1642 & 1742 & 1842 & \[
\begin{array}{|c|}
\hline \mathrm{Cd} .32 \\
\hline
\end{array}
\] & Simultaneous starting axis start data No. (axis 3 start data No.) & & \\
\hline 1543 & 1643 & 1743 & 1843 & \[
\text { Cd. } 33
\] & Simultaneous starting axis start data No. (axis 4 start data No.) & & \\
\hline 1544 & 1644 & 1744 & 1844 & Cd. 34 & Step mode & & \\
\hline 1545 & 1645 & 1745 & 1845 & Cd. 35 & Step valid flag & & \\
\hline 1546 & 1646 & 1746 & 1846 & Cd. 36 & Step start information & & \\
\hline 1547 & 1647 & 1747 & 1847 & Cd. 37 & Skip command & & \\
\hline 1548 & 1648 & 1748 & 1848 & Cd. 38 & Teaching data selection & & \\
\hline 1549 & 1649 & 1749 & 1849 & Cd. 39 & Teaching positioning data No. & & \\
\hline 1550 & 1650 & 1750 & 1850 & Cd. 40 & ABS direction in degrees & & \\
\hline \multicolumn{4}{|c|}{1900} & Cd. 1 Fl & Flash ROM write request & \multirow{5}{*}{} & \\
\hline \multicolumn{4}{|c|}{1901} & Cd. 2 P & Parameter initialization request & & \\
\hline \multicolumn{4}{|c|}{1905} & Cd. 41 & Deceleration start flag valid & & \\
\hline \multicolumn{4}{|c|}{1907} & \[
\text { Cd. } 42
\] & Stop command processing for deceleration stop selection & & \\
\hline \multicolumn{4}{|c|}{1934} & Cd. 43 & Output timing selection of near pass control & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Buffer memory address} & \multirow[b]{2}{*}{Item} & \multicolumn{3}{|r|}{\multirow[b]{2}{*}{Memory area}} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & & \\
\hline \multirow{5}{*}{2000} & \multirow{5}{*}{8000} & \multirow{5}{*}{14000} & \multirow{5}{*}{20000} & Da. 1 Operation pattern & \multirow{15}{*}{\[
\stackrel{\stackrel{\rightharpoonup}{z}}{ }
\]} & \multirow{24}{*}{} & \multirow{24}{*}{} \\
\hline & & & & Da. 2 Control system & & & \\
\hline & & & & Da. 3 Acceleration time No. & & & \\
\hline & & & & Da. 4 Deceleration time No. & & & \\
\hline & & & & Da. 5 Axis to be interpolated & & & \\
\hline 2001 & 8001 & 14001 & 20001 & Da. 10 M code/condition data No. & & & \\
\hline & & & & Da. 9 Dwell time (JUMP destination & & & \\
\hline 2002 & 8002 & 14002 & 20002 & positioning data No.) & & & \\
\hline 2003 & 8003 & 14003 & 20003 & Not used & & & \\
\hline 2004 & 8004 & 14004 & 20004 & Da. 8 Command speed & & & \\
\hline 2005 & 8005 & 14005 & 20005 & Da. 8 Command speed & & & \\
\hline 2006 & 8006 & 14006 & 20006 & Da. 6 Positioning address/movement & & & \\
\hline 2007 & 8007 & 14007 & 20007 & amount & & & \\
\hline 2008 & 8008 & 14008 & 20008 & & & & \\
\hline 2009 & 8009 & 14009 & 20009 & Da. 7 Arc address & & & \\
\hline \[
\begin{gathered}
2010 \\
\text { to }
\end{gathered}
\] & \[
\begin{gathered}
8010 \\
\text { to }
\end{gathered}
\] & \[
\begin{gathered}
14010 \\
\text { to }
\end{gathered}
\] & \[
\begin{gathered}
20010 \\
\text { to }
\end{gathered}
\] & \multirow[t]{2}{*}{No. 2} & & & \\
\hline 2019 & 8019 & 14019 & 20019 & & & & \\
\hline 2020 & 8020 & 14020 & 20020 & \multirow{3}{*}{No. 3} & & & \\
\hline to & to & to & to & & & & \\
\hline 2029 & 8029 & 14029 & 20029 & & & & \\
\hline to & to & to & to & to & & & \\
\hline 7990 & 13990 & 19990 & 25990 & \multirow{3}{*}{No. 600} & & & \\
\hline to & to & to & to & & & & \\
\hline 7999 & 13999 & 19999 & 25999 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Buffer memory address} & \multicolumn{2}{|r|}{\multirow{2}{*}{Item}} & \multicolumn{4}{|c|}{\multirow{2}{*}{Memory area}} \\
\hline \multicolumn{2}{|r|}{Axis 1} & \multicolumn{2}{|r|}{Axis 2} & \multicolumn{2}{|r|}{Axis 3} & \multicolumn{2}{|r|}{Axis 4} & & & & & & \\
\hline 26000 & 26050 & 27000 & 27050 & 28000 & 28050 & 29000 & 29050 & \begin{tabular}{|l|}
\hline Da. 11 \\
\hline Da. 12 \\
\hline Da. 13 \\
\hline Da.14 \\
\hline
\end{tabular} & \begin{tabular}{l}
Shape \\
Start data No. \\
Special start instruction \\
Parameter
\end{tabular} & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{\bar{O}} \\
& \stackrel{2}{2} \\
& \stackrel{\rightharpoonup}{v}
\end{aligned}
\] & \multirow{5}{*}{\[
\begin{aligned}
& \frac{\pi}{0} \\
& \frac{\pi}{0} \\
& \frac{1}{0} \\
& \frac{\pi}{0} \\
& \frac{\square}{U} \\
& \frac{0}{0}
\end{aligned}
\]} & \multirow{14}{*}{} & \multirow{18}{*}{} \\
\hline 26001 & 26051 & 27001 & 27051 & 28001 & 28051 & 29001 & 29051 & \multicolumn{3}{|c|}{2nd point} & & & \\
\hline 26002 & 26052 & 27002 & 27052 & 28002 & 28052 & 29002 & 29052 & \multicolumn{3}{|c|}{3rd point} & & & \\
\hline \multicolumn{2}{|c|}{to} & \multicolumn{2}{|l|}{to} & \multicolumn{2}{|c|}{to} & \multicolumn{2}{|r|}{to} & \multicolumn{3}{|c|}{to} & & & \\
\hline 26049 & 26099 & 27049 & 27099 & 28049 & 28099 & 29049 & 29099 & \multicolumn{3}{|c|}{50th point} & & & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{26100}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{27100}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{28100}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{29100}} & Da. 15 & Condition target & \multirow{5}{*}{ז} & \multirow{9}{*}{} & & \\
\hline & & & & & & & & Da. 16 & Condition operator & & & & \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& 26102 \\
& 26103
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 27102 \\
& 27103
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline 28102 \\
& 28103
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 29102 \\
& 29103
\end{aligned}
\]} & \multicolumn{2}{|l|}{Da. 17 Address} & & & & \\
\hline 2610 & 04 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline 27104 \\
& 27105
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 28104 \\
& 28105
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline 29104 \\
& 29105
\end{aligned}
\]} & \multicolumn{2}{|l|}{Da. 18 Parameter 1} & & & & \\
\hline 2610 & 06 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 27106 \\
& 27107
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 28106 \\
& 28107
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 29106 \\
& 29107
\end{aligned}
\]} & \multicolumn{2}{|l|}{Da. 19 Parameter 2} & & & & \\
\hline 26110 to & 26119 & \multicolumn{2}{|l|}{27110 to 27119} & \multicolumn{2}{|l|}{28110 to 28119} & \multicolumn{2}{|l|}{29110 to 29119} & \multicolumn{3}{|c|}{No. 2} & & & \\
\hline 26120 to & 26129 & \multicolumn{2}{|l|}{27120 to 27129} & \multicolumn{2}{|l|}{28120 to 28129} & \multicolumn{2}{|l|}{29120 to 29129} & \multicolumn{3}{|c|}{No. 3} & & & \\
\hline to & & \multicolumn{2}{|l|}{to} & \multicolumn{2}{|c|}{to} & \multicolumn{2}{|r|}{to} & \multicolumn{3}{|c|}{to} & & & \\
\hline 26190 to & 26199 & \multicolumn{2}{|l|}{27190 to 27199} & \multicolumn{2}{|l|}{28190 to 28199} & \multicolumn{2}{|l|}{29190 to 29199} & \multicolumn{3}{|c|}{No. 10} & & & \\
\hline 26200 to & 26299 & \multicolumn{2}{|l|}{27200 to 27299} & \multicolumn{2}{|l|}{28200 to 28299} & \multicolumn{2}{|l|}{29200 to 29299} & \multicolumn{2}{|r|}{Block start data} & & & \multirow[t]{2}{*}{} & \\
\hline 26300 to & 26399 & \multicolumn{2}{|l|}{27300 to 27399} & \multicolumn{2}{|l|}{28300 to 28399} & \multicolumn{2}{|l|}{29300 to 29399} & \multicolumn{4}{|c|}{Condition data} & & \\
\hline 26400 to & 26499 & \multicolumn{2}{|l|}{27400 to 27499} & \multicolumn{2}{|l|}{28400 to 28499} & \multicolumn{2}{|l|}{29400 to 29499} & \multicolumn{4}{|c|}{Block start data} & \multirow[t]{2}{*}{} & \\
\hline 26500 to & 26599 & 27500 to & 27599 & 28500 to & 28599 & 29500 to & 29599 & & Condition data & & & & \\
\hline \multicolumn{2}{|l|}{26600 to 26699} & \multicolumn{2}{|l|}{27600 to 27699} & \multicolumn{2}{|l|}{28600 to 28699} & \multicolumn{2}{|l|}{29600 to 29699} & \multicolumn{4}{|c|}{Block start data} & \multirow[t]{2}{*}{} & \\
\hline \multicolumn{2}{|l|}{26700 to 26799} & \multicolumn{2}{|l|}{27700 to 27799} & \multicolumn{2}{|l|}{28700 to 28799} & \multicolumn{2}{|l|}{29700 to 29799} & \multicolumn{4}{|c|}{Condition data} & & \\
\hline 26800 to & 26899 & \multicolumn{2}{|l|}{27800 to 27899} & \multicolumn{2}{|l|}{28800 to 28899} & \multicolumn{2}{|l|}{29800 to 29899} & \multicolumn{4}{|c|}{Block start data} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 26900 to & 26999 & \multicolumn{2}{|l|}{27900 to 27999} & \multicolumn{2}{|l|}{28900 to 28999} & \multicolumn{2}{|l|}{29900 to 29999} & \multicolumn{4}{|c|}{Condition data} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Buffer memory address} & \multirow{2}{*}{Item} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Memory area}} \\
\hline Axis 1 & Axis 2 & Axis 3 & Axis 4 & & & \\
\hline \multicolumn{4}{|c|}{30000} & \multirow{3}{*}{Condition judgement target data of the condition data} & & 策 \\
\hline \multicolumn{4}{|c|}{to} & & O & - \\
\hline \multicolumn{4}{|c|}{30099} & & \(\underline{E}\) & - \\
\hline
\end{tabular}

