
AN07-00180-3E

FR Family FR60 Lite

32-BIT MICROCONTROLLER

MB91F267N

bits pot red

CAN-Motor board

User’s Manual

AN07-00180-3E

 - 2 -

Revision History

Date Revision

August 01, 2008 Revision 1.0: Initial release

September 17, 2008 Revision 1.1

On p.12, type corrected. Correct: NL565050T-103J, Incorrect: L565050T-103J

October 22, 2008 Revision 1.2

On p.13, a download web page is changed.

On p.20, "1.1.1 Downloading the software" is added.

On p.25, p.30, p.36 and p.43,

Description is corrected about the extracting file.

The file path is added.

 (left blank)

AN07-00180-3E

 - 3 -

Note

- The contents of this document are subject to change without notice. Customers are advised to consult

with FUJITSU sales representatives before ordering.

- The information, such as descriptions of function and application circuit examples, in this document are

presented solely for the purpose of reference to show examples of operations and uses of Fujitsu

semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based

on such information. When you develop equipment incorporating the device based on such information,

you must assume any responsibility arising out of such use of the information. Fujitsu assumes no

liability for any damages whatsoever arising out of the use of the information.

- Any information in this document, including descriptions of function and schematic diagrams, shall not

be construed as license of the use or exercise of any intellectual property right, such as patent right or

copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any

third-party’s intellectual property right or other right by using such information. Fujitsu assumes no

liability for any infringement of the intellectual property rights or other rights of third parties which

would result from the use of information contained herein.

- The products described in this document are designed, developed and manufactured as contemplated for

general use, including without limitation, ordinary industrial use, general office use, personal use, and

household use, but are not designed, developed and manufactured as contemplated (1) for use

accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious

effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss

(i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport

control, medical life support system, missile launch control in weapon system), or (2) for use requiring

extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages

arising in connection with above-mentioned uses of the products.

- Any semiconductor devices have an inherent chance of failure. You must protect against injury, fire,

damage or loss from such failures by incorporating safety design measures into your facility and

equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal

operating conditions.

- If any products described in this document represent goods or technologies subject to certain restrictions

on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by

Japanese government will be required for export of those products from Japan.

- The company names and brand names herein are the trademarks or registered trademarks of their

respective owners.

Copyright© 2008 FUJITSU MICROELECTRONICS LIMITED all rights reserved

AN07-00180-3E

 - 4 -

Table of Contents

Revision History ... 2

Note .. 3

Introduction .. 10

Contact .. 11

Suppliers of the parts/materials .. 12

1 Setting up the starter kit .. 13

1.1 Setting up the PC ... 19

1.1.1 Downloading the software .. 20

1.1.2 Installing a USB driver .. 20

1.1.3 Installing the integrated development environment SOFTUNE (bits pot dedicated version) 25

1.1.4 Installing PC Writer (bits pot red dedicated version) ... 30

1.1.5 Configuring the evaluation board and connecting it to the PC .. 33

2 Running the program .. 35

2.1 Executing in single chip mode... 36

2.1.1 Building a project .. 36

2.1.2 Writing the program into the microcontroller... 38

2.2 Debugging by using Monitor Debugger ... 43

2.2.1 Writing Monitor Debugger into the microcontroller ... 43

2.2.2 Activating SOFTUNE and configuring the debug settings ... 48

2.2.3 Writing the program into the microcontroller... 55

2.2.4 Loading the target file .. 57

2.2.5 Running the debugger .. 58

2.2.6 Notes on Monitor Debugger.. 59

3 Operation of the sample program .. 60

3.1 bits pot red single-unit operation ... 61

3.2 CAN communication operation (CAN communication operation with the bits pot white) 63

4 Try to rotate the BLDC motor .. 65

4.1 What is the BLDC motor? ... 65

4.2 How does the BLDC motor rotate? ... 66

4.3 BLDC motor rotation control by the microcontroller ... 68

4.4 Understanding and running the program for the BLDC motor operation 75

4.5 Handling controls of the BLDC motor .. 78

5 Try to use CAN communication ... 82

5.1 What is CAN? ... 82

AN07-00180-3E

 - 5 -

5.2 CAN specifications ... 84

5.2.1 CAN frame configurations ... 84

5.2.2 Arbitration ... 88

5.2.3 Error management ... 90

5.3 CAN communication by using the microcontroller ... 92

5.4 Understanding and running the program for CAN communication 95

5.4.1 CAN communication configuration ... 95

5.4.2 Sample program sequence .. 99

6 Appendix .. 104

6.1 Sample program folder/file configuration ... 104

AN07-00180-3E

 - 6 -

List of Figures

Figure 1-1 External board view ... 14

Figure 1-2 System connection diagram .. 16

Figure 1-3 Downloading the USB driver .. 20

Figure 1-4 Installing FT232R USB UART ... 21

Figure 1-5 Selecting the search locations.. 22

Figure 1-6 Completing the USB Serial Converter installation.. 22

Figure 1-7 Installing USB Serial Port .. 23

Figure 1-8 Selecting the search locations.. 23

Figure 1-9 Completing the USB Serial Port installation .. 24

Figure 1-10 SOFTUNE setup confirmation .. 25

Figure 1-11 Starting SOFTUNE setup ... 25

Figure 1-12 Caution on SOFTUNE setup ... 26

Figure 1-13 SOFTUNE setup/License agreement .. 26

Figure 1-14 SOFTUNE setup/Version information .. 27

Figure 1-15 SOFTUNE setup/Selecting the destination of installation .. 27

Figure 1-16 SOFTUNE setup/Selecting the components... 28

Figure 1-17 SOFTUNE setup/Confirming the installation settings ... 28

Figure 1-18 SOFTUNE setup/Completion .. 29

Figure 1-19 PC Writer/Installation dialog ... 30

Figure 1-20 PC Writer/Setup type ... 31

Figure 1-21 PC Writer/Ready to install .. 31

Figure 1-22 Completing the PC Writer installation .. 32

Figure 1-23 MODE selection.. 33

Figure 1-24 Connection between the PC and the board... 34

Figure 2-1 Opening a workspace ... 36

Figure 2-2 Selecting a workspace .. 37

Figure 2-3 Building a project .. 37

Figure 2-4 Completing the build ... 38

Figure 2-5 Opening the file to write... 38

Figure 2-6 Selecting the file to write .. 39

Figure 2-7 Select the COM port to be used for the writing .. 40

Figure 2-8 Checking the COM port ... 41

Figure 2-9 Writing the program .. 42

Figure 2-10 Completing the program writing .. 42

AN07-00180-3E

 - 7 -

Figure 2-11 Opening the file to write ... 43

Figure 2-12 Selecting the file to write .. 44

Figure 2-13 Select the COM port to be used for the writing .. 45

Figure 2-14 Checking the COM port ... 46

Figure 2-15 Writing the program ... 47

Figure 2-16 Completing the program writing .. 47

Figure 2-17 Opening a workspace ... 48

Figure 2-18 Selecting a workspace .. 49

Figure 2-19 Building a project .. 49

Figure 2-20 Completing the build ... 50

Figure 2-21 Changing the debug settings ... 50

Figure 2-22 Starting the debug setting wizard ... 51

Figure 2-23 Selecting the debugger type .. 51

Figure 2-24 Selecting the device type .. 52

Figure 2-25 Specifying a batch file .. 52

Figure 2-26 Configuring the target file settings ... 53

Figure 2-27 Setting setup file selection .. 53

Figure 2-28 Completing the setup wizard ... 54

Figure 2-29 Start debugging ... 54

Figure 2-30 Showing the commands window.. 55

Figure 2-31 Inputting commands .. 56

Figure 2-32 Completing the program writing .. 56

Figure 2-33 Loading the target file .. 57

Figure 2-34 Setting break points ... 58

Figure 2-35 Running the program ... 58

Figure 2-36 Stopping the program ... 59

Figure 3-1 Single-unit operation/Controls and mechanicals .. 61

Figure 3-2 CAN communication operation/Controls and mechanicals .. 63

Figure 4-1 DC motor/BLDC motor configuration examples .. 65

Figure 4-2 Names of the respective elements .. 66

Figure 4-3 120° conduction method time chart .. 67

Figure 4-4 Motor driver circuit ... 68

Figure 4-5 Timer control registers ... 69

Figure 4-6 Output compare registers .. 71

Figure 4-7 Operation of the free-run timer ... 73

Figure 4-8 U-High output to output comparisons ... 74

AN07-00180-3E

 - 8 -

Figure 4-9 Motor operation flowchart .. 75

Figure 4-10 Operation mode settings ... 76

Figure 4-11 Main function ... 76

Figure 4-12 SW2 interrupt ... 77

Figure 4-13 Free-run timer interrupt .. 77

Figure 4-14 Motor controls flowchart... 78

Figure 4-15 Rotation speed control.. 79

Figure 4-16 Brake control .. 80

Figure 4-17 Rotation direction control ... 81

Figure 5-1 Example of on-board CAN application ... 82

Figure 5-2 CAN bus signal levels.. 83

Figure 5-3 CAN frame configurations ... 85

Figure 5-4 Operation of the arbitration ... 88

Figure 5-5 Example of arbitration among nodes.. 89

Figure 5-6 CAN status transition ... 91

Figure 5-7 CAN circuit .. 92

Figure 5-8 Entire CAN communication control register.. 93

Figure 5-9 CAN communication flowchart ... 99

Figure 5-10 Operation mode settings ... 100

Figure 5-11 Main function ... 100

Figure 5-12 CAN timer interrupt control .. 101

Figure 5-13 Motor rotation information transmit ... 102

Figure 5-14 Temperature sensor information transmit .. 102

Figure 5-15 CAN receive processing ... 103

AN07-00180-3E

 - 9 -

List of Tables

Table 1-1 Component list.. 13

Table 1-2 Description of the respective board parts .. 15

Table 1-3 MB91F267N pin assignment .. 17

Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals 62

Table 3-2 CAN communication operation/Descriptions of the controls and mechanicals 64

Table 4-1 Microcontroller pin/Motor driver circuit connections .. 69

Table 4-2 Functions employed by the motor driving macro ... 69

Table 4-3 Description of the timer control registers and setting values .. 70

Table 4-4 Description of the output compare registers and setting values 72

Table 4-5 Correspondence between the output compare values and the switchings 73

Table 5-1 Description of the error types ... 90

Table 5-2 Description of the entire CAN communication control registers and setting values......... 94

Table 5-3 CAN communication conditions of the sample program ... 95

Table 5-4 CAN message IDs in the sample program .. 96

Table 6-1 Sample program folder/file configuration ... 104

AN07-00180-3E

 - 10 -

Introduction

Thank you very much for purchasing the bits pot red (referred to as this starter kit or the starter kit

hereafter).

This starter kit is a beginner’s kit intended for those who wish to start learning microcontrollers and

on-board network processors. The kit is designed so that the beginners who ask “What is a

microcontroller?”, “How does it work?” and “How does it control a network?” can easily learn what it is.

The kit includes flash microcontroller development tools, so if you have slight understanding about the C

language, you can rewrite a program to let the microcontroller perform in various ways. Even if you do

not know of programming, you may be able to enjoy learning a microcontroller with a study-aid book

about the C language.

This starter kit can also serve as an introductory training tool for electronic circuit practice or future

embedded software development in a class of a college or high school of technology or training for

freshman engineers of a manufacturer.

AN07-00180-3E

 - 11 -

Contact

For inquiries about this starter kit, contact the following address.

Zip code: 105-8420 2-5-3 Nishi-Shinbashi, Minatoku, Tokyo

E-mail: pd-bitspot@tsuzuki-densan.co.jp

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

mailto:pd-bitspot@tsuzuki-densan.co.jp
http://www.tsuzuki-densan.co.jp/bitspot/

AN07-00180-3E

 - 12 -

Suppliers of the parts/materials

 Capacitors 22 pF : GCM1552C1H220JZ02

 0.1 μF : GCM188R11E104KA42

 1 μF : GCM21BR11E105KA42

 10 μF : GCM32ER71E106KA42

 Ceramic oscillator : CSTCR4M00G15C

 NTC Thermistors : NTCG164BH103JT1

 Ferrite Beads : MPZ2012S300AT

 Common Mode Filters : ZJYS81R5-2P24T-G01

 Inductors : NL565050T-103J

AN07-00180-3E

 - 13 -

1 Setting up the starter kit

Before using this starter kit, be sure to check the components listed in Table 1-1 are fully supplied.

Before connecting the bits pot red CAN-Motor board (referred to as the board hereafter), you need to

install software in your PC. You can download the software required for the starter kit from the following

web site.

bits pot URL： http://www.tsuzuki-densan.co.jp/bitspot/

Table 1-1 Component list

No. Article Qty. Specifications Remarks

1 bits pot red

CAN motor board

1 Microcontroller made by Fujitsu

FR Family FR60 Lite, MB91F267N

mounted

See Figure 1-1

2 USB cable

1 USB (A to miniB) Accessory

3 BLDC Motor

1 Tsukasa Electronic TG-22D-F539,

12 V

Accessory

4 AC adapter

1 12 V, 1 A Accessory

Be sure to use the adapter

included in the kit

5 Motor cable

1 8-pin cable Accessory

6 CAN cable

1 3-pin cable Accessory

7 PC 1 On which Windows XP normally

runs and USB2.0 ports are

supported

Prepare the PC by yourself.

http://www.tsuzuki-densan.co.jp/bitspot/

AN07-00180-3E

 - 14 -

Figure 1-1 External board view

(2) Target device oscillator

(1) Target device

(16) Extension pins

(3) CAN transceiver

(4) CAN connector

(5) USB to UART converter

(6) USB connector

(9) DC jack

(15) Fuse

(7) Motor driver circuit

(8) Motor connector

(14) Temperature sensor

(13) LED lamps

(12) Test SW

(11) Reset SW

(10) Mode SW

 (19) Extension GND

(18) Extension power

(5V)

(17) Jumper pin

AN07-00180-3E

 - 15 -

“Table 1-2 Description of the respective board parts” provides descriptions of the respective board parts.

Table 1-2 Description of the respective board parts

No. Name Function Description

(1) Target device MB91F267N Main microcontroller (MB91F267N).

(2) Target device oscillator CSTCR4M00G15C
Ceralock made by Murata Manufacturing

Oscillator for the main microcontroller.

(3) CAN transceiver MAX3058ASA+ Transceiver IC for CAN communication.

(4) CAN connector 3-pin connector

Connector for CAN communication.

Connect this connector to the CAN connector on the

bits pot white.

(5) USB to UART converter FT232RL IC for conversion between UART and USB.

(6) USB connector miniB
USB connector for connection with the PC to

write/debug a program.

(7) Motor driver circuit
3-phase motor driver

circuit

Driver circuit for 3-phase motor operation by the main

microcontroller.

(8) Motor connector 8 pins
Connector for connection with the 3-phase motor

included in the kit.

(9) DC jack - Power connector for the operation of the motor.

(10) Mode SW Slide switch Switch for selection of operation mode of the board.

(11) Reset SW Push switch Switch to reset the board.

(12) Test switches
Push switch x 2

Slide switch x 1

Connected to the general-purpose I/O port.

The sample program uses this switch for motor rotation.

(13) LED lamps
LED (green) x 6

LED (red) x 3
General-purpose LED lamps.

(14) Temperature sensor NTCG164BH103
NTC thermistor made by TDK

Temperature sensor connected to the A/D converter.

(15) Fuse 0217001P Fuse for the 12-V power supply.

(16) Extension pins -
Extension pins of the main microcontroller.

For details, see the circuit diagram.

(17) Jumper pins (JP1, JP2) -

Jumper pins for USB-UART conversion setting.

UART communication handshake setting.

1-2: Handshake by software.

2-3: Handshake by hardware.

The default setting is 2-3 (common to JP1/JP2).

AN07-00180-3E

 - 16 -

(18) Extension power (5V) - Extension 5-V power terminal.

(19) Extension GND - Extension GND terminal.

“Figure 1-2 System connection diagram” shows the connection of the system.

Figure 1-2 System connection diagram

Connect the PC with the board by using the USB cable included in the kit.

The power is supplied to the board from the USB bus power.

Directly connect the USB port to that on the PC. Do not make the connection via a USB hub.

AC adapter (accessory)

* Prepare the PC by yourself.

BLDC motor (accessory)

Use the AC adapter included in the

kit for the connection. (The motor
power is supplied from the AC

adapter.)

Use the USB cable included in the kit for

the connection. (The power is supplied

from the USB bus power.)

AN07-00180-3E

 - 17 -

“Table 1-3 MB91F267N pin assignment” shows the pin assignment of the main microcontroller

MB91F267N.

Table 1-3 MB91F267N pin assignment

Pin No. Description Connected to: Remarks

1 AVss GND

2 ACC GND

3 AN0/P50 Motor driver circuit

4 AN1/P51 Motor driver circuit

5 AN2/P52 Motor driver circuit

6 AN3/P53 -

7 AN4/P54 LED6 L output = On

8 AN5/P55 LED7 L output = On

9 AN6/P56 LED8 L output = On

10 AN7/P57 LED9 L output = On

11 AN8/P44 LED10 L output = On

12 AN9/P45 LED11 L output = On

13 AN10/P46 Thermistor

14 NMI 5 V

15 C GND

16 Vss GND

17 Vcc 5 V

18 INT4/PPG1/P00 LED12

19 PPG2/P01 LED13

20 INT5/PPG3/P02 LED14

21 TIN0/P03 -

22 TIN1/P04 -

23 TIN2/P05 -

24 TOT1/P06 -

25 TOT2/P07 -

26 SOT0/P10 USB-UART conversion

27 SIN0/P11 USB-UART conversion

28 SCK0/P12 -

29 SOT1/P13 -

30 SIN1/P14 -

31 SCK1/P15 -

AN07-00180-3E

 - 18 -

32 INT6/PPG5/RX0/P16 CAN TRANSCEIVER

33 PPG6/TX0/P17 CAN TRANSCEIVER

34 ADTG1/IC2/P20 Motor driver circuit Hall W-phase

35 ADTG2/IC3/P21 -

36 PWI0/P22 -

37 DTTI/P23 -

38 CKI/P24 -

39 IC0/P25 Motor driver circuit Hall U-phase

40 IC1/P26 Motor driver circuit Hall V-phase

41 P27 SW5

42 PPG0/PG1 -

43 MD2 SW4

44 MD1 GND

45 MD0 GND

46 X0 Q1 4-MHz oscillator

47 X1 Q1 4-MHz oscillator

48 Vss GND

49 PPG4/P37 -

50 INT7/PPG7/P36 -

51 INIT RESET(SW1)

52 RTO5/P35 Motor driver circuit W-phase Low

53 RTO4/P34 Motor driver circuit W-phase High

54 RTO3/P33 Motor driver circuit V-phase Low

55 RTO2/P32 Motor driver circuit V-phase High

56 RTO1/P31 Motor driver circuit U-phase Low

57 RTO0/P30 Motor driver circuit U-phase High

58 INT0/P40 SW2 SW pressed = L

59 INT1/P41 SW3 SW pressed = L

60 INT2/P42 USB-UART conversion

61 INT3/P43 USB-UART conversion

62 AVRH1 5 V

63 AVRH2 5 V

64 AVcc 5 V

AN07-00180-3E

 - 19 -

1.1 Setting up the PC

Install the software required to operate this starter kit into the PC.

To set up the PC, take the following procedures.

(1) Downloading the software

(2) Installing a USB driver

(3) Installing the integrated development environment SOFTUNE (function-limited version)

(4) Installing PC Writer FUJITSU FLASH MCU Programmer (bits pot red dedicated version)

(5) Configuring the evaluation board and connecting it to the PC

AN07-00180-3E

 - 20 -

1.1.1 Downloading the software

Download the file from the following web site, and extract the file.

bits pot URL： http://www.tsuzuki-densan.co.jp/bitspot/

1.1.2 Installing a USB driver

Install a USB driver.

From the FTDI web page shown below, download the Windows driver as directed in “Figure 1-3

Downloading the USB driver”.

http://www.ftdichip.com/Drivers/D2XX.htm

Figure 1-3 Downloading the USB driver

Click on the driver version to

download.

http://www.tsuzuki-densan.co.jp/bitspot/
http://www.ftdichip.com/Drivers/D2XX.htm

AN07-00180-3E

 - 21 -

After downloading the driver, decompress it, and then connect the board to the PC by using the USB

cable included in the kit. As shown in “Figure 1-4 Installing FT232R USB UART”, the dialog for

“FT232R USB UART” installation is displayed; select “Install from a list or specific location”, and then

click the “Next” button.

Figure 1-4 Installing FT232R USB UART

AN07-00180-3E

 - 22 -

As shown in “Figure 1-5 Selecting the search locations”, to search for the installation file, check

“Search for the best driver in these locations” and “Include this location in the search” only, select the

location at which the driver was decompressed, and then click the “Next” button; installation of the driver

starts.

Figure 1-5 Selecting the search locations

When the driver installation ends, the dialog shown in “Figure 1-6 Completing the USB Serial

Converter ” is displayed; click the “Finish” button.

Figure 1-6 Completing the USB Serial Converter installation

AN07-00180-3E

 - 23 -

After that, as shown in “Figure 1-7 Installing USB Serial Port”, installation of “USB Serial Port” is

indicated; select “Install from a list or specific location” and then click the “Next” button.

Figure 1-7 Installing USB Serial Port

As shown in “Figure 1-8 Selecting the search locations”, to search for the installation file, check “Search

for the best driver in these locations” and “Include this location in the search” only, select the location at

which the driver was decompressed, and then click the “Next” button; installation of the driver starts.