Appendix 14 External dimension drawing
[1] QD75P1N

[2] QD75P2N

[3] QD75P4N

[4] QD75D1N

[5] QD75D2N


Appendix - 152
[6] QD75D4N

[7] QD75P1/QD75P2/QD75P4

[8] QD75D1/QD75D2/QD75D4


Appendix - 155

\section*{MEMO}

Appendix - 156
[Number]
1-2 phase excitation system (Explanation of positioning terms) Appendix-115
1-axis fixed-feed control ..... 9-44
1-axis linear control (ABS linear 1) ..... 9-28
1-axis linear control (INC linear 1) ..... 9-29
1-axis speed control ..... 9-71
2-axis circular interpolation control with center point designation (ABS circular right/ABS circular left) ..... 9-65
2-axis circular interpolation control with center point designation (INC circular right/INC circular left) ..... 9-68
2-axis circular interpolation control with sub point designation (ABS circular sub) ..... 9-57
2-axis circular interpolation control with sub point designation (INC circular sub) ..... 9-60
2-axis fixed-feed control (interpolation) ..... 9-46
2-axis linear interpolation control (ABS linear 2) ..... 9-30
2-axis linear interpolation control (INC linear ..... 9-32
2-axis speed control ..... 9-74
2-phase excitation system (Explanation of positioning terms) Appendix-115
2-phase pulse (Explanation of positioning terms)
Appendix-115
2-speed trapezoidal control (Explanation of positioning terms) Appendix-115
3-axis fixed-feed control (interpolation) ..... 9-49
3-axis linear interpolation control (ABS linear 3) ..... 9-34
3-axis linear interpolation control (INC linear 3) ..... 9-37
3-axis speed control ..... 9-77
4-axis fixed-feed control (interpolation) ..... 9-54
4-axis linear interpolation control (ABS linear 4) ..... 9-40
4-axis linear interpolation control (INC linear 4) ..... 9-42
4-axis speed control ..... 9-81
[A]
A phase/B phase mode ..... 5-22
ABS direction in degrees (Cd.40) ..... 5-128
Absolute encoder (Explanation of positioning terms) Appendix-116
Absolute position detection system (Explanation of positioning terms) ..... Appendix-116
Absolute position restoration function ..... 12-62
Absolute system ..... 9-16
Absolute system (Explanation of positioning terms) Appendix-116
Acceleration time (Explanation of positioning
terms) Appendix-116
Acceleration time 0 (Pr. 9 ..... 5-25
Acceleration time 1 ( Pr .25 ) ..... 5-34
Acceleration time 2 ( Pr .26 ) ..... 5-34
Acceleration time 3 (Pr. 27 ) ..... 5-34
Acceleration time No. (Da. 3 ) ..... 5-57
Acceleration/deceleration process selection (Pr. 34 ) ..... 5-36
Acceleration/deceleration processing function ..... 12-95
Acceleration/deceleration time change during speed change, enable/disable selection ( Cd.12) ..... 5-112
Acceleration/deceleration time change function ..... 12-51
Actual acceleration/deceleration time ..... 5-25
Adding a module Appendix-72
Address (Da. 17 ) ..... 5-78
Address (Explanation of positioning terms)
Appendix-116
AFTER mode12-82
AFTER mode (Explanation of positioning terms)
Appendix-116
Allowable circular interpolation error width (Pr. 41 ..... 5-41
Applicable system ..... 2-6
Applicable wire size ..... 3-3
Arc address (Da.7) ..... 5-63
Auto tuning (Explanation of positioning terms)
Appendix-117
Automatic command speed calculationAppendix-75
Automatic sub arc calculation Appendix-76
Axis display LED ..... 4-3
Axis error No. (Md.10, Md.23) ..... 5-86, 90
Axis error occurrence (Day: hour) (Md.11)5-86
Axis error occurrence (Minute: second) (Md.12) ..... 5-86
Axis error reset (Cd.5) ..... 5-108
Axis feedrate (Md.28) ..... 5-94
Axis in which the error occurred ( Md.9) ..... 5-86
Axis in which the warning occurred (Md.14) ..... 5-88
Axis monitor ..... Appendix-79
Axis monitor data ..... 5-90
Axis operation status (Md.26) ..... 5-92
Axis stop signal ..... 3-18
Axis to be interpolated (Da.5) ..... 5-58
Axis warning detection ..... 5-96
Axis warning No. (Md.15, Md.24)..... 5-88, 92Axis warning occurrence (Day: hour) (Md.16)5-88
Axis warning occurrence (Minute: second) (Md.17) ..... 5-88
[B]
Backlash compensation (Explanation of positioning terms) ..... Appendix-117
Backlash compensation amount ( \(\operatorname{Pr} .11\) ).... 5-26 Backlash compensation function ..... 12-12
Backup function (Explanation of positioning terms)
Appendix-117
Ball screw (Explanation of positioning terms)Appendix-117
Basic parameters 1 ..... 5-18
Basic parameters 2 ..... 5-24
Bias speed at start ( Pr .7 ) ..... 5-24
Bias speed at start (Explanation of positioning terms). Appendix-117
Bipolar drive constant-current system (Explanationof positioning terms)Appendix-118
Block ..... 10-2
Block No. being executed (Md.45) ..... 5-102
Block start (Normal start) ..... 10-8
Block start data ..... 10-7
Block start data area (No. 7000 to 7004) ..... 7-3
Buffer memory ..... 7-2
Buffer memory (Explanation of positioning terms)
Appendix-118
Buffer memory area configuration ..... 7-5
BUSY (Explanation of positioning terms) ..... Appendix-118
BUSY signal ..... 3-17
[C]
Cable clamp ..... 4-12
CCW (Explanation of positioning terms)
Appendix-118
CHANGE signal (Explanation of positioning terms)
Appendix-118
Checking the installation and wiring ..... 4-15
Circular interpolation (Explanation of positioning terms) Appendix-118
Combination of functions ..... 3-14
Combination of main functions and sub functions ..... 3-14
Command in-position flag ..... 5-96
Command in-position function ..... 12-92
Command in-position width (Pr.16) ..... 5-28
Command pulse (Explanation of positioning terms) ..... Appendix-118
Command pulse frequency ..... 1-11
Command speed (Da.8) ..... 5-65
Common functions ..... 3-13, 13-2
Communicating signals between QD75 and eachmodule1-12
Composite speed ..... 5-31
Composite speed (Explanation of positioning terms) ..... Appendix-118
Condition data ..... 10-17
Condition operator ..... 10-18
Condition operator ( \(\mathrm{Da.16}\) ) ..... 5-78
Condition start ..... 10-10
Condition target (Da.15) ..... 5-78
Conditional JUMP ..... 9-116
Configuration and roles of QD75 memory ..... 7-2