Figure 1-8 Selecting the search locations

AN07-00180-3E

 - 24 -

When the driver installation ends, the dialog shown in “Figure 1-9 Completing the USB Serial Port

installation” is displayed; Click the “Finish” button.

Figure 1-9 Completing the USB Serial Port installation

AN07-00180-3E

 - 25 -

1.1.3 Installing the integrated development environment SOFTUNE (bits pot dedicated

version)

 Note

If SOFTUNE V6 of the product version has been installed, first uninstall it, and then install the bits

pot dedicated version.

Start installing the integrated development environment SOFTUNE. Extract the following file from the

inside of the folder extracted by “1.1.1 Downloading the software”.

¥softwares¥softune¥REV600010-BV.zip

Double-click “Setup.exe” in the decompressed folder; the dialog shown in “Figure 1-10 SOFTUNE setup

confirmation” is displayed. Click the “OK” button.

Figure 1-10 SOFTUNE setup confirmation

The setup wizard shown in “Figure 1-11 Starting SOFTUNE setup” is displayed; click the “Next” button.

Figure 1-11 Starting SOFTUNE setup

AN07-00180-3E

 - 26 -

The dialog shown in “Figure 1-12 Caution on SOFTUNE setup” is displayed; click the “Next” button.

Figure 1-12 Caution on SOFTUNE setup

The dialog shown in “Figure 1-13 SOFTUNE setup/License agreement” appears; read through the

agreements and then click “Yes” button.

Figure 1-13 SOFTUNE setup/License agreement

AN07-00180-3E

 - 27 -

The version information is displayed as shown in “Figure 1-14 SOFTUNE setup/Version ”; click the

“Next” button.

Figure 1-14 SOFTUNE setup/Version information

The dialog about the destination of installation shown in “Figure 1-15 SOFTUNE setup/Selecting the

destination of installation” appears; select the default folder or desired folder and then click the “Next”

button.

Figure 1-15 SOFTUNE setup/Selecting the destination of installation

AN07-00180-3E

 - 28 -

The dialog for component selection is displayed as shown in “Figure 1-16 SOFTUNE setup/Selecting the

components”; keep the default settings and then click the “Next” button.

Figure 1-16 SOFTUNE setup/Selecting the components

As shown in “Figure 1-17 SOFTUNE setup/Confirming the installation settings”, the dialog for

confirmation of the installation settings is displayed. Click the “Next” button; installation begins.

Figure 1-17 SOFTUNE setup/Confirming the installation settings

AN07-00180-3E

 - 29 -

The dialog shown in “Figure 1-18 SOFTUNE setup/Completion” appears to tell the completion of

installation; click the “Finish” button.

Figure 1-18 SOFTUNE setup/Completion

AN07-00180-3E

 - 30 -

1.1.4 Installing PC Writer (bits pot red dedicated version)

Start installing PC Writer. Confirm the following file from the inside of the folder extracted by “1.1.1

Downloading the software”.

¥softwares¥pc writer¥MB91F267NA_setup.exe

Double-click “MB91F267NA_setup.exe”; the dialog shown in “Figure 1-19 PC Writer/Installation

dialog” appears and installation starts; click the “Next” button.

Figure 1-19 PC Writer/Installation dialog

AN07-00180-3E

 - 31 -

The dialog shown in “Figure 1-20 PC Writer/Setup type” appears; select “All”, and then click the “Next”

button.

Figure 1-20 PC Writer/Setup type

The dialog shown in “Figure 1-21 PC Writer/Ready to install” appears to tell that the setup is ready to

install PC Writer; click “Install”.

Figure 1-21 PC Writer/Ready to install

AN07-00180-3E

 - 32 -

After the installation ends, the dialog shown in “Figure 1-22 Completing the PC Writer ” appears to tell

the completion of installation; click “Finish”.

Figure 1-22 Completing the PC Writer installation

AN07-00180-3E

 - 33 -

1.1.5 Configuring the evaluation board and connecting it to the PC

After SOFTUNE installation, configure a switch on the board and then connect it to the PC.

Set the “MODE” selector on the board to “PRG”.

Figure 1-23 MODE selection

MODE selector Operation

PRG FLASH memory serial write mode

→Used to write a program into the microcontroller.

RUN Single ship mode

→Used to run the program written into it.

Make sure that the MODE selector is set to “PRG”.

Then, connect it to the PC.

Set the MODE selector to

“PRG”.

AN07-00180-3E

 - 34 -

Connect the USB cable included in the kit to a USB port on the PC and the USB port on the board. Be

sure to directly connect between them without using a USB hub.

Figure 1-24 Connection between the PC and the board

The power of the board is supplied via USB (USB bus power).

[Note]

If a driver installation dialog is displayed after connecting the board to the PC, USB drivers

may be incorrectly installed.

Install drivers according to the USB driver installation manual.

After SOFTUNE installation,

connect the USB cable.
USB port

Connect a USB port on the PC.

For information about port locations and so forth, refer to the manual of the PC.

AN07-00180-3E

 - 35 -

2 Running the program

To run a program with the starter kit, take either of the following procedures.

(1) Executing in single chip mode Go to P.36

(2) Debugging by using Monitor Debugger Go to P.43

AN07-00180-3E

 - 36 -

2.1 Executing in single chip mode

In single chip mode, take the following procedures.

(1) Building a project

(2) Writing the program into the microcontroller

2.1.1 Building a project

 Preparation

Extract the following file from the inside of the folder extracted by “1.1.1 Downloading the software”.

¥sample programs¥bitpot_red_SampleProgram.zip

Select “Start” → “All Programs” → “Softune V6” → “FR Family Softune Workbench” to activate

SOFTUNE.

As shown in “Figure 2-1 Opening a workspace”, select the menu of SOFTUNE, “File” and then “Open

Workspace” to open a workspace.

Figure 2-1 Opening a workspace

AN07-00180-3E

 - 37 -

As shown in “Figure 2-2 Selecting a workspace”, the dialog that allows you to select a workspace is

displayed. Select the folder containing the sample program, select the workspace of

“bitpot_red_SampleProgram.wsp”, and then click “Open”.

¥bitpot_red_SampleProgram¥bitpot_red_SampleProgram.wsp

Figure 2-2 Selecting a workspace

The workspace opens; from the “project” menu, click “Build” to build it.

Figure 2-3 Building a project

AN07-00180-3E

 - 38 -

The message pane at the bottom of the window shows a message that tells no error was found as shown in

“Figure 2-4 Completing the build” to inform you of successful build.

Figure 2-4 Completing the build

2.1.2 Writing the program into the microcontroller

 Preparation

Set MODE on the board to “PRG” in advance.

Select “Start” → “All Programs” → “FUJITSU FLASH MCU Programmer” → “MB91F267NA” to

activate PC Writer.

To select a file to be written as shown in “Figure 2-5 Opening the file to write”, click the “Open” button.

Figure 2-5 Opening the file to write

Click this.

AN07-00180-3E

 - 39 -

The dialog that allows you to select the file is displayed as shown in “Figure 2-6 Selecting the file to

write”; select the file built in “2.1.1 Building a project” and then click “Open”.

¥bitpot_red_SampleProgram¥Debug¥ABS¥bitpot_red_SampleProgram.mhx

Figure 2-6 Selecting the file to write

AN07-00180-3E

 - 40 -

Then, select the COM port to be used for the writing. Click the “Set Environment” button; the COM port

selection dialog appears. Select the COM port with which the board is connected, and then click the “OK”

button.

Figure 2-7 Select the COM port to be used for the writing

Click this.

AN07-00180-3E

 - 41 -

To check the COM port in use, right-click “My Computer” and then select “Properties”; the system

properties are displayed. Select the “Hardware” tab and then click the “Device Manager” button.

After Device Manager activates, check the COM port number in the parentheses of “USB Serial Port

(COM n)” under “Port (COM and LPT)” in the tree shown in “Figure 2-8 Checking the COM port”.

Figure 2-8 Checking the COM port

Check this.

AN07-00180-3E

 - 42 -

As shown in “Figure 2-9 Writing the program”, press the “Full Operation” button to start writing the

program; the dialog that asks you to press the Reset switch is displayed. Press the Reset SW on the board,

and then click the “OK” button on the dialog; the program write sequence starts. For the location of the

Reset SW, see “Figure 1-1 External board view”.

Figure 2-9 Writing the program

The dialog shown in “Figure 2-10 Completing the program writing” is displayed to notify you of the

completion of the program writing; press the “OK” button to quit PC Writer.

Figure 2-10 Completing the program writing

Set the MODE switch on the board to “RUN” and then press the Reset button; the program starts running.

AN07-00180-3E

 - 43 -

2.2 Debugging by using Monitor Debugger

To debug by using Monitor Debugger, take the following procedures.

(1) Writing Monitor Debugger into the microcontroller

(2) Activating SOFTUNE and configuring the debug settings

(3) Writing the program into the microcontroller

(4) Loading the target file

(5) Running the debugger

2.2.1 Writing Monitor Debugger into the microcontroller

 Preparation

Extract the following file from the inside of the folder extracted by “1.1.1 Downloading the software”.

¥sample programs¥bitpot_red_SampleProgram_md_set.zip

Select “Start” → “All Programs” → “FUJITSU FLASH MCU Programmer” → “MB91F267NA” to

activate PC Writer.

As shown in “Figure 2-11 Opening the file to write”, to select a file to be written, click the “Open”

button.

Figure 2-11 Opening the file to write

Click this.

AN07-00180-3E

 - 44 -

As shown in “Figure 2-12 Selecting the file to write”, the dialog that allows you to select the file to write

appears; select the file as shown below, and then click “Open”.

¥FR60¥Debug¥ABS¥FR60.mhx

Figure 2-12 Selecting the file to write

AN07-00180-3E

 - 45 -

Then, select the COM port to be used for the writing. Click the “Set Environment” button; the COM port

selection dialog appears. Select the COM port with which the board is connected, and then click the “OK”

button.

Figure 2-13 Select the COM port to be used for the writing

Click this.

AN07-00180-3E

 - 46 -

To check the COM port in use, right-click “My Computer” and then select “Properties”; the system

properties are displayed. Select the “Hardware” tab and then click the “Device Manager” button.

After Device Manager activates, check the COM port number in the parentheses of “USB Serial Port

(COM n)” under “Port (COM and LPT)” in the tree shown in “Figure 2-14 Checking the COM port”.

Figure 2-14 Checking the COM port

Check this.

AN07-00180-3E

 - 47 -

As shown in “Figure 2-15 Writing the program”, press the “Full Operation” button to start writing the

program; the dialog that asks you to press the Reset switch is displayed. Press the Reset SW on the

board, and then click the “OK” button on the dialog; the program write sequence starts. For the location

of the Reset SW, see “Figure 1-1 External board view”.

Figure 2-15 Writing the program

The dialog shown in “Figure 2-16 Completing the program writing” is displayed to notify you of the

completion of the program writing; press the “OK” button to quit PC Writer.

Figure 2-16 Completing the program writing

AN07-00180-3E

 - 48 -

2.2.2 Activating SOFTUNE and configuring the debug settings

 Preparation

Set MODE on the board to “RUN” in advance, and then press the Reset button.

Select “Start” → “All Programs” → “Softune V6” → “FR Family Softune Workbench” to activate

SOFTUNE.

As shown in “Figure 2-17 Opening a workspace”, from a menu of SOFTUNE, select “File” → “Open

Workspace” to open a workspace.

Figure 2-17 Opening a workspace

AN07-00180-3E

 - 49 -

As shown in “Figure 2-18 Selecting a workspace”, the dialog that allows you to select a workspace is

displayed. Select the folder containing the sample program, select the workspace of

“bitpot_red_SampleProgram_md.wsp”, and then click “Open”.

¥bitpot_red_SampleProgram_md¥bitpot_red_SampleProgram_md.wsp

Figure 2-18 Selecting a workspace

The workspace opens; from the “project” menu, click “Build” to build it.

Figure 2-19 Building a project

AN07-00180-3E

 - 50 -

The message pane at the bottom of the window shows a message as shown in “Figure 2-20 Completing

the build”. A warning is displayed but the build has been successfully ended. (The warning indicates no

problem.)

Figure 2-20 Completing the build

Then, configure the debug settings. As shown in “Figure 2-21 Changing the debug settings”, expand

“Debug”, select “mon_38400.sup”, and then right-click on it. A menu appears; click “Change Settings”.

Figure 2-21 Changing the debug settings

AN07-00180-3E

 - 51 -

As shown in “Figure 2-22 Starting the debug setting ”, the debug setup wizard is displayed; click the

“Next” button.

Figure 2-22 Starting the debug setting wizard

Select the debugger type as shown in “Figure 2-23 Selecting the debugger type”; select “Monitor

Debugger”, and then click the “Next” button.

Figure 2-23 Selecting the debugger type

AN07-00180-3E

 - 52 -

Select the device type as shown in “Figure 2-24 Selecting the device type”. Set “RS” to the device name,

set the COM port number to which the board is connected to the port name, set “38400” to the baud rate,

and then click the “Next” button.

Figure 2-24 Selecting the device type

Specify nothing to the batch file field as shown in “Figure 2-25 Specifying a batch file”; keep the field

left blank and click the “Next” button.

Figure 2-25 Specifying a batch file

AN07-00180-3E

 - 53 -

Just ignore the target file settings as shown in “Figure 2-26 Configuring the target file settings”; click the

“Next” button.

Figure 2-26 Configuring the target file settings

As shown in “Figure 2-27 Setting setup file selection”, select “Specify” for setup file selection, and then

click the “Next” button.

Figure 2-27 Setting setup file selection

AN07-00180-3E

 - 54 -

On the dialog shown in “Figure 2-28 Completing the setup wizard”, click the “Finish” button to finish

configuring the settings.

Figure 2-28 Completing the setup wizard

Start debugging as shown in “Figure 2-29 Start debugging”.

Figure 2-29 Start debugging

AN07-00180-3E

 - 55 -

2.2.3 Writing the program into the microcontroller

As shown in “Figure 2-30 Showing the commands window”, from the “View” menu, select “Commands”

to show the program window.

Figure 2-30 Showing the commands window

AN07-00180-3E

 - 56 -

Input the following command into the field as shown in “Figure 2-31 Inputting commands”, and then

click the “Enter” button. The program is started to be written.

bat FshLdWrt.prc

Figure 2-31 Inputting commands

As shown in “Figure 2-32 Completing the program writing”, the command window shows “Write Flash

Memory Success” to notify you of successful completion of the program writing into the microcontroller.

Figure 2-32 Completing the program writing

AN07-00180-3E

 - 57 -

2.2.4 Loading the target file

As shown in “Figure 2-33 Loading the target file”, from the “Debug” menu, select “Load Target File”.

The target file is loaded; you can set break points at desired points.

Figure 2-33 Loading the target file

AN07-00180-3E

 - 58 -

2.2.5 Running the debugger

As shown in “Figure 2-34 Setting break points”, you can set break points to lines with a green round mark

on the left side in the source file. Note that you cannot set break points while the program is running.

Figure 2-34 Setting break points

As shown in “Figure 2-35 Running the program”, click the “Run Continuously” icon to run the program.

Figure 2-35 Running the program

Click this to set a break point.

To cancel the break point, click this again.

AN07-00180-3E

 - 59 -

As shown in “Figure 2-36 Stopping the program”, click the × button for closing the application on the

upper right side of the window to stop running the program.

Although a warning dialog for the stop is displayed, click the “Abort” button in any case.

Figure 2-36 Stopping the program

2.2.6 Notes on Monitor Debugger

Note that Monitor Debugger has the following restrictions.

・ Only up to 16 break points can be set. No more break point can be set, so to set other break points,

cancel some of those already set and set new break point.

・ While Monitor Debugger is running (after Monitor Debugger is activated in 2.2.2 Activating

SOFTUNE and configuring the debug settings), it is prohibited to press the Reset SW on the board;

it causes Monitor Debugger to stop.

・ For the operation of Monitor Debugger, UART0 is used. If you modify the sample program or

apply it to some other purpose, remind this.

AN07-00180-3E

 - 60 -

3 Operation of the sample program

This section describes the operation of the sample program. The operation of the sample is classified into

the following two categories.

(1) bits pot red single-unit operation

(2) CAN communication operation (CAN communication operation with the bits pot white)

AN07-00180-3E

 - 61 -

3.1 bits pot red single-unit operation

“Figure 3-1 Single-unit operation/Controls and mechanicals” shows the controls and mechanicals, and

“Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals” provides descriptions

about them.

SW2, SW3, SW5, and temperature sensor on the board control the operations of the green and red LEDs

and BLDC motor.

Figure 3-1 Single-unit operation/Controls and mechanicals

(1) Mode SW

(2) Reset SW

(3) SW2 (4) SW3 (5) SW5

(6) Temperature

sensor

(7) LEDs (green) (8) LEDs (red)

(9) BLDC motor

AN07-00180-3E

 - 62 -

Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals

No. Name Function Description

(1) Mode SW Control

Switches between RPG mode and RUN mode.

PRG: Write a program

RUN: Run the program

(2) Reset SW Control Rests the MCU when pressed.

(3) SW2 Control

Rotates/stops the motor in turn when pressed. The

motor rotates if it is stopped and stops if it is rotating

when this switch is pressed.

(4) SW3 Control

Brakes the (stops) motor if it is rotating when pressed.

The brake is applied while the switch is pressed.

Releasing the switch turns off the brake and the motor

starts rotating.

(5) SW5 Control

Selects the direction of the motor rotation.

Right side: The motor rotates clockwise.

Left side: The motor rotates counterclockwise.

(6) Temperature sensor Control

Changes the rotation speed according to information

from the temperature sensor.

When the temperature rises, the rotation speed

increases.

When the temperature falls, the rotation speed

decreases.

(7) LEDs (green) Mechanical
Indicate the status of whether the motor driver circuit is

ON/OFF.

(8) LEDs (red) Mechanical
Indicate the status of whether the hall elements are

ON/OFF.

(9) BLDC motor Mechanical

Operates according to rotation/stop by the SW2.

The brake, rotation direction, and rotation speed

respectively depend on the SW3, SW5, and temperature

sensor.

AN07-00180-3E

 - 63 -

3.2 CAN communication operation (CAN communication operation with the

bits pot white)

“Figure 3-2 CAN communication operation/Controls and mechanicals” shows the controls and

mechanicals, and “Table 3-2 CAN communication operation/Descriptions of the controls and

mechanicals” provides descriptions about them.

The bits pot white performs CAN communication, and on execution of a motor operation command, the

green and red LEDs and BLDC motor work. On execution of a temperature measurement command, the

temperature is returned from the temperature sensor.

Figure 3-2 CAN communication operation/Controls and mechanicals

④ CAN 送信 LED

⑤ CAN 受信 LED

(6) LEDs (green) (7) LEDs (red)

(2) Reset SW

(3) Temperature

sensor

(8) BLDC motor
(1) Mode SW

AN07-00180-3E

 - 64 -

Table 3-2 CAN communication operation/Descriptions of the controls and mechanicals

No. Name Function Description

(1) Mode SW Control

Switches between RPG mode and RUN mode.

PRG: Write a program

RUN: Run the program

(2) Reset SW Control Rests the MCU when pressed.

(3) Temperature sensor Control

Returns the temperature measured by this temperature

sensor on a temperature measurement command in

CAN communication.

(4) CAN transmit LED Mechanical Lights when a CAN transmit is performed.

(5) CAN receive LED Mechanical Lights when a CAN receive is performed.

(6) LEDs (green) Mechanical
Indicate the status of whether the motor driver circuit is

ON/OFF.

(7) LEDs (red) Mechanical
Indicate the status of whether the hall elements are

ON/OFF.

(8) BLDC motor Mechanical

Operates according to rotation/stop by motor operation

commands. The brake, rotation direction, and rotation

speed respectively depend on motor operation

commands.

AN07-00180-3E

 - 65 -

4 Try to rotate the BLDC motor

In these days, motors are indispensable in our daily life. Motors are now used in various places, for

example, air conditioners, compressors of refrigerators, turn tables of CD and DVD drives, and wipers

and door mirrors of vehicles.

This chapter provides descriptions about how to rotate the BLDC motor by using a microcontroller

macro.

4.1 What is the BLDC motor?

The BLDC motor is a DC brushless motor that is a type of motors. In distinction from generally known

DC motors, the DC brushless motor has no brush, longer life, and low electric noise, so it tends to be

suitable for miniaturization. Uses of the DC brushless motor are still increasing.

Rotation of both the DC motor and BLDC motor is controlled by the currents from a DC power supply.

The DC motor switches the direction of the rotor coil current by using brushes (communitator) to change

the magnetic flux for rotation control. On the other hand, the BLDC motor has no brush. As shown in

“Figure 4-1 DC motor/BLDC motor configuration examples”, it switches the directions of the stator coil

currents by using switches to change the magnetic fluxes for rotation control. To do this switching, the

microcontroller is used. For detection of the rotor position, hall elements are used.

Figure 4-1 DC motor/BLDC motor configuration examples

This board has a driver circuit, so you can starts rotating the BLDC motor immediately.

(a) DC motor configuration example (b) BLDC motor configuration example

Microcontroller

Driver circuit

Coil

Hall element

AN07-00180-3E

 - 66 -

4.2 How does the BLDC motor rotate?

The BLDC motor has three phases different by 120°. As shown in “Figure 4-2 Names of the respective

elements”, the phases are called the U-phase, V-phase, and W-phase respectively.

The switches on the driver circuit are respectively called U-High, U-Low, V-High, V-Low, W-High, and

W-Low and connected as outputs from the microcontroller. The hall elements for detection of the rotor

position are respectively called Hall-U, Hall-V, and Hall-W and connected as inputs to the

microcontroller.