Confirming the current value ..... 9-17
Connection confirmation. ..... 4-15
Connector ..... 4-3
Continuous operation interrupt program ..... 6-37
Continuous operation interrupt request
(Cd.18) ..... 5-116
Continuous path control ..... 9-8
Continuous positioning control ..... 9-7
Control data area ..... 7-3
Control functions ..... 3-4
Control system (Da.2) ..... 5-57
Control system repetition counter ( Md.42) ..... 5-102
Control unit (Explanation of positioning terms)
Appendix-118
Count method 1) machine OPR ..... 8-17
Count method 2) machine OPR ..... 8-20
CP control (Explanation of positioning terms) ..... Appendix-118
CPU module ..... 2-6
Creep speed (Pr.47) ..... 5-48
Creep speed (Explanation of positioning terms)
Appendix-119
Current feed value ..... 9-17
Current feed value (Md.20) ..... 5-90
Current feed value (Explanation of positioning terms) Appendix-119
Current feed value during speed control (Pr.21) ..... 5-32
Current loop mode (Explanation of positioning terms). Appendix-119
Current speed (Md.27) ..... 5-92
Current value (Explanation of positioning terms)
Appendix-119
Current value change test Appendix-95
CW (Explanation of positioning terms)
Appendix-119
CW/CCW mode ..... 5-21
[D]
D/A converter (Explanation of positioning terms)
Appendix-119
Data No. (Explanation of positioning terms)
Appendix-119
Data transmission process ..... 7-6
Deceleration curve ..... 12-107
Deceleration curve continuation ..... 12-108
Deceleration curve re-processing ..... 12-107
Deceleration ratio (Explanation of positioningterms)Appendix-119
Deceleration start flag (Md.48) ..... 5-102
Deceleration start flag valid (Cd.41) ..... 5-104
Deceleration stop ..... 6-44
Deceleration time (Explanation of positioning terms) ..... Appendix-119
Deceleration time 0 ( Pr .10 ) ..... 5-25
Deceleration time 1 (Pr. 28 ) ..... 5-34
Deceleration time 2 (Pr. 29 ) ..... 5-34
Deceleration time 3 (Pr. 30 ) ..... 5-34
Deceleration time No. (Da.4) ..... 5-58
Detailed parameters 1 ..... 5-26
Detailed parameters 2 ..... 5-34
Details of input signals (QD75 \(\rightarrow\) CPU module)3-17
Details of output signals (CPU module \(\rightarrow\) QD75) ..... 3-18
Deviation counter (Explanation of positioning terms) Appendix-120
Deviation counter clear ..... 3-27
Deviation counter clear signal output time ( Pr .55 ) ..... 5-53
Deviation counter droop pulse amount ..... 1-11
Differential driver common terminal ..... 4-3
Differential output type (Explanation of positioningterms)Appendix-120
Digital bus connection (Explanation of positioning terms) Appendix-120
Disposal precautions ..... 4-16
DOG signal (Explanation of positioning terms)
Appendix-120
DOS/V personal computer ..... A-17
Drive unit (Explanation of positioning terms)Appendix-120
Drive unit (Servo amplifier) ..... A-17
Drive unit READY ..... 3-27
Drive unit READY (Explanation of positioning terms) Appendix-120
Droop pulse (Explanation of positioning terms)Appendix-120Dwell time (Explanation of positioning terms)Appendix-120
Dwell time (JUMP destination positioning data No.) (Da.9) ..... 5-67
Dwell time during OPR retry ( \(\operatorname{Pr.57}\) ) ..... 5-53Dynamic brake (Explanation of positioning terms)Appendix-\(-121\)
[E]
Electrical specifications ..... 3-19
Electromagnetic brake (Explanation of positioningterms).Appendix-121
Electronic gear (Explanation of positioning terms)
Appendix-121
Electronic gear function ..... 12-14
Emergency stop ..... 6-43
Emergency stop (Explanation of positioning terms)Appendix-121
Encoder (Explanation of positioning terms)Appendix-121
Error and warning details ..... 15-6
Error compensation method ..... 12-17
Error correction (Explanation of positioning terms)
Appendix- ..... -121
Error detection signal ..... 3-17
Error history ..... 5-86
Error history pointer (Md.13) ..... 5-86
Error judgement (Md.7) ..... 5-84
Error reset (Explanation of positioning terms)
Appendix-121
Execution data backup function ..... 13-5
Execution prohibition flag ..... 3-18
External command signal ..... 3-27
External command function selection (Pr. 42 )5-42
External command function valid setting program ..... 6-12
External command valid (Cd.8) ..... 5-110
External device connector ..... 4-3
External dimension drawing Appendix-150
External input/output signal (Md.30) ..... 5-94
External I/O signal logic switching function.. ..... 13-7
External I/O signal monitor function ..... 13-8
External regenerative brake resistor (Explanation of positioning terms) Appendix-122
[F]
F (Explanation of positioning terms) ..... Appendix-122
Fast OPR ..... 8-23
Fast OPR (Explanation of positioning terms)
Appendix-122
Fatal stop ..... 6-43
Features of QD75 ..... 1-2
Feed pulse (Explanation of positioning terms)
Appendix-122
Feed screw (Explanation of positioning terms)
Appendix-122
Feedback pulse (Explanation of positioning terms)Appendix-122
Feedrate (Md.22) ..... 5-90
Fixed-feed (Explanation of positioning terms)
Appendix-122
Flash memory (Explanation of positioning terms)Appendix-122
Flash ROM ..... 7-2
Flash ROM write program ..... 6-23
Flash ROM write request (Cd.1) ..... 5-104
Flat type motor (Pancake motor) (Explanation ofpositioning terms)Appendix-122
Flow of all processes ..... 1-15
Flow of system operation ..... 1-15
FLS signal (Explanation of positioning terms) ..... Appendix-123
Forced stop ..... 6-43
Front-loading speed switching mode ..... 9-14
Function version. ..... 1-23, Appendix-2
Functions for compensating the control ..... 12-12
Functions to change the control details ..... 12-41
Functions to limit the control ..... 12-27
[G]
G code (Explanation of positioning terms)Appendix-123
Gain (Explanation of positioning terms)
Appendix-123
\(\mathrm{GD}^{2}\) (Explanation of positioning terms)Appendix-123
General configuration of program ..... 6-11
General image of system ..... 2-2
GX Configurator-QP ..... A-17, 2-4
GX Developer ..... A-17
GX Works2 ..... A-17
[H]
Handling precautions ..... 4-5
Hardware stroke limit function ..... 12-39

High-level positioning control........................ 10-2
History monitor function .................Appendix-109
[]
Immediate stop............................................. 6-44
In speed change processing flag (Md.40)
5-100
In speed control flag..................................... 5-96
In speed limit flag (Md.39) ........................ 5-100
In test mode flag (Md.1).............................. 5-80
Inching movement amount (Cd.16) ......... 5-116
Inching operation......................................... 11-16
Inching operation setting program ................ 6-19
Inching operation start time chart ............... 11-22
Inching operation timing and processing times
Incremental encoder (Explanation of positioning terms).

Appendix-123
Incremental system ....................................... 9-16
Incremental system (Explanation of positioning
terms)..............................................Appendix-123
Independent positioning control 9-6
Inertia (Explanation of positioning terms)
Initialization program ..................................... 6-24
Input signal logic selection (Pr.22) ............. 5-32
Input terminal (Explanation of positioning terms)
Appendix-124
Input/output interface internal circuit............. 3-28
Intentional stop .............................................. 6-43
Interlock (Explanation of positioning terms)
Appendix-124
Internal circuit ................................................. 3-28
Internal current consumption ...........................3-3
Interpolation axis ........................................... 9-22
Interpolation control....................................... 9-22
Interpolation operation (Explanation of positioning
terms).............................................Appendix-124
Interpolation speed designation method (Pr.20)
...................................................................... 5-31
Inverter (Explanation of positioning terms)
Appendix-124