Figure 4-2 Names of the respective elements

By turning on/off the switches, the directions of the currents conducted to the motor are controlled. Two

of the three coils are set to positive or negative to generate a magnetic field for motor rotation.

The hall elements are used to detect the position of the rotor by 60° and the detection is represented with

1 or 0. According to their values, the switches are turned on/off. On detection of the hall elements, the

High side of the phase corresponding to it is turned ON, and on no detection, the Low side is turned ON.

“Figure 4-3 120° conduction method time chart” shows their relationship.

This way of driving control is called the 120° conduction method (square-weave control).

Microcontroller

V-phase

U-phase

W-phase

V-High

W-High

W-Low

V-Low

U-Low

Hall-U

Hall-V

Hall-W

AN07-00180-3E

 - 67 -

Figure 4-3 120° conduction method time chart

Hall-U

Hall-V

Hall-W

U-High

U-Low

V-High

V-Low

W-High

W-Low

U

V

W

1

0

1

0

1

0

ON

ON

ON

ON

ON

ON

+

-

+

+

-

-

0° 120° 240° 360° 480°

AN07-00180-3E

 - 68 -

4.3 BLDC motor rotation control by the microcontroller

This section describes how the BLDC motor is practically controlled with the 120° conduction method by

the microcontroller.

On the board, as shown in “Figure 4-4 Motor driver circuit”, the microcontroller is connected with the

motor driver circuit. The relationship of the connections with the semiconductor elements described in

“4.2 How does the BLDC motor rotate?” is as shown in “Table 4-1 Microcontroller pin/Motor driver

circuit connections”. By turning RTO0 to 5 on/off according to the positions of the hall elements as

shown in “Figure 4-3 120° conduction method time chart”, the motor can be rotated.

Figure 4-4 Motor driver circuit

Same as RTO0/RTO1

Same as RTO0/RTO1

Anode

Anode

Cathode

Cathode

AN07-00180-3E

 - 69 -

Table 4-1 Microcontroller pin/Motor driver circuit connections

Microcontroller

pin number

Pin name Name of the semiconductor

element connected

Pin57 RTO0 U-High

Pin56 RTO1 U-Low

Pin55 RTO2 V-High

Pin54 RTO3 V-Low

Pin53 RTO4 W-High

Pin52 RTO5 W-Low

RTO0 to 5 ON/OFF control is practically taken by the macro in the microprocessor mounted on the board.

So, it is necessary to configure registers for functions employed by the macro. “Table 4-2 Functions

employed by the motor driving macro” shows the functions employed.

Table 4-2 Functions employed by the motor driving macro

Function name Description

16-bit free-run timer Timer in which an up/down counter is used.

This counter is used to configure the output compare function.

16-bit output compare Used to make comparisons with the value of the free-run timer,

and the resulting values are used to turn on/off RTO0 to 5.

The registers used for the 16-bit free-run timer are as shown in “Figure 4-5 Timer control registers”. A

description of the registers and their setting values in the sample program are as described in “Table 4-3

Description of the timer control registers and setting values”. For more information of the registers, refer

to the microcontroller hardware manual.

Figure 4-5 Timer control registers

TCCSH0 ECKE IRQZF IRQZE MSI2 MSI1 MSI0 ICLR ICRE

TCCSL0 BFE STOP MODE SCLR CLK3 CLK2 CLK1 CLK0

Timer control high-order bits

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

Timer control low-order bits

bit7 bit6 bit5 bit4

bit3 bit2 bit1 bit0

AN07-00180-3E

 - 70 -

Table 4-3 Description of the timer control registers and setting values

Register name Setting value [function] Description

TCCSH0_ECKE 0 [internal clock] Clock select bit

TCCSH0_IRQZF 0 [bit clear] 0 detection interrupt flag bit

TCCSH0_IRQZE 0 [interrupt request disable] 0 detection interrupt request enable bit

TCCSH0_MSI2 - Interrupt mask select bits

Not used TCCSH0_MSI1 -

TCCSH0_MSI0 -

TCCSH0_ICLR 0 [bit clear] Compare clear interrupt flag bit

TCCSH0_ICRE 1 [interrupt request enable] Compare clear interrupt request enable

bit

TCCSL0_BFE 1 [compare clear buffer enable] Compare clear buffer enable bit

TCCSL0_STOP 1 [counter stop] Timer enable bit

TCCSL0_MODE 1 [up/down count mode] Timer counter mode bit

TCCSL0_SCLR 1 [counter initialization to 0000] Timer clear bit

TCCSL0_CLK3 0 [62.5 ns] Clock frequency select bits

TCCSL0_CLK2 0 [↑]

TCCSL0_CLK1 0 [↑]

TCCSL0_CLK0 0 [↑]

AN07-00180-3E

 - 71 -

The registers used for the 16-bit output compare function are as shown in “Figure 4-6 Output compare

registers”. A description of the registers and their setting values in the sample program are as described in

“Table 4-4 Description of the output compare registers and setting values”. For more information of the

registers, refer to the microcontroller hardware manual.

Figure 4-6 Output compare registers

CPCLRB0 CL15 CL14 CL13 CL12 CL11 CL10 CL9 CL8

CL7 CL6 CL5 CL4 CL3 CL2 CL1 CL0

Compare clear buffer register

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

bit7 bit6 bit5 bit4

bit3 bit2 bit1 bit0

OCCPB0 to

OCCPB 5

OP15 OP14 OP13 OP12 OP11 OP10 OP9 OP8

OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0

Output compare buffer register

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

bit7 bit6 bit5 bit4

bit3 bit2 bit1 bit0

OCMOD - - MOD15 MOD14 MOD13 MOD12 MOD11 MOD10

Compare mode control register

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

OCSH1,3,5 - BTS1 BTS0

CMOD

OTE1 OTE0 OTD1 OTD0

IOP1 IOP0 IOE1 IOE0 BUF1 BUF0 CST1 CST0

Compare control register high-order bit/s

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

bit7 bit6 bit5 bit4

bit3 bit2 bit1 bit0

Compare control register low-order bit/s

OCSL0,2,4

AN07-00180-3E

 - 72 -

Table 4-4 Description of the output compare registers and setting values

Register name Setting value [function] Description

CPCLRB0 1599 Compare value setting

OCCPB0 1598 Output compare value settings

OCCPB1 1000

OCCPB2 1598

OCCPB3 1000

OCCPB4 1598

OCCPB5 1000

OCMOD 0xFF [1 output on a match] Designation of the operation on a compare

match

OCSH1,3,5_BTS1 1 [transfer on a compare clear

match]

 Buffer transfer select bit (ch 1,3,5)

OCSH1,3,5_BTS0 1 [transfer on a compare clear

match]

 buffer transfer select bit (ch 0,2,4)

OCSH1,3,5_CMOD 1 [inversion mode] Output level inversion mode bit

OCSH1,3,5_OTE1 0 [general-purpose output port] Output enable bit (ch 1,3,5)

OCSH1,3,5_OTE0 0 [general-purpose output port] Output enable bit (ch 0,2,4)

OCSH1,3,5_OTD1 0 [1 output] Output level bit (ch 1,3,5)

OCSH1,3,5_OTD0 0 [1 output] Output level bit (ch 0,2,4)

OCSL0,2,4_IOP1 0 [bit clear] Compare match interrupt flag bit (ch 1,3,5)

OCSL0,2,4_IOP0 0 [bit clear] Compare match interrupt flag bit (ch 0,2,4)

OCSL0,2,4_IOE1 0 [compare match interrupt

disable]

Compare match interrupt enable bit (ch 1,3,5)

OCSL0,2,4_IOE0 0 [compare match interrupt

disable]

Compare match interrupt enable bit (ch 0,2,4)

OCSL0,2,4_BUF1 0 [compare buffer enable] Compare buffer disable bit (ch 1,3,5)

OCSL0,2,4_BUF0 0 [compare buffer enable] Compare buffer disable bit (ch 0,2,4)

OCSL0,2,4_CST1 0 [compare operation disable] Compare operation enable bit (ch 1,3,5)

OCSL0,2,4_CST0 1 [compare operation enable] Compare operation enable bit (ch 0,2,4)

AN07-00180-3E

 - 73 -

Initialize the 16-bit free-run timer and 16-bit output compare functions as shown in “Table 4-3

Description of the timer control registers and setting values”, “Table 4-4 Description of the output

compare registers and setting values”.

After the initialization, running the 16-bit free-run timer starts a count up using the value configured to

CPCLRB0 as the carrier peak as shown in “Figure 4-7 Operation of the free-run timer”. When the carrier

peak is reached, an interrupt takes place, and according to information about the hall elements on that

occasion, the outputs are switched on/off through comparisons with the output compare values.

After that, a countdown to the carrier bottom (0) is performed. When the count reaches 0, a count up

starts again, and this sequence is repeated.

Figure 4-7 Operation of the free-run timer

The output compare values are respectively configured by OCCPB0-5. According to the values, the

outputs of U-High, U-Low, V-High, V-Low, W-High, and W-Low are turned on/off by the macro. “ Table

4-5 Correspondence between the output compare values and the switchings” shows their association. In

addition to that, “Figure 4-8 U-High output to output comparisons” shows an example of the U-High

output.

 Table 4-5 Correspondence between the output compare values and the switchings

Register name Switching

OCCPB0 U-High

OCCPB1 U-Low

OCCPB2 V-High

OCCPB3 V-Low

OCCPB4 W-High

OCCPB5 W-Low

CPCLRB0 value

0

Carrier peak

(occurrence of an interrupt)

Carrier button

Time→

AN07-00180-3E

 - 74 -

Figure 4-8 U-High output to output comparisons

CPCLRB0 value

0

Time→

OCCPB0 value

U-High

AN07-00180-3E

 - 75 -

4.4 Understanding and running the program for the BLDC motor operation

This section provides descriptions of the sample program that can really serve to operate the BLDC

motor.

“Figure 4-9 Motor operation flowchart” shows the sequence of the sample program flow. First, the

microcontroller is initialized, and then the motor macro is initialized. After that, the program goes into a

loop. In the loop, pressing SW2 starts the free-run timer and the motor macro starts operating.

When SW2 is pressed again, the free-run timer stops.

Figure 4-9 Motor operation flowchart

Microcontrolleri nitialization

Motor macro initialization

Start

Infinite loop

Press of SW2

Start of the free-run timer

Timer running

Timer interrupt

AN07-00180-3E

 - 76 -

Now, take a look at the details of the program.

Look into the following folder of the sample program. There are some files stored in it. At first, open

MAIN.C first.

¥bitpot_red_SampleProgram¥Debug¥SRC

Look at around Line 40 that looks “Figure 4-10 Operation mode settings” for operation mode selection.

There are #define settings that enable (1) or disable (0) CAN and temperature sensor.

In this program, CAN is not to be used and the temperature sensor is to be used.

Figure 4-10 Operation mode settings

As shown in “Figure 4-11 Main function”, there is the main function around Line 131. In it, there are

“microcontroller initialization”, “motor macro initialization”, and “infinite loop”.