\section*{[J]}

JOG (Explanation of positioning terms)
Appendix-124
JOG operation ..... 11-4
JOG operation acceleration time selection (Pr. 32 ) ..... 5-35
JOG operation deceleration time selection (Pr. 33 ) ..... 5-35
JOG operation start time chart ..... 11-11
JOG operation timing and processing times ..... 11-6
JOG speed (Cd.17) ..... 5-116
JOG speed limit value ( Pr .31 ) ..... 5-35
JOG start signal ..... 3-18
JUMP instruction ..... 9-116
[K]
kPPS (Explanation of positioning terms) ..... Appendix-124
[L]
Last executed positioning data No. (Md.46) ..... 5-102
LEND. ..... 9-119
Limit switch (Explanation of positioning terms)
Appendix-124
Linear interpolation (Explanation of positioning terms) Appendix-124
List of block start data ..... 5-68
List of condition data ..... 5-74
List of configuration devices ..... 2-4
List of control data ..... 5-104
List of dedicated instructions ..... 14-2
List of devices used ..... 6-5
List of errors ..... 15-10
List of functions ..... 3-6
List of input/output signal details ..... 3-26
List of input/output signals ..... 3-16
List of monitor data ..... 5-80
List of parameters ..... 5-18
List of positioning data ..... 5-54
List of warnings ..... 15-40
Load inertia ratio (Explanation of positioning terms) Appendix-124
Location trace ..... Appendix-100
LOOP ..... 9-118
Lower limit signal ..... 3-26
Low-inertia motor (Explanation of positioning terms) Appendix-125
[M]M code (Condition data No., No. of LOOP toLEND repetitions) (Da.10)5-66
M code (Explanation of positioning terms)
Appendix-125
M code comment edit Appendix-76
M code OFF request ..... 12-82
M code OFF request (Cd.7) ..... 5-108
M code ON signal ..... 3-17
M code ON signal output timing ..... 12-81
M code ON signal output timing (Pr. 18 ..... 5-29
M code output function ..... 12-81
Machine feed value ..... 9-18
Machine feed value (Md.21) ..... 5-90
Machine feed value (Explanation of positioning terms). Appendix-125
Machine OPR ..... 8-4
Main functions ..... 3-8
Major positioning controls ..... 9-2
Manual control ..... 11-2
Manual pulse generator ..... A-18, 2-4
Manual pulse generator (Explanation of positioning terms) ..... Appendix-125
Manual pulse generator 1 pulse inputmagnification (Cd.20)5-118
Manual pulse generator enable flag (Cd.21) ..... 5-118
Manual pulse generator input selection (Pr.24)5-32
Manual pulse generator operation ..... 11-26
Manual pulse generator operation program ..... 6-20
Manual pulse generator operation start time chart ..... 11-33
Manual pulse generator operation timing and processing times ..... 11-28
Master axis (Explanation of positioning terms)
Appendix-125
Max. connection distance ..... 3-3
Max. output pulse ..... 3-3
Mechanism of positioning control ..... 1-7
Module's detailed information. ..... Appendix-108
Monitor data area ..... 7-3
Movement amount after near-point dog ON (Md. 34 ..... 5-98
Movement amount per pulse ( \(\overline{\operatorname{Pr} .2}\) to Pr. 4 ) ..... 5-19
Movement amount per pulse (Explanation ofpositioning terms)Appendix-125
Movement amount per rotation ( Pr .3 ) ..... 5-19
Multi-phase pulse (Explanation of positioning terms) Appendix-125
Multiple axes simultaneous start control ..... 10-21
Multiplying rate setting (Explanation of positioning terms) Appendix-125
[N]
Names of each part ..... 4-3
NC language (Explanation of positioning terms)Near pass function12-21
Near-point dog (Explanation of positioning terms)
Appendix-126
Near-point dog method machine OPR ..... 8-7
Near-point dog signal ..... 3-27
New acceleration time value (Cd.10) ..... 5-112
New current value ..... 9-110
New current value ( \(\widehat{\text { Cd. } 9}\) ) ..... 5-110
New current value (Explanation of positioning terms) ..... Appendix-126
New deceleration time value (Cd.11) ..... 5-112
New speed value (Cd.14) ..... 5-114
New torque value (Cd.22) ..... 5-118
NEXT start ..... 10-16
No. of control axes ..... 3-2
No. of modules can be mounted ..... 2-6
No. of occupied I/O points ..... 3-3
No. of pulses per rotation ( ..... 5-19
No. of write accesses to flash ROM (Md.19)5-88
NOP instruction ..... 9-115
Normal start. ..... 10-8
[O]
Offline simulation ..... Appendix-75
OP (Explanation of positioning terms) ..... Appendix-126
OP address (Pr. 45 ) ..... 5-47
OP shift amount (Pr.53) ..... 5-52
OP shift function ..... 12-8
OP shift function (Explanation of positioning terms) Appendix-126
Operating principle ..... 1-8
Operation pattern (Da.1) ..... 5-57
Operation pattern (Explanation of positioning terms) Appendix-126
Operation patterns ..... 9-5
Operation timing and processing time during position-speed switching control ..... 9-105
Operation timing and processing time during speed-position switching control (ABS mode) ..... 9-99
Operation timing and processing time during speed-position switching control (INC mode) ..... 9-90
Operation timing and processing time of fast OPR ..... 8-24
OPR acceleration time selection (Pr. 51 ..... 5-51
OPR basic parameters ..... 5-43
OPR complete flag ..... 5-96
OPR deceleration time selection (Pr.52) ..... 5-51
OPR detailed parameters ..... 5-50
OPR direction ( \(\operatorname{Pr} .44)\) ..... 5-46
OPR dwell time (Pr.49) ..... 5-50
OPR method ..... 8-5
OPR method (Pr. 43 ) ..... 5-43
OPR method (1): Near-point dog method ..... 8-7
OPR method (2): Stopper method 1) ..... 8-9
OPR method (3): Stopper method 2) ..... 8-12
OPR method (4): Stopper method 3) ..... 8-15
OPR method (5): Count method 1) ..... 8-17
OPR method (6): Count method 2) ..... 8-20
OPR method (Explanation of positioning terms) ..... Appendix-126
OPR parameter (Explanation of positioning terms)Appendix-127
OPR request ..... 8-2
OPR request (Explanation of positioning terms)
Appendix-127
OPR request flag ..... 5-96
OPR request flag OFF request (Cd.19)5-120
OPR request OFF program ..... 6-24
OPR retry ( Pr. 48 ) ..... 5-49
OPR retry function ..... 12-4
OPR speed (Pr. 46 ..... 5-47
OPR torque limit value (Pr.54) ..... 5-53
Order of priority for stop process ..... 6-45
Outline design of positioning system ..... 1-9
Outline of installation, wiring and maintenance ..... 4-2
Outline of OPR control ..... 8-2
Outline of restarting ..... 1-22
Outline of starting ..... 1-18
Outline of stopping ..... 1-20
Output signal logic selection (Pr. 23 ) ..... 5-32
Output terminal (Explanation of positioning terms)
Appendix-127
Output timing selection of near pass control12-23
Override function ..... 12-48
Override function (Explanation of positioning terms) Appendix-127
Override program ..... 6-20
[P]P rate (Explanation of positioning terms)Appendix-127
Parameter (Da.14) ..... 5-73
Parameter (Explanation of positioning terms)
Appendix-127
Parameter 1 (Da. 18 ) ..... 5-79
Parameter 2 (Da.19) ..... 5-79
Parameter area ..... 7-3
Parameter initialization program ..... 6-22
Parameter initialization request ( Cd.2) ..... 5-104
Parameter setting ..... Appendix-73
Performance specifications ..... 3-2
Peripheral device ..... A-17
Personal computer ..... A-17
PG0 (Explanation of positioning terms)
Appendix-127
PLC CPU memo area ..... 7-3
PLC READY signal ..... 3-17
PLC READY signal [Y0] ON program ..... 6-17
Position control (Explanation of positioning terms)Appendix-127
Position detection module (Explanation of positioning terms) Appendix-128
Position loop gain (Explanation of positioning terms) Appendix-128
Position loop mode (Explanation of positioning terms) Appendix-128
Position-speed switching control ..... 9-103
Position-speed switching control enable flag (Cd.26) ..... 5-122
Position-speed switching control speed change register (Cd.25) ..... 5-120
Position-speed switching latch flag ..... 5-96
Position-speed switching signal ..... 3-8
Positioning (Explanation of positioning terms)
Appendix-128
Positioning address/movement amount (Da.6)5-58
Positioning complete ..... 9-6
Positioning complete (Explanation of positioning terms) Appendix-128
Positioning complete signal ..... 3-17
Positioning complete signal (Explanation of positioning terms) Appendix-128
Positioning complete signal output time (Pr.40)
Positioning complete signal output time (Pr.40) ..... 5-40
Positioning continued Appendix-128
Positioning control operation program ..... 6-12
Positioning data (Explanation of positioning terms)Appendix-128
Positioning data area (No. 1 to 600) ..... 7-3
Positioning data being executed (Md.47)5-102
Positioning data No. being executed (Md.44) ..... 5-102
Positioning monitor Appendix-79
Positioning operation speed override (Cd.13)5-114
Positioning parameter (Explanation of positioning terms). Appendix-129
Positioning program examples ..... 6-15
Positioning start (Explanation of positioning terms)
Appendix-129
Positioning start No. (Cd.3) ..... 5-108
Positioning start No. setting program ..... 6-17
Positioning start program ..... 6-18
Positioning start signal ..... 3-18
Positioning start test ..... Appendix-89
Positioning starting point No. (Cd. 4 ..... 5-108
Positioning test ..... Appendix-89
Pre-reading start function ..... 12-98
Precautions
- Disposal precautions ..... 4-16
- Handling precautions ..... 4-5
- Precautions for creating program ..... 6-2
- Precautions for installation ..... 4-7
- Precautions for maintenance ..... 4-16
- Precautions for using stepping motor ..... 1-23
- Precautions for wiring ..... 4-8
Process time
- Inching operation timing and processing time11-18
- JOG operation timing and processing time ..... 11-6
- Machine OPR operation timing and process time ..... 6-34
- Manual pulse generator operation timing andprocessing times11-28
- Operation timing and processing time duringposition-speed switching control9-105
- Operation timing and processing time duringspeed-position switching control (ABS mode)9-99
- Operation timing and processing time duringspeed-position switching control (INC mode)9-90
- Operation timing and processing time of fast OPR ..... 8-24
- Position control operation timing and processtime.........................................................6-35
Program details ..... 6-24
Program examples
- Absolute position restoration program ..... 6-22
- Acceleration/deceleration time change program ..... 6-20
- Block start data setting program ..... 6-16
- Continuous operation interrupt program ..... 6-21
- Error reset program ..... 6-23
- External command function valid setting program ..... 6-17
- Flash ROM write program ..... 6-23
- Inching operation setting program ..... 6-19
- JOG operation setting program ..... 6-19
- JOG operation/inching operation execution program ..... 6-19
- M code OFF program ..... 6-19
- Manual pulse generator operation program6-20
- OPR request OFF program ..... 6-17
- Override program ..... 6-20
- Parameter initialization program ..... 6-22
- Parameter setting program ..... 6-15
- PLC READY signal [Y0] ON program ..... 6-17
- Positioning start No. setting program ..... 6-17
- Positioning start program ..... 6-18
- Restart program ..... 6-22
- Skip program ..... 6-21
- Speed change program ..... 6-20
- Step operation program ..... 6-21
- Stop program ..... 6-23
- Target position change program ..... 6-21
- Teaching program ..... 6-21
PTP control (Explanation of positioning terms) ..... Appendix-129
Pulse (Explanation of positioning terms)Appendix-129
Pulse generator (Explanation of positioning terms)
Appendix- ..... -129
Pulse output mode ( Pr .5 ) ..... 5-21
Pulse output mode (Explanation of positioning terms) Appendix-129
PULSE/SIGN mode ..... 5-20
Purpose and applications of positioning control ..... 1-5
[Q]
QD75 ..... A-17
QD75 READY signal ..... 3-17
[R]READY (Explanation of positioning terms)Appendix-129
Real-time AUTO tuning (Explanation of positioning
terms) Appendix-129
Reference axis ..... 9-22
Reference axis speed ..... 5-31
Reference axis speed (Explanation of positioning terms) Appendix-129
Regeneration brake option (Explanation of positioning terms) Appendix-129
Relatively safe stop ..... 6-43
Repeated start (FOR condition) ..... 10-15
Repeated start (FOR loop) ..... 10-14
\begin{tabular}{|c|}
\hline Resolver (Explanation of positioning terms) \\
\hline Appendix-130 \\
\hline Restart command ( Cd.6)........................5-108 \\
\hline Restart operation ......................................6-39 \\
\hline Restart program ........................................6-39 \\
\hline RLS signal (Explanation of positioning terms) \\
\hline ... Appendix-130 \\
\hline Rotary table................................ Appendix-130 \\
\hline Rotation direction setting ( Pr.6) ................5-23 \\
\hline
\end{tabular}
[S]
S-curve acceleration/decelerationAppendix-130
S-curve acceleration/deceleration processingmethod12-96
S-curve ratio (Pr.35) ..... 5-37
SERIAL No. 1-23, Appendix-2
Servo amplifier (Explanation of positioning terms)
Appendix-130
Servo lock (Explanation of positioning terms)Appendix-130
Servo ON (Explanation of positioning terms)Appendix-130
Servomotor (Explanation of positioning terms)
Appendix-130
Setting auto refresh Appendix-78
Setting block starting data Appendix-77
Setting data ..... 5-2
Setting for the movement amount after near-point dog ON (Pr. 50 ) ..... 5-50
Setting items for block start data ..... 5-10
Setting items for condition data ..... 5-11
Setting items for OPR parameters ..... 5-7
Setting items for positioning data ..... 5-8
Setting items for positioning parameters. ..... 5-5
Setting the positioning data ..... 9-26
Setting unit (Explanation of positioning terms) ..... Appendix-130