Figure 4-11 Main function

/* CAN communication use (1), or unused (0) */

#define CAN_PERMIT (0)

/* Temperature sensor use (1), or unused (0) */

#define TEMP_SENSOR_USE (1)

←CAN

←Temperature sensor

void main(void)
{

 (omitted);

 sysInitialize();

 (omitted)

 mtInitialize();

 (omitted)

 /* main loop */

 while (1)

 {

 (omitted)

 }

}

←Microcontroller initialization

←Motor macro initialization

←Infinite loop

AN07-00180-3E

 - 77 -

When SW2 is pressed, an interrupt takes place. Around Line 763 in MAIN.C, the interrupt function

IRQ_ext_0 is invoked as shown in “Figure 4-12 SW2 interrupt”. In it, the register value of

TCCSL0_STOP, which is used to start/top the free-run timer, is changed.

Figure 4-12 SW2 interrupt

Once the free-run timer starts running, the timer interrupt function IRQ_FreeRunComp of motor_drv.c is

invoked on every carrier peak as shown in “Figure 4-13 Free-run timer interrupt”. In it, the status of the

hall elements is checked and configured into the macro.

Figure 4-13 Free-run timer interrupt

__interrupt void IRQ_ext_0(void)

{

 (omitted)

 if(gMtStatus == MTST_STOP){

 (omitted)

 TCCSL0_STOP = 0;

 }else{

 (omitted)

 TCCSL0_STOP = 1;

 }

 (omitted)

}

←Start of the free-run timer

←Stop of the free-run timer

__interrupt void IRQ_FreeRunComp(void)

{

 if(TCCSH0_ICLR == 1) /* if OCU interrupt */

 {

 mtPWMController();

 (omitted)

 }

}

←Macro configuration

AN07-00180-3E

 - 78 -

4.5 Handling controls of the BLDC motor

You were able to rotate the BLDC motor by using the microcontroller macro. Then, try to control the

rotation speed, brake, and rotation direction now.

In the sample program, the controls are handled in the infinite loop inside the main function shown in

“Figure 4-11 Main function”.

The rotation speed is determined according to the temperature sensor or input from programmed variables,

and the brake is applied whether SW3 is pressed. The direction of motor rotation is determined according

to the position of SW5. “Figure 4-14 Motor controls flowchart” illustrates how the controls are handled.

Figure 4-14 Motor controls flowchart

Start

Infinite loop

Speed calculation with the temperature sensor

Use of the temperature sensor

Speed calculation with the programmed variables

Press of SW3

Brake released

SW set to the right

Brake applied

Left rotation Right rotation

false

false

false

true

true

true

AN07-00180-3E

 - 79 -

The rotation speed routine is written around Line 166 in the MAIN.C main function as shown in “Figure

4-15 Rotation speed control”.

When the temperature sensor is used, the rotation speed is determined in the range of 0 to 100% by a

conversion according to the A/D value obtained from the temperature sensor and the upper limit. When

the programmed variables are used, the rotation speed is determined in the range of 0 to 100% by a

conversion according to the specified current and upper limit values.

Figure 4-15 Rotation speed control

void main(void)
{

 (omitted)

 /* main loop */
 while (1)
 {
 if (!gCanEnableFlag)

 {
 /* Set motor turn speed */
 if (gTempEnableFlag)
 {
 /* get an A/D channel */
 ad = adGetValue();
 ad = ad > TEMP_AD_VALUE_00 ? TEMP_AD_VALUE_00 : ad;
 ad = ad < TEMP_AD_VALUE_09 ? TEMP_AD_VALUE_09 : ad;

 /* calc motor turn speed */
 gMtSpeedMax = TEMP_AD_VALUE_00 - TEMP_AD_VALUE_09;
 gMtRevSpeed = gMtSpeedMax - (ad - TEMP_AD_VALUE_09);

 (omitted)

 }
 else
 {
 gMtRevSpeed = 512;

 gMtSpeedMax = 1024;
 }

 (omitted)

 mtSetDuty(gMtRevSpeed,gMtSpeedMax);
 }

 (omitted)

 }

}

←Calculation of the rotation

speed according to the

temperature sensor

←Calculation of the rotation speed according to

the programmed variables

←Speed setting

AN07-00180-3E

 - 80 -

The brake control routine is written around Line 192 in the MAIN.C main function as shown in “Figure

4-16 Brake control”.

While SW3 is pressed, the outputs to all the semiconductor elements are set to off and the brake is applied

to the motor.

Figure 4-16 Brake control

void main(void)
{

 (omitted)
 /* main loop */

 while (1)
 {
 if (!gCanEnableFlag)
 {

 (omitted)

 /* Set motor break */
 if(gMtStatus == MTST_MOVE)
 {
 /* Set the Motor Start Flag */

 if (PDR4_P41)
 {
 OCSH1_OTE0 = 1;
 OCSH1_OTE1 = 1;
 OCSH3_OTE0 = 1;
 OCSH3_OTE1 = 1;
 OCSH5_OTE0 = 1;
 OCSH5_OTE1 = 1;

 TCCSL0_STOP = 0;
 }
 else
 {
 OCSH1_OTE0 = 0;
 OCSH1_OTE1 = 0;
 OCSH3_OTE0 = 0;
 OCSH3_OTE1 = 0;

 OCSH5_OTE0 = 0;
 OCSH5_OTE1 = 0;
 PDR3 = 0x00;

 TCCSL0_STOP = 1;
 }
 }

 (omitted)
 }

 (omitted)
 }

}

←Brake released

←Brake applied

AN07-00180-3E

 - 81 -

The rotation direction routine is written around Line 221 in the MAIN.C main function as shown in

“Figure 4-17 Rotation direction control”.

When SW5 is set to the right side, the motor rotates to the right, and when it is set to the left side, the

motor rotates to the left.

Figure 4-17 Rotation direction control

void main(void)
{

 (omitted)
 /* main loop */
 while (1)
 {

 if (!gCanEnableFlag)
 {

 (omitted)

 /* Motor Rev Direction */
 gMtRevDir = PDR2_P27;

 /* Set Value */
 gDirection = gMtRevDir;

 (omitted)
 }

 (omitted)
 }

}

←Acquisition of the rotation direction

←Configuration of the rotation direction

AN07-00180-3E

 - 82 -

5 Try to use CAN communication

Communication is to send/receive information. There are various types of communication such as

utterance/hearing of spoken words, writing/reading of written letters, and electrical transmission of

information.

Among them, there are various standards for communication based on electrical transmission. This

chapter describes a communication standard called CAN.

CAN is a global standard of the ISO (International Organization for Standardization).

5.1 What is CAN?

CAN stands for Controller Area Network, which is an on-board LAN specification proposed by Bosch in

Germany. It is the most popular on-board control LAN and used in various parts of a vehicle as shown in

“Figure 5-1 Example of on-board CAN application”.

It is now also used not only in vehicles but also in many industries.

Figure 5-1 Example of on-board CAN application

Legend

 CAN application

CAN bus

Light

Fuel

Air conditioner
Instrument panel

Power steering

Door

Door Door

Door

Engine

AN07-00180-3E

 - 83 -

The features of CAN can be classified into the following five points.

1. Multi-master communication

CAN employs the multi-master system in which each node is allowed to start communication as

desired. The timing of a start of communication is occurrence of an event. The word “event”

mentioned here indicates an occasion at which a node needs to start communication.

CAN avoid conflicts in communication through mediation with node signals if more than one

event occurs on nodes simultaneously. This mediation is called arbitration.

2. Bus-type topology

The CAN topology is the bus type. The maximum number of nodes depends on the

communication speed; in the case of 1M bits/sec, up to 30 nodes are allowed. This is specified as

a regulation.

3. Differential transmission system

Taking account of influence from noise on the transmission paths, CAN employs the differential

transmission system in which the voltage difference between two signal lines is used to

determine “0”/”1”. The signal lines are respectively called CANH and CANL and the voltage

difference between them is used to determine the bus level. The differential is used to determine

logical “0”/”1”. As shown in “Figure 5-2 CAN bus signal levels”, the bus status of logical “0” is

called dominant and the bus status of logical “1” is called recessive. The communicable distance

depends on the communication speed; in the case of 1M bits/sec, up to 40 m is allowed. This is

also specified by a regulation.

Figure 5-2 CAN bus signal levels

Voltage

Logical “1”
Recessive

Logical “1”
Recessive

Logical “0”
Dominant

AN07-00180-3E

 - 84 -

4. High-speed version and low-speed version

There are two CAN specifications with different communication speeds. One of them is

High-speed-CAN. High-speed-CAN is standardized as ISO11898 and its maximum and

minimum communication speeds are 1 Mbits/sec and 125 kbits/sec. The other is

Low-speed-CAN. Low-speed-CAN is standardized as ISO11519 and its maximum

communication rate is 125 kbits/sec. The communication speeds currently popular are, in order

of rates, 500 kbits/sec, 250 kbits/sec, 125 kbits/sec, 83.3 kbits/sec, 33.3 kbits/sec and so forth.

5. Node control with error counters against errors

CAN supports five types of error detection. Each node has error counters. If an error occurs,

either counter is increased by a specified count. On the contrary, when communication is

successful, the counter is decreased by a specified constant. The communication status of each

node is determined by the values of the error counters. This mechanism serves to limit

communication by node.

5.2 CAN specifications

This section provides brief descriptions of the CAN specifications.

For more information about the specifications, access the web site of the CAN promoting organization

CiA (CAN in Automation) (http://www.can-cia.org/) and make a registration; you can get the

specifications.

5.2.1 CAN frame configurations

This section describes frames that are the fundamental communication unit of CAN.

CAN provides four types of frames, which are respectively named the data frame, remote frame, error

frame, and overload frame as shown in “Figure 5-3 CAN frame configurations”.

http://www.can-cia.org/

AN07-00180-3E

 - 85 -

Figure 5-3 CAN frame configurations

Data frame

Remote frame

Error frame

Overload frame

Arbitration
field

Control
field

Data field CRC field ACK
field

Arbitration
field

Control
field

CRC field ACK
field

Error flag field

Error
delimiter

field

Overload flag
field

Overload

delimiter
field

AN07-00180-3E

 - 86 -

1. Data frame

Transfer format for data transmit. It consists of seven fields.

Field name Description

Start of frame (SOF) 1-bit field containing “0” that indicates the start of a data

frame

Arbitration field Field that determines the priority of the data. This field is

also called the ID field and there are two types of format;

standard format and extended format. The standard format is

12 bits and extended format is 32 bits.

Control field 6-bit field that indicates the length of the data field.

Data field 0-byte to 8-byte field that stores real data.

CRC field 16-bit field that serves to allow a check of the transmitted

frame validity.

ACK field 2-bit field that is used to notify of successful reception.

End of frame (EOF) 7-bit field containing “1” that indicates the end of the data

frame.

2. Remote frame

Usually, in CAN, a form of transmit of communication information to a node is generally used,

but it is also allowed to request a specific node to transmit specific data. For this purpose, the

remote frame is available.

The remote frame has almost the same configuration with the data frame; it consists of six fields

except the data field. The control field of the remote frame indicates the length of the data field

for the requested data.

3. Error frame

Transfer format immediately sent on error detection on a node. The error frame consists of two

fields.

Field name Description

Error flag 6-bit to 12-bit field that indicates the error type.

Error delimiter 8-bit field containing “1” that indicates the end of the error

frame.

AN07-00180-3E

 - 87 -

4. Overload frame

Transfer format sent to indicate that the node is in unreceivable status

Field name Description

Overload flag 6-bit to 12-bit field that indicates the type of overload.

Overload delimiter 8-bit field containing “1” that indicates the end of the error

frame.

AN07-00180-3E

 - 88 -

5.2.2 Arbitration

CAN employs the multi-master communication system, so any node can start communication. But, the

number of communication sessions actually allowed on one bus is only one. Each node is cyclically

checking whether the bus is the status of transmission. When there is no transmission on the bus,

communication is started, but if more than one node starts transmission, they conflict. Against this, CAN

performs arbitration to give priority to one with a lower ID for transmission. This section describes the

arbitration.

The arbitration is carried out by comparison between the ID and the bus level by bit as shown in “Figure

5-4 Operation of the arbitration”. Bit 10 to 7 of Node 1 and Node 2 are the same as the bus level. This

indicates that both Node 1 and Node 2 are transmitting signals. But, Bit 6 of Node 1 is set to “0” and that

of Node 2 is set to “1”. The bus level is “0”, so Node 2 recognizes that the frame is not of its own

communication and stops the transmission immediately. Node 1 keeps on transmitting. After Node 1 ends

its communication, Node 2 resumes transmission.

Figure 5-4 Operation of the arbitration

The bus status is determined according to the logical product of IDs, so “0” is prior to “1”. This means

that a lower ID takes priority.

A practical communication flow shown in “Figure 5-5 Example of arbitration among nodes” is as

described below. First, Node 1 and Node 2 starts transmission simultaneously. The arbitration results in

Node 1

Node 2

Bus level

Arbitration field Control field

Node 1 is the same as the bus level, so Node 2 stops
transmission.

AN07-00180-3E

 - 89 -

giving priority to the Node 1 transmission with a lower ID. After Node 1 ends its transmission, Node 2

resumes transmission.

After that, Node 1 and Node 3 starts transmission simultaneously. The arbitration is also performed and

results in giving priority to the Node 3 transmission. After that, Node 4 starts transmission as soon as

Node 3 ends its transmission. On this occasion, arbitration between Node 1 retransmission and Node 4

transmission is performed. This results in transmission in order of Node 4 to Node 1. That is, setting a

lower ID to those of preference allows priorities to be settled for communication.

The ID is assigned by the command, information, and type of transmit data. The ID settings can be

configured as desired.

Figure 5-5 Example of arbitration among nodes

Node 1

Node 2

Node 3

Node 4

Start of

transmission

Completion of

Node 1
transmission

Start of

transmission

Completion of

Node 3
transmission

+
Start of

transmission

Completion of

Node 4
transmission

Completion of

Node 1
transmission

Node 1 and Node 2 starts transmission

simultaneously. The arbitration results in
giving priority to the Node 1 transmission.
Node 1 ends its transmission, Node 2

resumes transmission.

Node 1 and Node 3 starts transmission simultaneously.

The arbitration results in giving priority to the Node 3
transmission. Node 4 starts transmission as soon as
Node 3 ends its transmission. On this occasion,

arbitration between Node 1 retransmission and Node 4
transmission is performed and it results in giving priority to
the Node 4 transmission. Node 1 is allowed to start

transmission last.

AN07-00180-3E

 - 90 -

5.2.3 Error management

CAN error management is defined in its protocol. Five types of error detection and three types of status

are used.

1. Error detection

As shown in “Table 5-1 Description of the error types”, errors that can be detected depends on

whether the node is transmitting or receiving.

Table 5-1 Description of the error types

Error type Transmitting

node

Receiving

node

Description

Bit error ○ - Detected if there is a difference between the

transmitted data and the bus level.

ACK error ○ - Detected if an acknowledgement to

transmission cannot be obtained.

Stuff error - ○ Detected if bit stuffing is not applied. Bit

stuffing is to set an inverted bit by 5 bits if

the number of successive bits with the same

level is 5 or more. This prevents bits with the

same level from being successive over 6 bits.

CRC error - ○ Detected if CRC (cyclic redundancy check)

fails on the received data.

Format error - ○ Detected if the received data does not

confirm to any of the frame formats.

2. Statuses

Each node has error counters whose value depends on the status. The error counters of the nodes

are named TEC (transmit error count) and REC (receive error count) intending transmission and

reception. The three statuses are as described below.

Status Description

Error active The node is normally joining in the bus.

Error passive The node has frequent errors so it is influencing the bus.

Bus off The node is disconnected from the bus. To restore to the bus, the bus needs to

satisfy the restoration condition.

AN07-00180-3E

 - 91 -

Transition between the statuses is described below along the example shown in “Figure 5-6 CAN

status transition”. The initial status of a node is error active. In this status, occurrence of errors

increases the TEC/REC counters.

If either of the TEC/REC counters comes to 127 or higher, the status of the node changes to error

passive. In this status, the node remains communicable and the values of the counters decrease

whenever a communication session is normally carried out.

When both the TEC/REC counters decrease to 127 or less, the status of the node returns to error

active.

If the TEC counter increases after the node comes to error passive and the count comes to 255 or

higher, the status of the node changes to bus off.

If the status of the node becomes bus off, the node cannot be restored to error active unless the

restoration condition that successive 11-bit recessive is received 128 times is satisfied.

Figure 5-6 CAN status transition

Error active

Error passive

Bus off

Initial status

and

or

Reception of successive

11-bit recessive 128 times

TEC: Transmit error counter
REC: Receive error counter

AN07-00180-3E

 - 92 -

5.3 CAN communication by using the microcontroller

This section describes how to perform practical CAN communication with the microcontroller.

On the board, as shown in “Figure 5-7 CAN circuit”, the microcontroller is connected with the CAN

transceiver (MAX3058). TX0 on the microcontroller is used for transmission and RX0 is used for

reception. Signals transmitted/received are transferred to CAN-High and CAN-Low as the differential

signals on the bus through the CAN transceiver.

Figure 5-7 CAN circuit

Common
mode filter

AN07-00180-3E

 - 93 -

The registers used for entire CAN communication control on the microcontroller are as shown in “Figure

5-8 Entire CAN communication control register”. The register bits whose name is “res” are reserved and

not used.

A description of the registers and their setting values in the sample program are as described in “Table 5-2

Description of the entire CAN communication control registers and setting values”. For more information

of the registers, refer to the microcontroller hardware manual.

Figure 5-8 Entire CAN communication control register

CTRLR0 res res res

res

res

res

res

res

Test CCE DAR res EIE SIE IE Init

CAN control register

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

bit7 bit6 bit5 bit4

bit3 bit2 bit1 bit0

BTR0 res TSeg2 TSeg1

SJW BRP

CAN bit timing register

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

bit7 bit6 bit5 bit4

bit3 bit2 bit1 bit0

TESTR0 res res res

res

res

res

res

res

Rx Tx1 Tx0 LBack Silent Basic res res

CAN test register

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

bit7 bit6 bit5 bit4

bit3 bit2 bit1 bit0

BRPER0 res res res

res

res

res

res

res

res res res res BRPE

CAN prescaler extension register

bit15 bit14 bit13 bit12

bit11 bit10 bit9 bit8

bit7 bit6 bit5 bit4

bit3 bit2 bit1 bit0

AN07-00180-3E

 - 94 -

Table 5-2 Description of the entire CAN communication control registers and setting values

Register name Setting value [function] Description

CTRLR0_Test 0 [normal operation] Test mode enable bit

CTRLR0_CCE 1 [write enable] Bit timing register write enable bit

CTRLR0_DAR 0 [automatic retransmit enable] Automatic retransmit prohibit bit

CTRLR0_EIE 0 [code setting disable] Error interrupt code enable bit

CTRLR0_SIE 0 [code setting disable] Status interrupt code enable bit

CTRLR0_IE 0 [interrupt disable] Interrupt enable bit

CTRLR0_Init 1 [initialization] Initialization bit

BTR0 0x2B43 [250 Kbps] CAN communication speed

TESTR0_Rx 0 [dominant] RXO pin monitor bit

TESTR0_Tx1 0 [normal operation] TXO pin control bits

TESTR0_Tx0 0 ↑

TESTR0_LBack 0 [loopback mode disable] Loopback mode

TESTR0_Silent 0 [silent mode disable] Silent mode

TESTR0_Basic 0 [basic mode disable] Basic mode

BRPER0_BRPE 0 [value added to BTR0] Baud rate prescaler extension bit

The registers used for CAN communication message handling on the microcontroller are APIs of the

CAN driver in the sample software, so descriptions of the following registers are omitted. For more

information of the registers, refer to the microcontroller hardware manual.

■Message interface registers

- IFx command request register (IFxCREQ)

- IFx command mask register (IFxCMSK)

- IFx mask register 1, 2 (IFxMSK1, IFxMSK2)

- IFx arbitration register 1, 2 (IFxARB1, IFxARB2)

- IFx message control register (IFxMCTR)

- IFx data register A1, A2, B1, B2 (IFxDTA1, IFxDTA2, IFxDTB1, IFxDTB2)

■Message handler registers

- CAN transmit request register 1, 2 (TREQR1, TREQR2)

- CAN data update register 1, 2 (NEWDT1, NEWDT2)

- CAN interrupt pending register 1, 2 (INTPND1, INTPND2)

- CAN message enable register 1, 2 (MSGVAL1, MSGVAL2)

AN07-00180-3E

 - 95 -

5.4 Understanding and running the program for CAN communication

This section provides descriptions of the sample program that can serve for practical CAN

communication.

5.4.1 CAN communication configuration

“Table 5-3 CAN communication conditions of the sample program” shows the CAN communication

conditions of the sample program.

Table 5-3 CAN communication conditions of the sample program

Condition Setting

value

Communication speed 250 Kbps

CAN clock frequency 16 MHz

Bit time (NBT) 16

Sample point 81.3%

Sync. Jump width (SJW) 2

Sample count (SAM) 1

Data length 8 bytes

AN07-00180-3E

 - 96 -

“Table 5-4 CAN message IDs in the sample program” provides a description of the message IDs used for

CAN communication.

Table 5-4 CAN message IDs in the sample program

ID Description Communication

direction

0x101 Motor operation start/stop command receive

0x102 Motor operation rotation speed/Rotation

direction/Brake command

receive

0x103 Temperature sensor measurement command receive

0x201 Motor rotation information transmit

0x202 Temperature sensor information transmit

Details of the IDs are as shown below.