SFC (Explanation of positioning terms)Appendix-131
Shape (Da.11) ..... 5-72
Signal layout of connector ..... 3-25
Signal name ..... 3-16
Signals
- Axis stop signal ..... 3-18
- BUSY signal. ..... 3-18
- Error detection signal ..... 3-17
- Execution prohibition flag signal ..... 3-18
- JOG start signal ..... 3-18
- M code ON signal ..... 3-17
- PLC READY signal ..... 3-18
- Positioning complete signal ..... 3-17
- Positioning start signal ..... 3-17
- QD75 READY signal ..... 3-17
- Start complete signal ..... 3-17
- Synchronization flag signal ..... 3-17
Simultaneous start. ..... 10-12
Simultaneous starting axis start data No. (Axis 1 start data No.) (Cd. 30 ) ..... 5-124
Simultaneous starting axis start data No. (Axis 2start data No.)(Cd. 31 )5-124
Simultaneous starting axis start data No. (Axis 3 start data No.)(Cd. 32 ) ..... 5-124
Simultaneous starting axis start data No. (Axis 4 ..... 5-124start data No.)(Cd.33)
Skip command (Cd.37) ..... 5-126
Skip function ..... 12-78
Skip function (Explanation of positioning terms) Appendix-131
Slave axis (Explanation of positioning terms)
Appendix-13
Slot ..... 2-6
Software stroke limit lower limit value (Pr. 13 ) ..... 5-27
Software stroke limit selection ( Pr. 14 ) ..... 5-28
Software stroke limit upper limit value ( \(\operatorname{Pr} .12\) )5-27
Software stroke limit valid/invalid setting ( \(\operatorname{Pr.15}\) ) ..... 5-28
Special start data instruction code setting value(Md.36)5-100
Special start data instruction parameter settingvalue (Md.37)5-100
Special start instruction (Da.13) ..... 5-72
Special start repetition counter (Md.41). ..... 5-102
Specifications of input/output interfaces ..... 3-19
Specifications of input/output signals ..... 3-16
Speed change 0 flag ..... 5-96
Speed change function ..... 12-41
Speed change request (Cd. 15 ..... 5-114
Speed change test Appendix-93
Speed control (Explanation of positioning terms)
Appendix-131
Speed designation during OP shift (Pr.56) ..... 5-53
Speed integral compensation (Explanation of positioning terms) ..... Appendix-131
Speed limit function ..... 12-27
Speed limit value ( Pr .8 ) ..... 5-25
Speed limit value (Explanation of positioning terms) Appendix-131
Speed loop gain (Explanation of positioning terms)
Appendix-131
Speed loop mode (Explanation of positioningterms)Appendix-131
Speed switching mode (Pr.19) ..... 5-31
Speed-position function selection (Pr.150) 5-32
Speed-position switching control (ABS mode)9-95
Speed-position switching control (INC mode) ..... 9-86
Speed-position switching control (Explanation of positioning terms) ..... Appendix-131
Speed-position switching control mode(Explanation of positioning terms)
Appendix-131
Speed-position switching control movement amount change register (Cd.23) ..... 5-120
Speed-position switching control positioning amount (Md.29) ..... 5-94
Speed-position switching enable flag (Cd.24) ..... 5-120
Speed-position switching latch flag ..... 5-96
Speed-position switching signal ..... 3-8
Spiral interpolation ..... 9-64
Standard speed switching mode ..... 9-13
Start (Day: hour) (Md.5) ..... 5-82
Start (Minute: second) (Md.6) ..... 5-82
Start complete (Explanation of positioning terms)
Appendix-132
Start complete signal ..... 3-17
Start data No. (Da.12) ..... 5-72
Start data pointer being executed (Md.43) ..... 5-102
Start details setting program ..... 6-25
Start history ..... 5-84
Start history pointer ( Md. 8 ) ..... 5-84
Start information (Md.3) ..... 5-82
Start No. (Md.4) ..... 5-82
Start positioning data No. setting value (Md.38) ..... 5-100
Start program ..... 6-27
Start program for high-level positioning control ..... 10-24
Starting axis (Explanation of positioning terms)
Appendix-132
Status (Md.31) ..... 5-96
Status (Explanation of positioning terms)
Appendix-132
Step function ..... 12-73
Step function (Explanation of positioning terms)
Appendix-132
Step mode ..... 12-74
Step mode (Cd.34) ..... 5-124
Step out (Explanation of positioning terms)
Appendix-132
Step start information ..... 12-74
Step start information (Cd.36) ..... 5-126
Step valid flag (Cd.35) ..... 5-124
Stepping motor (Explanation of positioning terms)
Appendix-132
Stop cause ..... 6-43
Stop command processing for deceleration stop function ..... 12-107
Stop command processing for deceleration stopselection (Cd. 42 ).5-104
Stop group 1 sudden stop selection (Pr.37) ..... 5-39
Stop group 2 sudden stop selection (Pr.38)5-39
Stop group 3 sudden stop selection ( Pr .39 ) ..... 5-39
Stop process ..... 6-43
Stop program ..... 6-43
Stop settling time (Explanation of positioning terms). Appendix-132
Stop signal ..... 3-27
STOP signal (Explanation of positioning terms)
Appendix-132
Stop with stopper (Explanation of positioningterms)Appendix-133
Stopper method 1) machine OPR ..... 8-9
Stopper method 2) machine OPR ..... 8-12
Stopper method 3) machine OPR ..... 8-15
Stroke (Explanation of positioning terms)Appendix-133
Stroke limit (Explanation of positioning terms)
Appendix-133
Sub functions ..... 12-2
Sub functions specifically for machine OPR ..... 12-4
Sudden stop ..... 6-44
Sudden stop (Explanation of positioning terms)Appendix-133
Sudden stop deceleration time ( \(\operatorname{Pr} .36\) ) ..... 5-38
Synchronization flag (X1) ..... 3-17
System control data ..... 5-104
System monitor data ..... 5-80
[T]
Tact time. ..... 12-98
Target position change function ..... 12-58
Target position change request flag (Cd.29) ..... 5-122
Target position change value (new address)5-122
Target position change value (new speed) (Cd.28) ..... 5-122
Target speed (Md.33) ..... 5-98
Target value (Md.32) ..... 5-96
Teaching (Explanation of positioning terms) ..... Appendix-133
Teaching data selection (Cd.38) ..... 5-126
Teaching function ..... 12-85
Teaching positioning data No. (Cd. 39 ) ..... 5-126
Teaching program ..... 6-21
Time chart
- Inching operation start time chart ..... 11-22
- JOG operation start time chart ..... 11-11
- Time chart for changing the speed from the CPU module ..... 12-44
- Time chart for changing the speed using an external command signal ..... 12-46
- Time chart for changing the speed using the override function ..... 12-50
- Time chart for restarting ..... 6-42
- Time chart for starting "fast OPR" ..... 6-31
- Time chart for starting "machine OPR" .. 6-30
- Time chart for starting "major positioning
control"............................................. 6-32
- Time chart for starting "position-speed
\(\quad\) switching control".................................... 6-33
- Time chart for starting "speed-position
switching control"..................................... 6-32
- Time chart for starting with external command signal.