1. ID: 0x101

Field name Setting value Remarks

Motor operation

command

0: Stop 1: Start -

Motor rotation

direction

0: Clockwise 1:

Counterclockwise

-

Motor rotation speed 0 to 65535 The motor rotation speed and A/D maximum

value are used for conversion of the speed to a

percentage of 0% to 100%.

A/D maximum value 0 to 65535

2. ID: 0x102

Motor operation

command
byte 0

Motor rotation direction

Motor rotation speed

A/D maximum value

byte 1

byte 2

byte 3

byte 4

Reserved

Reserved

byte 5

byte 6

byte 7

Motor rotation direction byte 0

Brake application

Motor rotation speed

A/D maximum value

byte 1

byte 2

byte 3

byte 4

Reserved

Reserved

byte 5

byte 6

byte 7

AN07-00180-3E

 - 97 -

Field name Setting value Remarks

Motor rotation

direction

0: Clockwise 1:

Counterclockwise

-

Brake application 0: Brake released 1: Brake

applied

-

Motor rotation speed 0 to 65535 The motor rotation speed and A/D maximum

value are used for conversion of the speed to a

percentage of 0% to 100%.

A/D maximum value 0 to 65535

3. ID: 0x103

Field name Setting value Remarks

Temperature

measurement

command

0: Start 1: Stop

-

4. ID: 0x201

Field name Setting value Remarks

Motor rotation

direction information

0: Clockwise 1:

Counterclockwise

-

Brake application

information

0: Brake released 1: Brake

applied

-

Motor rotation speed

information

0 to 65535 The motor rotation speed and A/D

maximum value are used for conversion of

the speed to a percentage of 0% to 100%. A/D maximum value

information

0 to 65535

5. ID: 0x202

Temperature measurement command byte 0

byte 1

byte 2

byte 3

byte 4

Reserved

Reserved

byte 5

byte 6

byte 7

Reserved

Reserved

Reserved

Reserved

Reserved

Motor rotation direction information byte 0
Brake application information

Motor rotation speed information

A/D maximum value information

byte 1

byte 2

byte 3

byte 4

Reserved

Reserved

byte 5

byte 6

byte 7

AN07-00180-3E

 - 98 -

Field name Setting value Remarks

Temperature

information

0 to 50 -

Temperature information byte 0

byte 1

byte 2

byte 3

byte 4

Reserved

Reserved

byte 5

byte 6

byte 7

Reserved

Reserved

Reserved

Reserved

Reserved

AN07-00180-3E

 - 99 -

5.4.2 Sample program sequence

“Figure 5-9 CAN communication flowchart” shows the CAN communication sequence of the sample

program flow. First, the microcontroller is initialized. On the microcontroller initialization, the CAN

operation timer starts operating.

After that, the CAN driver is initialized. Then, the motor driving macro is initialized and then the program

goes into a loop.

Subsequently, motor rotation information transmit, temperature sensor information transmit, receive

processing are handled in the timer routine.

Figure 5-9 CAN communication flowchart

Microcontroller initialization

Motor macro initialization

Start

Infinite loop

CAN operation timer running

Timer is running

Receive processing

CAN driver initialization

Motor rotation info transmit

Receive processing

AN07-00180-3E

 - 100 -

Now, take a look at the details of the program.

Look into the following folder of the sample program. There are some files stored in it. At first, open

MAIN.C.

¥bitpot_red_SampleProgram¥Debug¥SRC

Look at around Line 40 that looks “Figure 5-10 Operation mode settings” for operation mode selection.

There are #define settings that enable (1) or disable (0) CAN and temperature sensor.

In this program, both CAN and temperature sensor are to be used.

Figure 5-10 Operation mode settings

As shown in “Figure 5-11 Main function”, there is the main function around Line 131. In it, there are

“microcontroller initialization”, “CAN driver initialization”, “motor macro initialization”, and “infinite

loop”.

Figure 5-11 Main function

/* CAN communication use (1), or unused (0) */

#define CAN_PERMIT (1)

/* Temperature sensor use (1), or unused (0) */

#define TEMP_SENSOR_USE (1)

←CAN

←Temperature sensor

void main(void)

{

 (omitted);

 sysInitialize();

 if (gCanEnableFlag)

 { /* CAN Use */

 canInitialize();

 adInitialize();

 }

 (omitted)

 mtInitialize();

 (omitted)

 /* main loop */

 while (1)

 {

 (omitted)

 }

}

←Microcontroller initialization

←CAN driver initialization

←Infinite loop

←Motor macro initialization

AN07-00180-3E

 - 101 -

As shown in “Figure 5-12 CAN timer interrupt control”, around Line 817 in MAIN.C, there is the timer

interrupt function IRQ_reload1. In it, motor rotation information transmit, temperature sensor information

transmit, and receive processing are handled.

Figure 5-12 CAN timer interrupt control

__interrupt void IRQ_reload1(void)
{

 (omitted)

 for (i = 0; i < 3; i++)

 {

 (omitted)

 /* Cycle check */

 if (counter[i] >= val)

 {

 switch (i)
 {

 case 0:

 canSendTask01();

 break;

 case 1:

 canSendTask02();

 break;

 case 2:

 canRecvTask();

 break;

 default:
 break;

 }

 }

 }

 (omitted)

}

←Motor rotation information transmit

←Temperature sensor information transmit

←Receive processing

AN07-00180-3E

 - 102 -

Details of motor rotation information transmit, temperature sensor information transmit, and receive

processing are as described below.

First, concerning motor rotation information transmit, as shown in “Figure 5-13 Motor rotation

information transmit”, there is the canSendTask01 function around Line 577 in MAIN.C. Only when the

motor is rotating, a message sent with CAN is created and the transmit function canSendData, which is a

CAN driver API, is invoked.

Figure 5-13 Motor rotation information transmit

Concerning temperature sensor information transmit, as shown in “Figure 5-14 Temperature sensor

information transmit”, there is the canSendTask02 function around Line 601 in MAIN.C. Only when a

request for temperature sensor information is made, a message sent with CAN is created and the transmit

function canSendData, which is a CAN driver API, is invoked.

Figure 5-14 Temperature sensor information transmit

void canSendTask01(void)
{

 if (gMotorStartFlag == MOTOR_START)
 {
 /* Calc Send Data */
 calcCanSendData(CAN_MT_STATUS_ID, gCanSendBuf01);
 /* Send Data */
 canSendData(CAN_MT_STATUS_MSG_NO, 8, gCanSendBuf01);
 }

}

←Creation of a transmit

message

←CAN transmit API

void canSendTask02(void)
{
 if (gTempMeasureFlag == TEMP_MEASURE_ON) /* Measure Enable */
 {
 /* Calc Send Data */

 calcCanSendData(CAN_TEMP_INFO_ID, gCanSendBuf02);
 /* Send Data */
 canSendData(CAN_TEMP_INFO_MSG_NO, 8, gCanSendBuf02);
 }

}

←Creation of a transmit

message

←CAN transmit API

AN07-00180-3E

 - 103 -

Concerning receive processing, as shown in “Figure 5-15 CAN receive processing”, there is the

canRecvTask function around Line 625 in MAIN.C. First, the receive function canRecvData, which is a

CAN driver API, is invoked by received ID, and then only those with receiveData are processed.

Figure 5-15 CAN receive processing

void canRecvTask(void)
{

 (omitted)

 /* CAN Receive Data */
 ret = canRecvData(1, &canID, &dlc, recvData);

 (omitted)

 /* CAN Receive Data */
 ret = canRecvData(2, &canID, &dlc, recvData);

 (omitted)

 /* CAN Receive Data */
 ret = canRecvData(3, &canID, &dlc, recvData);

 (omitted)

}

←ID：0x0101 receive check

 ←ID：0x0101 receive processing

←ID：0x0102 receive check

 ←ID：0x0102 receive processing

←ID：0x0103 receive check

 ←ID：0x0103 receive processing

AN07-00180-3E

 - 104 -

6 Appendix

6.1 Sample program folder/file configuration

“Table 6-1 Sample program folder/file configuration” shows the folder/file configuration of the sample

program.

Table 6-1 Sample program folder/file configuration

File/folder name

Provision of the

file Description

Single Monitor

bitpot_red_SampleProgram/bitpot_red_SampleProgram_md

 bitpot_red_SampleProgram.prj ○ - Softune project file

 bitpot_red_SampleProgram.wsp ○ - Softune work space file

 bitpot_red_SampleProgram_md.prj - ○ Softune project file

 bitpot_red_SampleProgram_md.wsp - ○ Softune work space file

 flash_erase_sec.bin - ○ Flash erase program

 flash_write.bin - ○ Flash write program

 FshLdWrt.prc - ○ Flash execution program

 template.dat ○ ○ Sofune configuration file

 Debug

 mon_38400.sup - ○ Monitor Debugger file

 ABS

 bitpot_red_SampleProgram.mhx ○ ○ Sample program hex file

 bitpot_red_SampleProgram_md.mhx ○ ○ Sample program hex file

 LST

 OBJ

 OPT

 SRC

 can_drv.c ○ ○ CAN driver source file

 can_drv.h ○ ○ CAN driver header file

 MAIN.C ○ ○ Main source file

 MB91265.h ○ ○ Microcontroller header file

 motor_drv.c ○ ○ Motor driver source file

 motor_drv.h ○ ○ Motor driver header file

 Start91265.asm ○ ○ Microcontroller start assembler file

 UART0.c ○ ○ UART source file

 usr_def.h ○ ○ Common define header file

 vectors.c ○ ○ Vector table source file

FR60

 Debug

 ABS

 FR60.mhx - ○ Monitor Debugger hex file

	Revision History
	Note
	Introduction
	Contact
	Suppliers of the parts/materials
	Setting up the starter kit
	Setting up the PC
	Downloading the software
	Installing a USB driver
	Installing the integrated development environment SOFTUNE (bits pot dedicated version)
	Installing PC Writer (bits pot red dedicated version)
	Configuring the evaluation board and connecting it to the PC

	Running the program
	Executing in single chip mode
	Building a project
	Writing the program into the microcontroller

	Debugging by using Monitor Debugger
	Writing Monitor Debugger into the microcontroller
	Activating SOFTUNE and configuring the debug settings
	Writing the program into the microcontroller
	Loading the target file
	Running the debugger
	Notes on Monitor Debugger

	Operation of the sample program
	bits pot red single-unit operation
	CAN communication operation (CAN communication operation with the bits pot white)

	Try to rotate the BLDC motor
	What is the BLDC motor?
	How does the BLDC motor rotate?
	BLDC motor rotation control by the microcontroller
	Understanding and running the program for the BLDC motor operation
	Handling controls of the BLDC motor

	Try to use CAN communication
	What is CAN?
	CAN specifications
	CAN frame configurations
	Arbitration
	Error management

	CAN communication by using the microcontroller
	Understanding and running the program for CAN communication
	CAN communication configuration
	Sample program sequence

	Appendix
	Sample program folder/file configuration