6-36
Torque change function ............................... 12-56
Torque control (Explanation of positioning terms)
.Appendix-133
Torque limit function .................................... 12-29
Torque limit setting value (Pr.17) ............... 5-29
Torque limit stored value (Md.35) .............. 5-98
Torque loop mode (Explanation of positioning terms)

Appendix-133
Torque ripple (Explanation of positioning terms)
Appendix-133

\section*{Tracking function (Explanation of positioning terms). \\ Appendix-134}

Trapezoidal acceleration/deceleration (Explanation
of positioning terms)......................Appendix-134
Trapezoidal acceleration/deceleration processing method 12-96
Troubleshooting............................................. 15-2
Turntable (Explanation of positioning terms)
Appendix-134
Types and roles of control data .................... 5-15
Types and roles of monitor data ................... 5-12
Types of data................................................... 5-2
Types of errors .............................................. 15-6
Types of stop processes ................................ 6-44
Types of warnings ......................................... 15-7

\section*{[U]}

Unconditional JUMP.................................... 9-116
Unit magnification ( Pr. 4 ) ............................. 5-19
Unit setting (Pr.1)........................................ 5-18
Unit setting (Explanation of positioning terms)
........................................................Appendix-134
Upper limit signal...........................................3-26

\section*{[V]}

Valid M code (Md.25) ................................. 5-92
[W]
Wait start ..... 10-11
Warning (Explanation of positioning terms)
Appendix-134
Warning history ..... 5-88
Warning history pointer (Md.18) ..... 5-88
Wave trace ..... Appendix-97
Window (Explanation of positioning terms)Appendix-134
WITH mode. ..... 12-81
WITH mode (Explanation of positioning terms)
Appendix-134
Workpiece ..... A-17
Writing to the Flash ROM ..... 13-5
[X]
X0 (QD75 READY) ..... 3-17
X1 (Synchronization flag) ..... 3-17
XY table (Explanation of positioning terms)Appendix-134
[Z]
Z phase (Explanation of positioning terms)
Appendix-134
Z.ABRST1 ..... 14-3
Z.ABRST2 ..... 14-3
Z.ABRST3 ..... 14-3
Z.ABRST4 ..... 14-3
Zero signal (Explanation of positioning terms) ..... Appendix-134
ZP.PFWRT ..... 14-16
ZP.PINIT ..... 14-20
ZP.PSTRT1 ..... 14-8
ZP.PSTRT2. ..... 14-8
ZP.PSTRT3 ..... 14-8
ZP.PSTRT4. ..... 14-8
ZP.TEACH1 ..... 14-12
ZP.TEACH2 ..... 14-12
ZP.TEACH3 ..... 14-12
ZP.TEACH4 ..... 14-12

\section*{WARRANTY}

Please confirm the following product warranty details before using this product.

\section*{1. Gratis Warranty Term and Gratis Warranty Range}

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

\section*{[Gratis Warranty Term]}

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.
2. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

\section*{3. Overseas service}

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.
4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of onsite equipment, start-up test run and other tasks.

\section*{5. Changes in product specifications}

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

Microsoft, Windows, Windows Vista, Windows NT, Windows XP, Windows Server, Visio, Excel, PowerPoint, Visual
Basic, Visual C++, and Access are either registered trademarks or trademarks of Microsoft Corporation in the United States, Japan, and other countries.
Adobe Reader is a registered trademark of Adobe Systems Incorporated.
Intel, Pentium, and Celeron are either registered trademarks or trademarks of Intel Corporation in the United States and other countries.
Ethernet is a registered trademark of Xerox Corp.
All other company names and product names used in this manual are either trademarks or registered trademarks of their respective companies.

\section*{MITSUBISHI ELECTRIC CORPORATION}

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14, YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

\footnotetext{
When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission
}```


[^0]:    This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

[^1]:    *1: When setting the QD75P $\square \mathrm{N} /$ QD75D $\square \mathrm{N}$ using GX Configurator-QP, there are restrictions on the setting ranges of some items. (Refer to Appendix 1.2.)

[^2]:    ©: Always combine, $\bigcirc$ : Combination possible, $\triangle$ : Combination limited, $\times$ : Combination not possible

    * 1 The operation pattern is one of the "positioning data" setting items.
    *2 The near pass function is featured as standard and is valid only for setting continuous path control for position control.
    *3 Invalid during creep speed.
    *4 Invalid during continuous path control.
    *5 Combination with the inching operation is not available. (Inching operation does not perform acceleration/deceleration processing.)
    *6 Valid for the reference axis only.
    * 7 Valid for only the case where a deceleration start is made during position control.
    *8 Valid when using the positioning data but invalid when using the positioning start No. 9003.

[^3]:    * 1: Pin No. "1 $\square \square \square$ " indicates the pin No. for the right connector. Pin No. "2 $\square \square \square$ " indicates the pin No. for the left connector. *2: When a 1-axis module is used, pin Nos. 1B1 to 1B18 are "vacant".
    * 3 : The upper line indicates the signal name for the QD75P $\square \mathrm{N} / \mathrm{QD75P} \square$, and the lower line indicates the signal name for the QD75D $\square$ N/QD75D $\square$.

[^4]:    <Photocoupler ON/OFF status>
    When voltage is not applied: Photocoupler OFF
    When voltage is applied : Photocoupler ON

